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ABSTRACT
All higher organisms negotiate a trucewith their commensal microbes
and battle pathogenic microbes on a daily basis. Much attention has
been given to the role of the innate immune system in controlling
intestinal microbes and to the strategies used by intestinal microbes
to overcome the host immune response. However, it is becoming
increasingly clear that the metabolisms of intestinal microbes and
their hosts are linked and that this interaction is equally important for
host health and well-being. For instance, an individual’s array of
commensal microbes can influence their predisposition to chronic
metabolic diseases such as diabetes and obesity. A better
understanding of host–microbe metabolic interactions is important
in defining the molecular bases of these disorders and could
potentially lead to new therapeutic avenues. Key advances in this
area have been made using Drosophila melanogaster. Here, we
review studies that have explored the impact of both commensal and
pathogenic intestinal microbes on Drosophila carbohydrate and lipid
metabolism. These studies have helped to elucidate the metabolites
produced by intestinal microbes, the intestinal receptors that sense
these metabolites, and the signaling pathways through which these
metabolites manipulate host metabolism. Furthermore, they suggest
that targeting microbial metabolism could represent an effective
therapeutic strategy for human metabolic diseases and intestinal
infection.

KEY WORDS: Drosophila melanogaster, Commensal, Metabolism,
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Introduction
Shortly after a sterile gestation and birth, our intestines become
colonized by non-pathogenic intestinal microbes that we term our
commensal microbiota. These are not a random assortment of
organisms but rather a diverse community of microbes that coexist
and, under ideal circumstances, maintain a mutualistic, symbiotic
relationship with us. Periodically, this community is disrupted by
infection and/or antibiotic treatment. Invasion of the intestine by
pathogensmight edge out members of the commensal microbiota by
competing for certain intestinal niches, by creating conditionswithin
the intestine that do not favor commensal growth, or by activating a
non-specific innate immune response. Antibiotic treatments, which
few of us escape during our lifetimes, are intended to target a
particular pathogen, but invariably result in collateral damagewithin
the intestinal microbiota owing to lack of specificity (Fouhy et al.,
2012; Relman, 2012; Monira et al., 2013). In the absence of

transplantation of intestinal microbiota harvested from a healthy
host, restoration of equilibrium within the disrupted microbial
community can be delayed by weeks or even