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Abstract 

Energy production is the most fundamentally important cellular activity supporting all other functions, 

particularly in highly active organs such as brains, Here we summarise transcriptome analyses of 

young adult (pre-disease) brains from a collection of eleven early-onset familial Alzheimer’s disease 

(EOfAD)-like and non-EOfAD-like mutations in three zebrafish genes. The one cellular activity 

consistently predicted as affected by only the EOfAD-like mutations is oxidative phosphorylation that 

produces most of the brain’s energy. All the mutations were predicted to affect protein synthesis. We 

extended our analysis to knock-in mouse models of APOE alleles and found the same effect for the 

late onset Alzheimer’s disease risk allele 4. Our results support a common molecular basis for 

initiation of the pathological processes leading to both early and late onset forms of Alzheimer’s 
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disease and illustrate the utility of zebrafish and of knock-in, single EOfAD mutation models for 

understanding the causes of this disease. 

 

Summary statement 

Young adult zebrafish mutants and a mouse model of a genetic variant promoting early- and late-

onset Alzheimer’s disease respectively share changes in brain gene expression indicating 

disturbance of oxidative phosphorylation.  

 

Introduction 

Alzheimer’s disease (AD) is a complex and highly heterogenous neurodegenerative disease, defined 

by the presence of intracellular neurofibrillary tangles (NFTs, primarily consisting of 

hyperphosphorylated tau proteins), and extracellular plaques mostly consisting of a small peptide, 

amyloid β (Aβ) (Jack et al., 2018). The pathological basis of AD has been the subject of research for 

over 100 years (Alzheimer, 1906). Nevertheless, most treatments tested in clinical trials have shown 

limited therapeutic benefit.  

AD has a strong genetic basis (reviewed in (Sims et al., 2020)). In some rare cases, early-onset 

familial forms of AD (EOfAD, occurring before 65 years of age) arise due to dominant mutations in 

one of four genes: PRESENILIN 1 (PSEN1), PRESENILIN 2 (PSEN2), AMYLOID β PRECURSOR 

PROTEIN (APP), and SORTILIN-RELATED RECEPTOR 1 (SORL1) (reviewed in (Barthelson et al., 

2020a; Bertram and Tanzi, 2012; Temitope et al., 2021)). However, most AD cases are sporadic, 

showing symptom onset after the arbitrarily defined threshold of 65 years (late-onset sporadic AD, 

LOAD). Genetic variants at many loci have been associated with increased risk of LOAD (Jansen et 

al., 2019; Kunkle et al., 2019; Lambert et al., 2013). The most potent variant is the ε4 allele of 

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

D
M

M
 •

 A
cc

ep
te

d 
m

an
us

cr
ip

t



 

 

APOLIPOPROTEIN E (APOE) (Farrer et al., 1997) that has been described as “semi-dominant” 

(Genin et al., 2011). 

An understanding of the early cellular stresses on the brain that eventually lead to AD is necessary to 

advance the development of preventative treatments. This is difficult to achieve through studying 

living humans, as EOfAD mutations are rare, and access to young, pre-symptomatic brains is limited. 

Nevertheless, imaging studies have implicated structural and functional changes to the brain long 

before diagnosis of AD (Iturria-Medina et al., 2016; Quiroz et al., 2015). Brain imaging cannot provide 

detailed molecular information on these changes. Transcriptome analysis is, currently, the strategy 

that can provide the highest resolution molecular description of cells and tissues. However, 

transcriptome analyses of ante-mortem brains carrying EOfAD mutations can only be performed using 

brain tissue from animal models. 

 

Our group has exploited the zebrafish to generate a collection of knock-in models of EOfAD-like 

mutations in order to analyse their young brain transcriptomes (Barthelson et al., 2021a; Barthelson et 

al., 2021b; Barthelson et al., 2020b; Barthelson et al., 2021c; Dong et al., 2021; Hin et al., 2020a; Hin 

et al., 2020b; Jiang et al., 2020; Newman et al., 2019). Our experimental philosophy has been to 

replicate, as closely as possible, the single heterozygous mutation state of EOfAD in humans, thereby 

avoiding possibly misleading assumptions regarding the molecular mechanism(s) underlying the 

disease. Our overall goal has been to compare a broad-range of EOfAD-like mutations in a number of 

EOfAD genes to define their shared pathological effects in young adult brains where the long 

progression to AD begins. To assist in this definition (by exclusion), we also created non-EOfAD-like 

mutations in the same genes as negative controls, i.e. frameshift mutations in the presenilin genes 

that do not cause EOfAD (reviewed in (Jayne et al., 2016), the “reading frame-preservation rule”). The 

presentation of EOfAD and LOAD as a similar diseases (reviewed in (Blennow et al., 2006; Masters et 

al., 2015)) implies similarity, to some degree, at the cellular and molecular levels. Therefore, despite 

differences in the genetic variants that promote these two diseases, understanding the molecular 

effects of heterozygosity for EOfAD mutations may give insight into molecular changes underpinning 

LOAD.  
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Here, we summarise our findings of brain transcriptome analyses of EOfAD-like mutations in the 

zebrafish orthologues of genes implicated in EOfAD: psen1, psen2 and sorl1. EOfAD mutations also 

exist in APP. However, zebrafish express two APP “co-orthologous” genes, appa and appb, 

complicating analysis of single, heterozygous mutations. Therefore, we re-analysed the best available 

publicly accessible brain transcriptomic data from a knock-in model of APP mutations: the App
NL-G-F

 

mouse. Finally, we compared whether the brain transcriptome changes occurring due to single 

heterozygous EOfAD-like mutations in zebrafish are similar to the changes occurring due to the 

strongest genetic risk factor for LOAD: the ε4 allele of APOE, using publicly available brain 

transcriptome data from a humanised APOE targeted-replacement mouse model (APOE-TR) 

(Sullivan et al., 1997). We identify changes to energy metabolism as the earliest detectable cellular 

stress due to AD mutations, and demonstrate that knock-in zebrafish models are valuable tools to 

study the earliest molecular pathological events in this disease.  

 

Results 

Transcriptome analysis of zebrafish models of EOfAD 

We first collated our findings from our zebrafish models of EOfAD-like mutations in psen1 (Barthelson 

et al., 2021a; Hin et al., 2020a; Hin et al., 2020b; Newman et al., 2019), psen2 (Barthelson et al., 

2021b) and sorl1 (Barthelson et al., 2020b; Barthelson et al., 2021c). An advantage of using zebrafish 

for RNA-seq analyses is minimisation of genetic and environmental noise through breeding strategies 

such as that shown in Fig. 1A. Large families of synchronous siblings can consist of heterozygous 

mutant and wild type genotypes allowing direct comparisons of the effects of each mutation. So far, 

we have performed six brain transcriptomic analyses based on various breeding strategies 

(summarised in Table 1 and Fig. S1-S6). The detailed analyses can be found in the publications cited 

above. However, the outcomes are summarised below and in Fig. 1. 

In our previously published analyses, we found that heterozygosity for most of our EOfAD-like 

mutations does not result in many differentially expressed (DE) genes in young adult brains 

(Barthelson et al., 2021a; Barthelson et al., 2021b; Barthelson et al., 2020b; Barthelson et al., 2021c; 

Newman et al., 2019) (as would be expected for modelling a disease that becomes overt in middle 
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age). Therefore, we performed gene set enrichment analyses to predict which cellular processes were 

affected by each of the mutations in each experiment. We used the KEGG (Kanehisa and Goto, 2000) 

gene sets to determine whether changes to gene expression were observed in any of 186 biological 

pathways/processes. Additionally, we recently proposed that neuronal iron dyshomeostasis may be 

an effect-in-common of EOfAD mutations in the context of AD pathogenesis (Lumsden et al., 2018). 

Therefore, we used our recently defined iron responsive element (IRE) gene sets (HIN ET AL., 2020B) 

to test for evidence of iron dyshomeostasis. Biological processes found to be affected in at least two 

different zebrafish mutants are shown in Fig. 1B (the statistical significance of all KEGG and IRE 

gene sets in each mutant can be found in S2 file). The one gene set consistently altered by all of the 

EOfAD-like mutations, but not by the non-EOfAD-like mutations examined, is the 

KEGG_OXIDATIVE_PHOSPHORYLATION gene set (Fig. 1C), supporting that changes to 

mitochondrial function are an early cellular stress in EOfAD. The 

KEGG_OXIDATIVE_PHOSPHORYLATION gene set is also affected by heterozygosity for the K97fs 

mutation of psen1. K97fs is a frameshift mutation and so does not follow the “reading-frame 

preservation rule” (Jayne et al., 2016) of presenilin EOfAD mutations. However, the truncated protein 

encoded by K97fs resembles an hypoxia-induced isoform of human PSEN2, denoted PS2V, which 

shows increased expression in LOAD brains, (Sato et al., 1999) (and see (Moussavi Nik et al., 2015) 

for additional explanation). Therefore, K97fs is still an AD-relevant mutation. 

Genes encoding the components of ribosomal subunits, as defined by the gene set 

KEGG_RIBOSOME, were affected by all the EOfAD-like mutations but also by non-EOfAD-like 

mutations in psen1 and psen2 (Fig. 1D). Evidence for iron dyshomeostasis was also observed for the 

relatively severe EOfAD-like mutation psen1
Q96_K97del

/+ (under both normoxia and acute hypoxia 

conditions), and in transheterozygous sorl1 mutants (i.e. with complete loss of wild type sorl1), as 

shown by significant changes to the expression of genes possessing IRE(s) in the 3’ untranslated 

regions of their encoded mRNAs (ire_hq and ire_all). 
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Transcriptome analysis of the AppNL-G-F mouse model 

EOfAD is also caused by mutations of the gene APP. Modelling of APP mutations in zebrafish is 

complicated by duplication of the APP-orthologous gene in this organism. However, brain 

transcriptome data is available for a knock-in mouse model of EOfAD mutations in APP: the App
NL-G-F

 

mouse model (Castillo et al., 2017). In this model, the murine App sequence is modified to carry 

humanised DNA sequences in the Aβ region, as well as the Swedish, Beyreuther/Iberian, and Arctic 

EOfAD mutations (Saito et al., 2014). While these mice do not closely reflect the genetic state of 

heterozygous human carriers of EOfAD mutations of APP (as the mice possess a total of six 

mutations within their modified App allele and are usually analysed as homozygotes), they should, at 

least, not generate artefactual patterns of gene expression change due to overexpression of 

transgenes (Saito et al., 2016). Castillo et al. performed brain transcriptomic profiling via microarray 

on the brain cortices of male homozygous App
NL-G-F

 mice relative to wild type mice at 12 months of 

age, as well as a transgenic mouse model of AD, 3xTg-AD mice (Oddo et al., 2003) relative to non-Tg 

mice (Castillo et al., 2017). All mice used in the study were maintained as inbred lines. However, 

there is no information on whether any of the mice analysed were littermates. It is highly unlikely that 

the mice used in each comparison between mutant individuals and their wild type counterparts all 

arose from the same litter, because obtaining 3 homozygous and 3 wild type male mice in a single 

litter arising from an in-crossing of heterozygous mutant mice, (expected to produce a wild type : 

heterozygote : homozygote Mendelian genotype ratio of 1:2:1), would be a rare event as litters of 

mice generally consist of 5 to 10 pups. Therefore, additional variation was introduced into the analysis 

through use of mice from different litters and this is likely confounding with genotype. This is important 

to note, as the results presented here were generated under the assumption that any effects of litter-

of-origin are negligible.  

Our re-analysis of the microarray dataset of Castillo et al. aimed to address the following questions:  

1) Are the KEGG gene sets affected in the male homozygous App
NL-G-F

 mice similar to those 

affected in EOfAD-like zebrafish? 

2) Is there evidence for iron dyshomeostasis in the brains of these mice? 
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Initially, we attempted to replicate the results of Castillo et al. using the Affymetrix Transcriptome 

Analysis Console software. However, we were unable to find sufficient information to achieve this. 

Therefore, we analysed the microarray dataset in a reproducible manner following a recommended 

microarray analysis workflow (Carvalho and Irizarry, 2010).  

After pre-processing of the raw intensities (Fig. S7), we performed principal component analysis 

(PCA) to explore the overall similarity between samples (Fig. 2A). Samples separated across PC1 by 

genotype, suggesting that the homozygous genotypes in this study result in distinct transcriptome 

states. Notably, the App
NL-G-F/NL-G-F 

samples and their corresponding App
+/+

 control samples appear to 

separate to a greater extent across PC1 than the 3xTg samples and their corresponding non-Tg wild 

type control samples. Additionally, a differential gene expression analysis revealed 158 and 126 

genes to be differentially expressed (DE) in App
NL-G-F/NL-G-F

 and 3xTg mice respectively (relative to 

their corresponding controls, Fig. S8). This suggests that the disturbance to the cortex transcriptome 

in App
NL-G-F/NL-G-F 

mice is greater than that in 3xTg mice. 

We did not observe alteration of any similar gene sets between the App
NL-G-F

 mice and our EOfAD-like 

zebrafish (Fig. S9-S12). However, any similarities may well have been masked by the overwhelming 

effects of greater age, variable environment (mouse litter-of-origin), and the effects of their six App 

mutations on brain cortex cell type proportions and inflammatory processes. The most statistically 

significantly affected cellular process in 12-month-old App
NL-G-F

 mice is lysosomal function as 

represented by the KEGG_LYSOSOME gene set (discussed later). Additionally, a plethora of 

inflammatory gene sets are also affected, with changes in the relative proportions of glial cells, 

particularly microglia, contributing to the appearance of increased levels of these gene transcripts in 

the bulk cortex RNA analysed (Fig. 2B,2C, Fig. S13). Note that changes to cell-type proportions are 

not observed in our zebrafish models of EOfAD (Barthelson et al., 2021b; Barthelson et al., 2020b; 

Barthelson et al., 2021c) (see Fig. S14 for two examples).  
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Do changes to gene expression in the oxidative phosphorylation pathway also 
occur in LOAD? 

A puzzling observation from the genome-wide association studies (GWAS) of LOAD, is that none of 

the risk variants identified fall within the EOfAD genes, PSEN1, PSEN2, or APP (Jansen et al., 2019; 

Kunkle et al., 2019; Lambert et al., 2013). This has led to speculation that EOfAD and LOAD may be 

distinct diseases despite their histopathological and cognitive similarities (reviewed in (DeTure and 

Dickson, 2019; Tellechea et al., 2018)). Only one gene identified by GWAS of LOAD is suspected to 

harbour mutations causative of EOfAD, SORL1. Mutations in SORL1 cause AD with ages of onset 

typically later than many mutations in PSEN1 or APP (or may be incompletely penetrant) (Pottier et 

al., 2012; Thonberg et al., 2017). Nevertheless, as shown in Fig. 1B, we identified changes in the 

KEGG gene set for oxidative phosphorylation in young adult zebrafish heterozygous for EOfAD-like 

mutations in sorl1, as well as in zebrafish modelling overexpression of the PS2V isoform that is 

upregulated in LOAD (K97fs).  

The strongest and most common genetic risk factor for LOAD is the ε4 allele of the gene APOE 

(Corder et al., 1993; Genin et al., 2011; Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; 

Saunders et al., 1993). Like APP, the APOE orthologous gene in zebrafish is refractory to analysis 

due to duplication. Therefore, to compare our zebrafish mutant data to early brain transcriptome 

changes caused by the ε4 allele of APOE, we analysed data from a set of human gene targeted 

replacement mouse models, APOE-TR (Sullivan et al., 1997). These mouse models transcribe human 

APOE alleles from the endogenous murine Apoe promotor: the predominant human allele ε3, the rare 

AD-protective ε2 allele, and the AD-risk allele, ε4. Zhao et al. performed a comprehensive brain 

transcriptome profiling experiment across aging in both male and female mice to assess the effect of 

homozygosity for the ε2 or ε4 alleles relative to the risk-neutral ε3 allele (Zhao et al., 2020). In that 

analysis, pairwise comparisons between the ε2, or ε4 alleles relative to the ε3 allele were not 

conducted at each age and sex. Only genes/pathways which were influenced overall by APOE 

genotype, age, sex, and interactions between these factors were reported. Since our aim is to identify 

the early changes occurring due to AD-related mutations, we re-analysed only the 3-month brain 

samples from the Zhao et al. dataset (i.e. omitting the samples from 12- and 24-month-old mice) to 

ask which processes are affected by homozygosity for the ε2, or ε4 alleles relative to the ε3 allele. 

Hereafter, we refer to these homozygous mice as “APOE2”, “APOE3” and “APOE4”.  

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

D
M

M
 •

 A
cc

ep
te

d 
m

an
us

cr
ip

t



 

 

After pre-processing of the APOE-TR RNA-seq data (Fig. S15-16), we performed PCA to visualise 

the overall similarity between APOE-TR brain transcriptomes. The plot of PC1 against PC2 revealed 

that samples separated into two distinct clusters of sex across PC2 (Fig. 3B). This suggests that the 

effect of sex on the murine brain transcriptome is substantial and cannot be ignored in the differential 

gene expression analysis. Among the male samples, APOE4 samples form a cluster distinct from the 

APOE2 and APOE3 samples, suggesting that the APOE4 genotype has a distinct effect on the 

transcriptome compared to APOE2 relative to APOE3 in males. This is not observed to the same 

extent in the female samples. However, the male APOE4 and APOE3 samples appeared to have 

been taken from distinct litters, as implied from the date-of-birth of each sample (Fig. 3B). This 

confounds the effect of genotype and complicates interpretation of whether any effects observed in a 

pairwise comparison between male APOE3 and APOE4 mice are due to APOE genotype or litter-of-

origin (or, most likely, both). Indeed, 𝝌2 tests for independence revealed that there is a highly 

significant dependence of APOE genotype and litter across the entire 3-month-old dataset (𝝌2= 82.7, 

df = 20, p-value = 1.4e-09), as well as within only male samples (𝝌2= 43.1, df = 14, p-value = 8.2e-05) 

and within only female samples (𝝌2= 39.3, df = 14, p-value = 3.0e-04). Some litters did not contain 

sufficient mice to remove the effect (i.e. some coefficients could not be estimated during the 

generalised linear model fitting procedure due to the design matrix not having full rank). Therefore, we 

continued the analysis under the assumption of a negligible effect of litter.  

To determine which genes were dysregulated in APOE4 mice and APOE2 mice relative to APOE3 

mice, we performed a differential gene expression analysis using edgeR (McCarthy et al., 2012; 

Robinson et al., 2009). Many genes were found to be DE in each comparison, particularly in male 

APOE4 mice. Additionally, the biases noted by Zhao et al. in the original analysis for increased GC 

content and longer transcript length among differentially expressed genes was also apparent in our 

analysis (Fig. S17). Therefore, we corrected for these observed biases using conditional quantile 

normalisation (cqn) (Hansen et al., 2012). After cqn, many genes were identified as DE in each 

comparison, and the %GC and gene length biases were decreased (Fig. S18).  
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We next performed enrichment analysis of the KEGG (Kanehisa and Goto, 2000) and IRE (Hin et al., 

2020b) gene sets to determine whether changes are observed in APOE4 mice similar to those in our 

EOfAD-like model zebrafish (Fig. S19- 23). We found statistical evidence for significant changes in 

expression of oxidative phosphorylation and ribosome gene sets in mice homozygous for the 

humanised ε4 APOE allele, consistent with our zebrafish models of EOfAD (although different genes 

appear to drive the statistical enrichment of the KEGG_OXIDATIVE_PHOSPHORYALTION gene set 

in the two organisms, Fig. S25). Interestingly, we observed highly statistically significant changes in 

the gene set ire3_all only in APOE4 male mice, reminiscent of similar signals in some of the young 

adult EOfAD-related zebrafish (Barthelson et al., 2020b; Hin et al., 2020b) (Fig. 1B and S22C) and 

supporting the existence of iron dyshomeostasis. These effects were not observed for the AD-

protective ε2 allele (Fig. 3, Table S2,3). However, the effects of APOE genotype were highly 

dependent on the litter-of-origin of the samples and changes to cell type proportions were observed in 

the male APOE4 mice (Fig. S24). Therefore, future replication of this analysis with better-controlled 

transcriptome data is desirable to confirm that the effects observed are due to the APOE genotype. 

 

Discussion 

Altered gene expression in the oxidative phosphorylation pathway is a 
transcriptomic signature of genetic variation driving Alzheimer’s disease in 
young adults 

Energy production is the most fundamental of cellular activities. Life cannot be sustained without 

energy, and all other cellular activities depend upon it. The human brain, in particular, has very high 

energy demands and consumes the majority of the body’s glucose when at rest (reviewed in (Zierler, 

1999)). Within the brain, the majority of energy use is to maintain the Na
+
-K

+
 membrane potential of 

neurons (Attwell and Laughlin, 2001) and neurons are assisted in meeting these energy demands by 

support from, primarily, astrocytes (e.g. via the astrocyte–neuron lactate shuttle (Pellerin and 

Magistretti, 1994)). All cells allocate considerable portions of their energy budgets to protein synthesis 

to maintain their structure and activity (Buttgereit and Brand, 1995). Energy is also required to 

maintain the low pH and high Ca
2+

 concentration of the lysosome (Christensen et al., 2002), the 

organelle which mediates uptake and recycling (autophagy) of cellular structural constituents (e.g. the 
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amino acids for protein synthesis) (reviewed in (Yim and Mizushima, 2020)). Lysosomes are 

important for uptake and recycling of ferrous iron (Yambire et al., 2019), that is essential for oxidative 

phosphorylation by mitochondria (Oexle et al., 1999). On the lysosomal membrane, mTOR complexes 

sense nutrient and energy status to regulate protein synthesis, autophagy, and mitochondrial activity 

(reviewed in (Lim and Zoncu, 2016)). 

The EOfAD genes, PSEN1, PSEN2, APP, and SORL1, all encode proteins expressed within the 

endolysosomal pathway of cells (Andersen et al., 2005; Kawai et al., 1992; Pasternak et al., 2003; 

Sannerud et al., 2016) and within the mitochondrial associated membranes (MAM) of the 

endoplasmic reticulum (Area-Gomez et al., 2009; Lim, 2015). MAM are responsible for regulation of 

ATP production (through Ca
2+

 signalling (Duchen, 1992)), oxidative protein folding (reviewed in 

(Simmen et al., 2010)), and the initiation of autophagy (Hamasaki et al., 2013). Interestingly, like 

EOfAD mutant forms of PSEN1 (Lee et al., 2010) and the C99 fragment of APP (Jiang et al., 2019), 

the 4 allele of APOE has been shown to affect both lysosomal pH (Prasad and Rao, 2018) and the 

MAM (Tambini et al., 2016). Our analyses of young adult brain transcriptomes in zebrafish have found 

that five EOfAD-like mutations in a total of three EOfAD gene orthologues (psen1, psen2, and sorl1) 

all cause statistically significant effects on the expression of genes involved in oxidative 

phosphorylation, while non AD-related mutations in psen1 and psen2 do not. Therefore, effects on 

oxidative phosphorylation are a common, early “signature” of EOfAD. Intriguingly, we previously 

observed downregulation of the oxidative phosphorylation genes due to heterozygosity for the 

psen1
Q96_K97del

 mutation in whole zebrafish larvae at 7 days post fertilisation (dpf) (Dong et al., 2021), 

suggesting changes to mitochondrial function are a very early cellular stress in EOfAD pathogenesis. 

Additionally, we observed that the “semi-dominant” 4 LOAD risk allele (Genin et al., 2011), like 

EOfAD mutations, also affects the expression of genes involved in oxidative phosphorylation and 

ribosome function in young adult brains. Thus, changes in oxidative phosphorylation (and so energy 

production) appear to be a common, early disturbance associated with both early- and late- onset 

forms of AD.  
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The majority of the heterozygous EOfAD-like mutations we have studied in zebrafish cause an overall 

downregulation of the oxidative phosphorylation gene set in young adult brains relative to wild type 

brains (Fig. 1C). Only heterozygosity for the T141_L142delinsMISLISV (reading frame-preserving) 

mutation of psen2 has been seen to give overall upregulation of these genes. Another complex, yet 

probably EOfAD-like mutation in psen2 we have studied in zebrafish, psen2
S4ter

, (which likely 

produces Psen2 proteins lacking N-terminal sequences) also showed strong overall upregulation of 

the oxidative phosphorylation gene set (Jiang et al., 2020), although that dataset contains technical 

artefacts which complicate interpretation so it was not included in the current analysis. 

Transheterozygosity for mutations in sorl1 also results in overall upregulation of oxidative 

phosphorylation genes. We are uncertain as to why this variability in effects on the oxidative 

phosphorylation gene set occurs. However, for the PRESENILINs, the single most consistent 

characteristic of the hundreds of known EOfAD mutations is that they maintain the ability of the genes 

to produce at least one transcript isoform with the original reading frame (the “reading frame 

preservation rule” (Jayne et al., 2016)). This strongly supports that all these mutations act via a 

dominant gain-of-function molecular mechanism (to interfere with a normal cellular function). 

Alternatively, it may be that the disruption of this gene set that is consistently observed is a product of 

both genotype and environmental factors, i.e. the mutant fish may be more or less responsive to 

environmental variation such as changes in water quality, microbiome, handling etc. Also, we note 

that it can be misleading to infer the direction of change in a particular cell activity, such as oxidative 

phosphorylation, based on the majority behaviour of a (somewhat arbitrarily) defined set of genes. 

Obviously, actual measurement of e.g. respiratory rates in the zebrafish mutant brains would be 

needed to establish, with certainty, how the mutations are affecting oxidative phosphorylation. Note, 

however, that the subtlety of the gene regulatory effects we have observed in the fish models means 

that discernment of physiological oxygen consumption differences between mutant fish and their wild 

type siblings may be challenging. (Simultaneous measurement of differences in the expression levels 

of the approximately 100 genes in the oxidative phosphorylation gene set gives great statistical 

sensitivity for detection of subtle differences.)  
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Importantly, male mice homozygous for LOAD risk allele APOE ε4, showed altered expression of the 

oxidative phosphorylation gene set, while female APOE4 mice showed a similar trend that did not 

reach the threshold for statistical significance. In fact, male APOE4 mice appeared to have more 

disrupted brain transcriptomes than female APOE4 mice (Fig. 3B) including alteration in the 

abundance of transcripts with IREs in their 3’ UTRs, supporting the possibility of early brain iron 

dyshomeostasis (as was previously observed in psen
Q96_K97del

/+ fish and those lacking wild type sorl1 

function). This was unexpected, as human females are more susceptible to the effects of APOE ε4 

than males (Farrer et al., 1997; Wang et al., 2020). However, other sources of variation (i.e. litter-of-

origin, changes to cell type proportions, and possibly transcript length) may be masking the true 

effects of APOE genotype in these mice. Reassuringly, a recent single-cell RNA-seq analysis (where 

discrepancies due to differences in cell-type proportions are overcome) of female APOE4 mice 

showed that expression of oxidative phosphorylation genes is decreased at 12 months-of-age, 

particularly in astrocytes. Further dissection of the metabolic phenotype of female APOE4 mice 

revealed a shift away from oxidative phosphorylation and towards glycolysis for ATP production 

(Farmer et al., 2021). Remarkably, this result was consistent with observations in human ε4-carrying 

females, who show lower energy expenditure, decreased oxygen consumption, and alterations to 

their plasma metabolomes indicative of increased glycolysis (Farmer et al., 2021).  

The changes to gene expression in the oxidative phosphorylation pathway in both EOfAD-like 

zebrafish and APOE4 mice demonstrates the similarity, at the molecular level, between the cellular 

effects of genetic variants causing EOfAD and the most significant variant promoting LOAD. The 

differences in disease onset age between EOfAD and LOAD may be due to the severity of the effects 

on energy metabolism of the different genetic variants that promote each disease in concert with 

environmental variables. This is consistent with the fact that classification of AD into these two 

subtypes appears arbitrary since there is no discernible early age-dependent peak in the population 

prevalence of dementia (of which AD contributes the majority of cases). The observed molecular 

pathway similarity between knock-in models of EOfAD and LOAD genetic variation supports the 

validity and utility of analysing early molecular events in AD pathogenesis using knock-in models in 

both zebrafish and mice, and that analysis of endogenous EOfAD mutations can contribute 

information valuable for understanding LOAD pathogenesis. The mystery of why GWAS has failed to 

detect variation in PSEN1, PSEN2, or APP in LOAD remains, although some mutations in PSEN2 
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and APP genes do cause later onset familial forms of the disease (Cruchaga et al., 2012) and/or 

show incomplete penetrance (Finckh et al., 2000; Rossor et al., 1996; Sherrington et al., 1996; 

Thordardottir et al., 2018) or recessive inheritance (Di Fede et al., 2009; Tomiyama et al., 2008). 

Brain hypometabolism is a diagnostic criterion for AD and can be visualised by 2-deoxy-2-(
18

F)fluoro-

D-glucose positron emission tomography (
18

FDG-PET) (reviewed in (Marcus et al., 2014)). This 

technique has been used previously to investigate adults at risk of developing AD (e.g. (Ou et al., 

2019)) while blood oxygenation level dependent (BOLD) functional magnetic resonance imaging 

(fMRI) has identified brain regional changes in activity (and hence energy consumption) in child 

carriers of the PSEN1 E280A (“Paisa”) EOfAD mutation (Quiroz et al., 2015). This suggests that 

18
FDG-PET, or techniques such as dynamic glucose-enhanced (DGE) MRI (Tolomeo et al., 2018), 

might enable screening of individuals to determine risk of later development of AD and be useful tools 

in investigating early energy changes in animal models of AD. Indeed, such techniques have been 

exploited to monitor energy consumption in the brains of transgenic mouse models (Huang et al., 

2020; Luo et al., 2012; Poisnel et al., 2012; Tolomeo et al., 2018). However, they have not yet been 

applied to mice with knock-in EOfAD mutations. The observations of change in in vivo brain energy 

metabolism discussed above are consistent with the observed changes in the expression of genes of 

the oxidative phosphorylation pathway in the post-mortem brains of early, and late AD subjects 

relative to age-matched controls (Manczak et al., 2004). Neuronal cells derived from human induced 

pluripotent stem cells (hiPSCs) of LOAD patients also show increased expression of oxidative 

phosphorylation proteins and oxidative stress (Birnbaum et al., 2018) and neurons derived from a 

patient carrying the PSEN1
S170F 

EOfAD mutation showed mitochondrial abnormalities (Li et al., 2020).  

Our findings regarding EOfAD mutations in zebrafish were not consistent with findings from our 

analysis of transcriptome data from homozygous App
NL-G-F

 mice. However, this transcriptome data 

was generated from “middle-aged” (12 month old) mice rather than young adults, and the 

endogenous App gene of the mouse was altered with a total of six mutations (three that humanise the 

sequence of the Aβ region and three EOfAD mutations), motivated by the idea that the more 

aggregation-prone human Aβ sequence plays a critical role in the pathogenic mechanism of AD. 

Therefore, it is not directly comparable with our zebrafish EOfAD models, which contain single, 

EOfAD-like mutations within single alleles of endogenous genes. To our knowledge, a transcriptome 

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

D
M

M
 •

 A
cc

ep
te

d 
m

an
us

cr
ip

t



 

 

analysis has not been performed on App
NL-G-F

 mice at a younger age. However, the expression of 

genes involved in lysosomal function (KEGG_LYSOSOME) was observed to be highly significantly 

upregulated in homozygous App
NL-G-F

 brains. This is not unexpected, as acidification of the endo-

lysosomal system is impaired by increased levels of the β-CTF fragment of APP (also known as C99 

and generated by β-secretase cleavage of APP (Jiang et al., 2019)). Increased β-CTF has been 

observed in the brains of App
NL-G-F 

mice (Saito et al., 2014). In a mouse model of a lysosomal storage 

disorder (Glycogen storage disease type 2, which most seriously affects muscle (Yambire et al., 

2019)), lysosomes failed to become sufficiently acidic and this resulted in an intracellular ferrous iron 

deficiency and a pseudo-hypoxic response, mitochondrial dysfunction, and inflammation (Yambire et 

al., 2019). (Degradation of HIF1-⍺, the master transcriptional regulator of the cellular response to 

hypoxia, is dependent on both oxygen and ferrous iron (Ivan et al., 2001).) Additionally, the App
NL-G-F 

mouse model shows increased levels of Aβ from a young age (Saito et al., 2014), and the deposition 

of Aβ into plaques was shown to be associated with the increased expression of genes in the 

complement system in a comprehensive spatial transcriptomics study of aging in the App
NL-G-F 

mouse 

model (Chen et al., 2020), providing another avenue for these mutations to trigger inflammation. 

Mitochondrial dysfunction has not been observed directly in App
NL-G-F

 mice. However, increased levels 

of oxidative stress have been observed at 12 months of age (Izumi et al., 2020), suggestive of 

increased reactive oxygen species (ROS) that can be generated by dysfunction of mitochondrial 

respiration. Therefore, we suspect that similar processes are being affected in App
NL-G-F

 mice to those 

in our zebrafish models and the APOE4 knock-in mice. However, subtle signs of mitochondrial 

dysfunction in the transcriptome may be obscured by noise from the strong inflammatory signals in 

the bulk brain transcriptomic data (as well as confounding influences on the transcriptome analysis 

such as litter-of-origin effects).  

 

mTOR signalling can regulate ribosomal gene set expression 

All of the mutations studied have also resulted in changes in the levels of transcripts required for 

ribosome formation. Protein translation is one of the most energy-costly processes within a cell 

(Buttgereit and Brand, 1995), and so expression of ribosomal proteins is modulated by the 

mammalian target of rapamycin (mTOR) system that surveys cellular nutrient status to adjust cellular 
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metabolism (reviewed in (Mayer and Grummt, 2006; Zhou et al., 2015)). mTOR signalling, which 

appears to be increased in late-stage AD brains compared to controls (Griffin et al., 2005; Li et al., 

2005; Sun et al., 2014), is regulated by growth factors, nutrients, energy levels and stress. In addition 

to ribosome biogenesis, mTOR signalling plays a role in various other cellular processes also 

implicated in AD pathogenesis, such as autophagy and lipid metabolism (reviewed in (Saxton and 

Sabatini, 2017)).  

The mTOR proteins are localised at lysosomes within the mTORC1 and mTORC2 protein complexes 

(Sancak et al., 2010). Intriguingly, the v-ATPase complex that acidifies the endolysosomal pathway is 

required for mTORC1 activation (Zoncu et al., 2011). Proper assembly of the v-ATPase at the 

lysosome requires the PSEN1 protein (and this process is impaired in EOfAD patient fibroblasts) (Lee 

et al., 2010). Stimulation of mTOR signalling has been observed in response to accumulation of Aβ 

(Caccamo et al., 2010), while hyperactivation of mTOR is observed in Down’s syndrome (where the 

dosage of the APP gene is increased because it resides on Chromosome 21 and early-onset AD is 

common) (Bordi et al., 2019; Iyer et al., 2014). Intriguingly, Bordi et al. observed that inhibition of 

mTOR signalling (specifically, mTORC1) rescues auto- and mito-phagy defects in the fibroblasts of 

Down’s syndrome individuals (Bordi et al., 2019). Among our transcriptome analyses of AD models, 

we only observed statistically significant changes to the expression of genes in the KEGG gene set 

for mTOR signalling in transheterozygous sorl1 mutants, in psen1
Q96_K97del

/+ mutant zebrafish after 

acute hypoxia exposure, and in both male and female APOE4 mice. However, the majority of 

regulation of mTOR signalling occurs at the protein level, so that it is perhaps unsurprising that, in the 

EOfAD mutants, we could only detect significant changes in the transcriptional response to altered 

mTOR signalling rather than in the mTOR gene set itself.  

 

Advantages and disadvantages of zebrafish for analysis of genetic variants 
driving AD 

In a highly sensitive analysis method such as RNA-seq, minimising external sources of variation 

increases resolving power. Our analysis has revealed that zebrafish can be highly advantageous for 

transcriptome profiling in the context of RNA-seq, as large numbers of progeny can be produced from 

a single pair mating, and these can subsequently be raised together in a single aquarium system, 
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thus reducing both genetic and environmental variation. This has allowed us to observe subtle effects 

due to the EOfAD-like mutations we have analysed. In contrast, a female mouse can only birth 

relatively small litters of 5-10 pups, making it particularly difficult to obtain sufficient numbers of 

synchronous sibling samples (particularly when genotypes of interest are produced by crossing of  

heterozygotes). Our re-analysis of the APOE-TR mouse brain transcriptomes was unable to 

distinguish with great certainty whether the effects we observed were due to Apoe genotype or litter-

of-origin. Also, information on whether App
NL-G-F

 mice were littermates was not available, and this 

required us to assume that the effects of litter were negligible in order to perform the analysis. Another 

contrast between brain transcriptome analysis in zebrafish compared to mice is the influence of sex. 

Mouse brain transcriptomes show very significant differences due to sex, while sex has a negligible 

effect on bulk brain transcriptomes from zebrafish (Barthelson et al., 2021a; Barthelson et al., 2021b; 

Barthelson et al., 2020b; Barthelson et al., 2021c; Drew et al., 2012), and can generally be ignored in 

a differential expression analysis. We also found evidence for changes to cell type proportions in both 

APOE-TR and App
NL-G-F

 mice, a phenomenon that can create the artefactual appearance of gene 

expression change. We have not observed cell-type proportion differences in 6 month or 24 month old 

zebrafish (Barthelson et al., 2021a; Barthelson et al., 2021b; Barthelson et al., 2020b; Barthelson et 

al., 2021c; Hin et al., 2020a; Hin et al., 2020b) (Fig. S14), possibly associated with the resistance to 

damage of the highly regenerative zebrafish brain (Kroehne et al., 2011). While this regenerative 

ability may hinder use of zebrafish for studying overt neurodegeneration, it can facilitate analysis of 

young, bulk brain transcriptomes before overt pathological processes would be expected.  

The advantages of zebrafish for analysing the early effects of EOfAD mutations are countered, 

occasionally, by disadvantages. The teleost lineage in which zebrafish arose underwent an early 

whole-genome duplication event (reviewed in (Meyer and Van de Peer, 2005)), such that many 

human genes are represented by duplicate “co-orthologues” in zebrafish (e.g. the co-orthologues of 

APP and APOE in zebrafish are appa / appb and apoea / apoeb respectively). This complicates 

interpretation of the effects of mutations in these genes. Additionally, zebrafish have never been 

shown, definitively, to be capable of producing Aβ, a pathological hallmark of AD. The β-secretase 

(BACE) site of human APP does not appear conserved in zebrafish Appa and Appb (Moore et al., 

2014). Whether Aβ accumulation is a cause or consequence of AD pathological processes continues 
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as a matter of debate within the AD research community (reviewed in (Morris et al., 2018)). If 

zebrafish cannot produce Aβ, then the changes we have observed in the brains of our zebrafish 

models may illuminate Aβ-independent effects of EOfAD mutations.  

 

Knock-in models of Alzheimer’s disease mutations may model more 
accurately early AD-associated pathological changes  

Knock-in mouse models of single EOfAD mutations were generated 15-20 years ago (Guo et al., 

1999; Kawasumi et al., 2004) but their brain transcriptomes have never been analysed in detail. This 

is likely because these mice showed only very mild cognitive phenotypes and lacked the AD 

histopathology currently used to define the disease (Aβ deposition and neurofibrillary tangles of tau 

protein (Jack et al., 2018)). By expressing multiple mutant forms of EOfAD genes in transgenic mice, 

A plaques can be detected and cognitive changes observed (reviewed in (Esquerda-Canals et al., 

2017; Myers and McGonigle, 2019)). However, experience with use of many such “mouse models of 

Alzheimer’s disease” has shown a lack of correlation of cognitive changes with A levels (Foley et al., 

2015) (Aβ levels do not closely correlate with cognitive changes in humans either (Giannakopoulos et 

al., 2003)) and transcriptome analysis of their brains has shown little to no concordance with 

transcriptomes from post-mortem AD brains, or between the models themselves (Hargis and Blalock, 

2017). In two papers in 2014 and 2016, Saito and colleagues described phenotypic disparities 

between transgenic and APP EOfAD mutation knock-in mouse models (Saito et al., 2014; Saito et al., 

2016). In the 2016 paper they went so far as to declare that, 

“We recently estimated using single App knock-in mice that accumulate amyloid peptide 

without transgene overexpression that 60% of the phenotypes observed in Alzheimer’s model 

mice overexpressing mutant amyloid precursor protein (APP) or APP and presenilin are 

artifacts (Saito et al., 2014). The current study further supports this estimate by invalidating 

key results from papers that were published in Cell. These findings suggest that more than 

3000 publications based on APP and APP/PS overexpression must be reevaluated.” 
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Nevertheless, since 2016 thousands more papers have been published using transgenic mouse 

models of Alzheimer’s disease. In this light, we were surprised to find that App
NL-G-F

 homozygous mice 

display a young adult brain transcriptome that is more severely disturbed than in the multiply 

transgenic 3xTg-AD model - although that apparent disturbance is likely somewhat artefactual and 

due to changes in the relative proportions of different cell types in the model. As mentioned above, 

changes to cell type proportions are not observed in our zebrafish models (Barthelson et al., 2021b; 

Barthelson et al., 2020b; Barthelson et al., 2021c) (Fig.S14),  

Frustration with the difficulties of exploiting both transgenic and knock-in models of EOfAD mutations 

in mice has contributed to the drive for examining knock-in mouse models of LOAD risk variants, such 

as now conducted by the MODEL-AD Consortium (Oblak et al., 2020). The brain transcriptome 

similarities seen between our single mutation, heterozygous EOfAD mutation-like knock-in zebrafish 

models and the knock-in APOE 4 mice strongly support the informative value of these models and 

imply that heterozygous EOfAD mutation knock-in mouse models offer a path forward, particularly in 

understanding the earliest molecular events that lead to Alzheimer’s disease. 

 

 

Methods 

Analysis of knock-in zebrafish models of EOfAD 

For analysis of 6 month and 24 month old genome-edited Tübingen zebrafish (sample sizes and 

sexes are indicated in Table 1 and Fig S1-S6), we obtained the differential gene expression analysis 

outputs and harmonic mean p-values (statistical significance of gene sets) from each individual 

analysis (see (Barthelson et al., 2021a; Barthelson et al., 2021b; Barthelson et al., 2020b; Barthelson 

et al., 2021c)). For these analyses, differential gene expression analysis was performed using edgeR 

(Robinson et al., 2009), and enrichment analysis was performed by calculation of the harmonic mean 

p-value (Wilson, 2019) of the raw p-values of three methods of ranked-list based enrichment 

analyses: fry (Wu et al., 2010), camera (Wu and Smyth, 2012), and GSEA (Subramanian et al., 2005) 

(as implemented in the fgsea R package (Sergushichev, 2016)). We used the harmonic mean p-value 

to determine the overall significance of changes to gene expression within gene sets because this 

method does not assume that component p-values are independent (Wilson, 2019). We have 
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previously validated the use of the harmonic mean p-value on simulated RNA-seq datasets 

(Barthelson et al., 2020b). We considered a gene set to be significantly altered if the FDR-adjusted 

harmonic mean p-value remained below 0.05 after FDR adjustment. The gene sets used for 

enrichment analysis were the KEGG (Kanehisa and Goto, 2000) gene sets, to determine whether 

changes to gene expression were observed in any of 186 biological pathways/processes. Additionally, 

we used our recently defined iron responsive element (IRE) gene sets (HIN ET AL., 2020B) to test for 

evidence of iron dyshomeostasis. For the K97fs and Q96_K97del analyses, enrichment analysis was 

not performed on the KEGG gene sets in the original analyses. Therefore, we performed the 

enrichment analysis as described above for these datasets. For the K97fs analysis, we obtained the 

gene-level counts and the results of the differential gene expression analysis described in (Hin et al., 

2020a) from https://github.com/UofABioinformaticsHub/k97fsZebrafishAnalysis. For the Q96_K97del 

analysis, we obtained the gene-level counts and the results of the differential gene expression 

analysis described in (Hin et al., 2020b) from the first author of the cited paper. Note that, for each 

zebrafish analysis, the sample size was usually n = 6 zebrafish per genotype, based on our previous 

calculation that this sample size should give approximately 70% power to detect the majority of 

expressed transcripts in a zebrafish brain transcriptome at a fold change > 2 and at a false discovery 

rate of 0.05 (Barthelson et al., 2020b).  

 

AppNL-G-F microarray re-analysis 

The raw .CEL files were obtained from GEO and analysed with R (R Core Team, 2019). Pre-

processing was performed using the rma (Irizarry et al., 2003) method as implemented in the oligo 

package (Carvalho and Irizarry, 2010). We omitted any probesets which contained a median log2 

intensity value of < 3.5 (lowly expressed) and also any probesets assigned to multiple genes. 

Differential gene expression analysis was performed using limma (Ritchie et al., 2015), specifying 

pairwise contrasts between the App
NL-G-F

 homozygous mice, or the 3xTg homozygous mice with their 

respective controls by using a contrasts matrix. We considered a probeset to be differentially 

expressed in each contrast if the FDR adjusted p-value was < 0.05. For over-representation of the 

KEGG and IRE gene sets within the DE genes, we used kegga (Young et al., 2010). We also 

performed ranked-list based enrichment analysis using the harmonic mean p-value as described for 

the zebrafish analyses.  
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APOE-TR RNA-seq re-analysis 

We obtained the raw fastq files for the entire APOE-TR RNA-seq experiment from AD Knowledge 

Portal (accession number syn20808171, https://adknowledgeportal.synapse.org/). The raw reads 

were first processed using AdapterRemoval (version 2.2.1) (Schubert et al., 2016), setting the 

following options: --trimns, --trimqualities, --minquality 30, --minlength 35. Then, the trimmed reads 

were aligned to the Mus musculus genome (Ensembl GRCm38, release 98) using STAR (version 

2.7.0) (Dobin et al., 2013) using default parameters to generate .bam files. These bam files were then 

sorted and indexed using samtools (version 1.10) (Li et al., 2009). The gene expression counts matrix 

was generated from the .bam files using featureCounts (version 1.5.2) (Liao et al., 2014). We only 

counted the number of reads which uniquely aligned to, strictly, exons with a mapping quality of at 

least 10 to predict expression levels of genes in each sample.  

We then imported the output from featureCounts (Liao et al., 2014) for analysis with R (R Core Team, 

2019). We first omitted genes which are lowly expressed (and are uninformative for differential 

expression analysis). We considered a gene to be lowly expressed if it contained, at most, 2 counts 

per million (CPM) in 8 or more of the 24 samples we analysed. We also assessed whether the sex of 

each sample was correctly classified by examining the expression of genes which are located on the 

Y-chromosome. Three samples appeared to be classified incorrectly and this was subsequently 

corrected (Fig. S16).  

To determine which genes were dysregulated in APOE4 and APOE2 mice relative to APOE3, we 

performed a differential gene expression analysis using a generalised linear model and likelihood ratio 

tests using edgeR (McCarthy et al., 2012; Robinson et al., 2009). We chose a design matrix which 

specifies the APOE genotype and sex of each sample. The contrasts matrix was specified to compare 

the effect of APOE2 or APOE4 relative to APOE3 in males and in females. In this analysis, we 

considered a gene to be differentially expressed (DE) if the FDR-adjusted p-value was < 0.05. A bias 

for longer transcript length and higher %GC content was observed in this dataset. Therefore, we 

corrected for this bias using conditional quantile normalisation (cqn) (Hansen et al., 2012). We 

calculated the average transcript length per gene, and a weighted (by transcript length) average %GC 

content per gene as input to cqn to produce the offset to correct for the bias. This offset was then 

included in an additional generalised linear model and likelihood ratio tests in edgeR with the same 
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design and contrast matrices. For over-representation of the KEGG and IRE gene sets within the DE 

genes, we used goseq (Young et al., 2010), specifying average transcript length to generate the 

probability weighting function, which corrects for the probability that a gene is classified as DE based 

on its transcript length (average transcript length per gene) alone. We also performed ranked-list 

based enrichment analysis as described for the zebrafish analysis.  

Visualisation of gene expression data throughout this analysis was performed with ggplot2 (Wickham, 

2016), pheatmap (Kolde, 2019) and pathview (Luo et al., 2017). The code used to perform the 

analysis in this study can be found at https://github.com/karissa-b/AD-signature. 
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Fig 1: RNA-seq analysis of 6 month old zebrafish models of EOfAD. A. Schematic of a RNA-seq 

experiment using zebrafish. A single mating of a single pair of fish heterozygous for either an EOfAD-

like or a non-EOfAD-like mutation results in a family heterozygous mutant, transheterozygous mutant, 

and wild type siblings. Comparisons made between genotypes in a RNA-seq experiment are 

depicted. B. Heatmap summary of significantly altered KEGG and IRE gene sets in zebrafish EOfAD 

genetic models at 6 months of age. Only gene sets significantly altered (FDR-adjusted harmonic 

mean p-value < 0.05) in at least two comparisons of mutant zebrafish to their corresponding wild type 

siblings are shown. Columns are grouped by whether or not the zebrafish genotype is EOfAD-like, 

while rows are clustered based on their Euclidean distance. The numbers are FDR-adjusted harmonic 

mean p-values. C. Heatmap indicating the logFC of genes in the KEGG gene sets for oxidative 

phosphorylation and, D, the ribosome in zebrafish mutants compared to their wild type siblings. Rows 

are clustered based on their Euclidean distance, while columns are grouped by the complex in the 

electron transport chain to which an encoded protein belongs (C), or whether an encoded protein 

forms part of the large or small ribosomal subunits (D). Only genes considered detectable in all RNA-

seq experiments are depicted. See Fig. S1-S6 and Table 1 for more information on individual study 

designs.  

  

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

D
M

M
 •

 A
cc

ep
te

d 
m

an
us

cr
ip

t



 

 

 

Fig 2: Microarray analysis of male, 12 month old homozygous App
NL-G-F

 mice. A. Principal 

component (PC) analysis of brain transcriptome data from male, 12 month old homozygous App
NL-G-F

 

(n = 3), 3xTg (n = 3), App wild type (App
+/+

, n = 3) and non-transgenic (non-Tg, n = 3) mice. The 

numbers between parentheses indicate the percentage of variation in the dataset explained by a PC. 

Each point represents a sample, which is coloured by genotype. B. Bar chart showing the FDR-

adjusted p-value (directional hypothesis) from fry on marker genes of neurons, oligodendrocytes, 

astrocytes and microglia in App
NL-G-F 

relative to wild type. C. Heatmap indicating the expression 

(intensity) of genes within these marker gene sets summarised using K-means (K = 4). D. Heatmap 

showing the expression of genes in the KEGG_LYSOSOME gene set, clustered by their Euclidean 

distance. Each gene is labelled in red if it was identified as differentially expressed, and the 

magnitude of the fold change (logFC) is shown in green.  
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Fig 3: RNA-seq analysis of 3 month old APOE-TR mice. A. Visual representation of comparison of 

APOE4 (n = 7 males and 9 females) or APOE2 (n = 8 males and 8 females) mice to APOE3 (n = 8 

males and 8 females). This was performed for both male and female mice separately. B. Principal 

component analysis (PCA) of three month old APOE-TR mice. Principal component 1 (PC1) is plotted 

against PC2. The numbers between parentheses indicate the percentage of variation in the dataset 

explained by a PC. In the left graph, each point represents a sample, which is coloured by APOE 

genotype, and shaped by sex. In the right plot, each point is coloured according to litter (implied from 

the date of birth of each mouse), and shaped by APOE genotype. C Heatmap showing the logFC of 

genes in the KEGG_OXIDATIVE_PHOSPHORYLATION and D KEGG_RIBOSOME gene sets in 

APOE-TR mice. Rows are clustered based on their Euclidean distance, while columns are grouped by 

the complex in the electron transport chain to which an encoded protein belongs (C), or whether an 

encoded protein forms part of the large or small ribosomal subunits (D). Genes are labelled in blue 

above whether they were classified as differentially expressed (FDR < 0.05) in the differential gene 

expression analysis in the listed comparisons.  
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Table 1: Summary of zebrafish RNA-seq experiments. For more detailed descriptions of study 
designs, see Fig. S1-S6. EOfAD: early-onset familial Alzheimer’s disease. fAI: familial acne inversa. 

Gene Mutation(s) 

Total 
number 

of 
zebrafish 
analysed 

Sexes 
 analysed 

Comment Accession Ref 

psen1 
W233fs (fAI-like) 

and T428del 
(EOfAD-like) 

24 
Males 
and 

Females 

High read depth 
(between 61 and 
110 million reads 

per sample) 

GSE164466 

(Barthe
lson et 

al., 
2021a) 

psen1 
Q96_K97del 
(EOfAD-like) 

32 
Males 
and 

females 

Aged zebrafish and 
the effect of acute 
hypoxia treatment 
was also included 

GSE149149 

(Hin et 
al., 

2020b; 
Newma
n et al., 
2019) 

psen1 K97fs 12 
Females 

only  
Aged zebrafish 

were also included  
PRJEB24858 

(Hin et 
al., 

2020a) 

psen2 

T141_L142delins
MISLISV (EOfAD-
like) and N140fs 
(not EOfAD-like) 

15 
Males 
and 

females 
- GSE158233 

(Barthe
lson et 

al., 
2021b) 

sorl1 W1818* 12 
Males 
and 

Females 
- GSE156167 

(Barthe
lson et 

al., 
2021c) 

sorl1 

V1482Afs 
(EOfAD-like) and 
R122Pfs (EOfAD-

like)  

24 
Males 
and 

Females 

The 
transheterozygous 
genotype was also 
analysed. Initially, 

R122Pfs was 
stated to be a 
putative null 

mutation. A recent 
case study now 
shows that this 

mutation is 
probably EOfAD-

like.  

GSE151999 

(Barthe
lson et 

al., 
2020b) 
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Fig. S1. Two families of zebrafish were generated by mating a wild type fish with a fish 
heterozygous for the Q96_K97del mutation of psen1, resulting in families of fish either 
heterozygous for the Q96_K97del mutation, or wild type. These families were raised 
together in single tanks until 6 or 24 months of age. Then, subsets of the families were 
genotyped using allele-specific polymerase chain reactions (PCRs), followed by hypoxia 
treatment. Then fish were sacrificed and n = 4 fish per genotype and treatment were 
subject to RNA-seq analysis.   

psen1Q96_K97del/+

psen1 +/+

A psen1 Q96_K97del experiment

6 months old ♂
♀
♀
♀

♂
♀
♀
♀

♂
♀
♀
♀

♂
♀
♀
♀

Normoxia

Hypoxia

24 months old
♂
♂
♂
♀

♂
♂
♂
♀

♂
♂
♀
♀

♂
♂
♀
♀

Normoxia

Hypoxia

psen1Q96_K97del/+

psen1 +/+

+/+ Q96_K97del/+
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Fig. S2. A wild type fish was mated with a fish heterozygous for the K97Gfs mutation of 
psen1, resulting in a family fish either heterozygous for the K97Gfs mutation, or wild type. 
This family of fish was raised together in a single tank until 6 months of age. Then, a subset 
of the family were genotyped using allele-specific polymerase chain reactions (PCRs), then 
fish were sacrificed and brains were removed for RNA-seq. The remaining fish in the tank 
were allowed to develop until 24 months of age where this was repeated to generate the 
aged samples for RNA-seq. 

B psen1 K97fs experiment

psen1K97Gfs/+

psen1 +/+
6 months old

♀
♀
♀

♀
♀
♀

♀
♀
♀
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♀
♀
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Disease Models & Mechanisms: doi:10.1242/dmm.049187: Supplementary information

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

S
up

pl
em

en
ta

ry
 in

fo
rm

at
io

n



Fig. S3. A fish heterozygous for the T428del (EOfAD-like) mutation of psen1 was mated with 
a fish heterozygous for the W233fs mutation (similar to the P242fs mutation of human 
PSEN1 causative for familial acne inversa) to generate a family of sibling fish with four 
possible psen1 genotypes. This family was raised together in the same tank until 6 months 
of age, at which time 50 fish were randomly selected and sacrificed in a loose ice slurry. Fish 
were genotyped after sacrifice by allele specific PCRs. Then n = 8 fish per genotype (4 
females and 4 males) were subjected to RNA-seq analysis. During the RNA-seq analysis, one 
T428del/+ fish was identified to be incorrectly genotyped and was re-classified as wild type. 

C psen1 T428del vs W233fs experiment

psen1 T428del /+

psen1 W233fs /+

Transheterozygous
(not analysed)

W233fs/+
n = 8
♀ x 4
♂ x 4

+/+: n = 9 
♀ x 4,
♂ x 5

T428del/+ 
n = 7
♀ x 4
♂ x 3
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Fig. S4. A fish heterozygous for the N140fs (not EOfAD-like) mutation of psen2 was mated 
with a fish heterozygous for the T141_L142delinsMISLISV (EOfAD-like) mutation of psen2 to 
generate a family of sibling fish with four possible psen2 genotypes. This family was raised 
together in the same tank until 6 months of age, at which time 24 fish were randomly 
selected and sacrificed in a loose ice slurry (to allow for n = 5 of each genotype in the RNA-
seq analysis). Fish were genotyped after sacrifice by allele specific PCRs. Then n = 5 fish per 
genotype (3 females and 2 males) were subjected to RNA-seq analysis. During the RNA-seq 
analysis, one wild type fish was an obvious outlier and was omitted from the rest of the 
analysis, and one N140s/+ sample has been incorrectly genotyped and was also omitted.  

D psen2 frameshift vs EOfAD-like experiment

psen2 N140fs/+

psen2 T141_L142delinsMISLISV /+
Transheterozygous

(not analysed)

T141_L142delins
MISLISV/+

n = 5
♀ x 3
♂ x 2

+/+: n = 4 
♀ x 3,
♂ x 1

N140fs/+ 
n = 4
♀ x 3
♂ x 1
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Fig. S5. A fish heterozygous for the W1818* (EOfAD-like) mutation of sorl1 was mated with 
a wild type fish to generate a family of sibling fish with two possible sorl1 genotypes. This 
family was raised together in the same tank until 6 months of age, at which time 20 fish 
were randomly selected and sacrificed in a loose ice slurry (to allow for n = 6 of each 
genotype in the RNA-seq analysis). Fish were genotyped after sacrifice by allele specific 
PCRs. Then n = 3 fish per genotype and sex were subjected to RNA-seq analysis.  

Fig. S6. A fish heterozygous for the V1482Afs (EOfAD-like) mutation of sorl1 was mated with 
a fish heterozygous for the R122Pfs mutation to generate a family of sibling fish with four 
possible sorl1 genotypes. This family was raised together in the same tank until 6 months of 
age, at which time 50 fish were randomly selected and sacrificed in a loose ice slurry (to 
allow for n = 6 of each genotype in the RNA-seq analysis). Fish were genotyped after 
sacrifice by allele specific PCRs. During the RNA-seq analysis, two R122Pfs/+ fish were 
identified to be incorrectly genotyped and were re-classified as wild type. 

sorl1 V1482Afs/+

sorl1 R122Pfs /+

Transheterozygous
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♀ x 3
♂ x 3
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♀ x 2
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♀ x 4
♂ x 4
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n = 6
♀ x 3
♂ x 3

sorl1 V1482Afs and R122Pfs experiment

sorl1 W1818* experiment
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6 months old

♂
♀
♀
♀

♂
♀
♀
♀

♂
♂
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♂
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Fig. S7. A) Boxplot and B) density plot of the raw intensity data of GSE92926. C) Boxplot and 
D) density plot of the intensity data after rma normalisation and filtering for lowly expressed
and multi-mapping probes.
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Fig. S8. Differential gene expression analysis of APP mutation mouse models. A) Volcano 
plot and B) MD plot of the changes to gene expression in AppNL-G-F/NL-G-F  and 3xTg mice 
relative to controls. C) Venn diagram showing four genes are identified as differentially 
expressed (DE) in both comparisons. D) Boxplot of expression values of the four shared DE 
genes. The FDR-adjusted p-values as calculated from the differential gene expression 
analysis using limma are indicated. 
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Fig. S9. Over-representation analysis of APP mutation mouse models. A) Pyramid bar plot 
indicating the number of genes in the significantly enriched KEGG and IRE gene sets in 
AppNL-G-F/NL-G-F  and 3xTg mice. Only gene sets with a Bonferroni adjusted p-value from kegga 
are shown (and are indicated by a black dot). The total numbers of genes in these gene sets 
are shown by grey bars, while the numbers of significantly differentially expressed (DE) 
genes in these gene sets are shown in magenta. B) Upset plot indicating the high degree of 
overlap of DE genes across the significantly enriched gene sets in AppNL-G-F/NL-G-F mice.  
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Fig. S10. Ranked-list enrichment testing. Summary of significantly enriched KEGG and IRE 
gene sets in AppNL-G-F/NL-G-F  and 3xTg mice. Gene sets are coloured according to whether 
they were below the threshold of a Bonferroni-adjusted harmonic mean p-value of < 0.05 
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Fig. S11. Upset plots indicating the overlap of differentially expressed (DE, upper) and leading edge (lower) genes across the 
significantly altered gene sets in AppNL-G-F/NL-G-F  mice. DE genes were identified using limma, and the leading edge genes were 
obtained from the GSEA algorithm.  
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Fig. S12. Summary of significantly altered gene sets in AppNL-G-F/NL-G-F  and 3xTg mice. Gene sets only found to be altered 
by calculation of the harmonic mean p-value (HMP) are shown on the left. Gene sets only found to be altered by over-
representation analysis (ORA) using kegga are shown on the right. Gene sets found to be altered in both types of 
enrichment are shown in the middle. Gene sets are coloured according to the comparison in which they are significantly 
altered.  
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Fig. S13. Proportions of cell types in AppNL-G-F/NL-G-F  mice are altered. A) Gene set testing using fry on marker gene sets 
of neurons, astrocytes, oligodendrocytes and microglia from. The black line indicates an FDR-adjusted p-value of 0.05. B) 
Distribution of intensities of the marker genes across genotypes. The boxplots indicate summary statistics. The mean 
intensity value for each genotype is indicated by the red diamonds. To assist with visualisation of the increased 
expression of marker genes in AppNL-G-F/NL-G-F  mice, the mean expression in App+/+  mice is also shown as a black dashed 
line. C) Upset plot showing the overlap of DE genes found in AppNL-G-F/NL-G-F  (left) and 3xTg (right) mice with the cell type 
marker gene sets.  
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C

Expression
(logCPM)

Low High

sorl1 genotype: WT transhetR122Pfs/+ V1482Afs/+

E F

G H

psen1 genotype: WT 6mQ96_K97del/+ 24mAge:

Sex: male Normoxiafemale HypoxiaHypoxia:

Fig. S14: Changes to cell type proportions are not observed in the brains of young, knock-in zebrafish models of EOfAD mutations. 
Expression values (log2 counts per million, logCPM) of marker genes of A) neurons (63 genes), B) astrocytes (40 genes), C) 
oligodendrocytes (78 genes) and D) microglia (256 genes) in sorl1 knock-in mutant zebrafish. LogCPM values are also shown for 
psen1 Q96_K97del mutant zebrafish in E-H. Rows represent clusters of genes with similar gene expression values summarised with k-
means (k = 5). Columns represent samples, and are labelled with metadata of each experiment (see legends). Rows and columns are 
clustered based on their Euclidean distance. Samples do not cluster by genotype (or by genotype within age or treatment groups) in 
either experiment, meaning that expression of cell-type specific marker genes are consistent across genotypes.   
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Fig. S15. The density of the log2 counts per million (logCPM) values detected in 3 month old APOE-TRmouse brain 
samples is shown before filtering in A), then after omitting samples with a logCPM of < 2 in at least one third of the 
samples in B).  

Fig. S16. Assessment of expression of genes from the Y-chromosome. A) Boxplots showing the summary statistics of 
the number of reads aligning to male-specific genes (located on the Y-chromosome) in the cortex of 3 month old 
APOE-TR mice, grouped by the metadata obtained from the AD Knowledge Portal database. Sample APOE_3M_21 
appears to be a male sample as it expresses genes from the Y chromosome. Samples APOE_3M_30 and APOE_3M_7 
appear to be female as they do not express genes from the Y-chromosome. B) Number of reads aligning to male-
specific genes after correcting the sex of the samples. 
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Fig. S17. 4: Initial differential expression analysis. A) Bar chart showing the number of differentially expressed genes (DE) 
in each comparison of the APOE4 or APOE2 genotype to APOE3. B) A ranking statistic per gene was calculated as the sign 
of the logFC multiplied by the negative log10 of the p-value from the likelihood ratio tests in edgeR. This was plotted 
against a weighted (by transcript length) average %GC content per gene and C) average transcript length. The blue 
generalised additive model fit (gam) lines are not centred on 0, indicating a bias.  
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Fig. S18. Differential gene expression analysis after cqn. A) Number of genes identified to be differentially expressed (DE) 
after cqn. B) Improvement of observed bias between %GC content and C) gene length for differential expression after cqn. 
The remaining bias for transcript length in the female APOE2 and male APOE4 comparisons appear to be only driven by a 
small number of genes and can be ignored. D) Volcano plots and E) mean difference (MD) plots of the changes to gene 
expression observed due to homozygosity for the APOE4 or APOE2 alleles relative to APOE3 in male and female mice. The 
limits of the x-axis in D) and the y-axis in E) are constrained to -2 and 2, and of the y-axis in D) to between 0 and 20, for 
visualisation purposes.   
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Fig. S19. Enrichment analysis within the lists of differentially expressed (DE) genes in APOE4 mice. A) Upset plot indicating the 
overlap of DE genes in male APOE4 samples for the two significantly enriched gene sets. B) Pathview visualisation of the logFC in 
male APOE4 samples for the KEGG_CALCIUM_SIGNALING_PATHWAY gene set and C) 
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION gene set. 
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Fig. S20. Pathview visualisation indicating the logFC of genes in the KEGG_STEROID_BIOSYNTHESIS gene set in female APOE2 mice. 
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Fig. S21. Heatmap indicating gene sets with a FDR-adjusted harmonic mean p-value < 0.01 in APOE-TR mice at 3 months of age. 
Gene sets of interest are highlighted with a red box. Note that no gene sets were found to contain an FDR-adjusted harmonic 
mean p-value of < 0.01 in male APOE2 mice 
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Fig. S22. Upset plots indicating the overlap of DE genes across the gene sets which were 
calculated to have a FDR-adjusted harmonic mean p-value < 0.01 in A) female APOE4 mice,  
B) female APOE2 mice and C) male APOE4 mice. Note that the KEGG gene sets for oxidative
phosphorylation and Parkinson’s disease share 14 DE genes.
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Differentially expressed?
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Fig. S23. Heatmap showing the log2 fold change (logFC) of genes detected in APOE-TR mice in the 
KEGG_MTOR_SIGNALING_PATHWAY gene set. Rows (genes) and columns (comparisons) are clustered based on their Euclidean 
distance. Genes are labelled whether they were found to be significantly differentially expressed (DE) in the DE analysis with 
edgeR. Columns are labelled with the APOE genotype and sex comparison.  
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APOE genotype:

APOE3 APOE2APOE4

B Microglia (males)

A

C Microglia (females)

D Astrocytes (males) E Astrocytes (females)

F Oligodendrocytes (males) G Oligodendrocytes (females)

H Neurons (males) I Neurons (females)

Expression
(logCPM)

Low High

Fig. S24: Changes to cell type proportions in APOE-TR mice. A) Significance of gene set testing from fry with a directional hypothesis of 
gene sets consisting of marker genes of neurons, astrocytes, oligodendrocytes and microglia. B) Expression (logCPM) of these cell type 
marker genes in APOE-TR mice. Rows represent clusters of genes with similar gene expression values summarised with k-means (k = 5). 
Columns represent samples, and are labelled with APOE genotype (see legend). Rows and columns are clustered based on their 
Euclidean distance. Male APOE4 samples mostly form distinct clusters in D) and F), indicating that expression of cell-type specific marker 
genes are distinct in these genotypes.  
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Fig. S25. The genes which drive the statistical significance of the 
KEGG_OXIDATIVE_PHOSPHORYALTION gene set are frequently different in male APOE4 mice and EOfAD model zebrafish. 
The upset plot shows the overlap of genes in the leading edge of the KEGG_OXIDATIVE_PHOSPHORYALTION gene set from the 
fgsea algorithm. Only genes which were found in the leading edge for at least two mutations are displayed.   
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Table S2. Significance of the KEGG_OXIDATIVE_PHOSPHORYLATION gene set in young 
APOE-TR mice.  

Sex APOE FDR-adjusted harmonic mean p-value 

Male 
APOE4 0.00948 
APOE2 0.794 

Female 
APOE4 0.794 
APOE2 0.248 

Table S3: Significance of the KEGG_RIBOSOME gene set in young APOE-TR mice.  

Sex APOE FDR-adjusted harmonic mean p-value 

Male APOE4 0.0000000782 
APOE2 0.691 

Female 
APOE4 0.000000101 
APOE2 0.793 

Table S1. Gene sets significantly enriched with differentially expressed genes in APOE-TR 
mice.  
Gene set FDR Coef 
KEGG_CALCIUM_SIGNALING_PATHWAY 0.03 APOE4 male 
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 0.04 APOE4 male 
KEGG_STEROID_BIOSYNTHESIS 1e-5 APOE2 female 
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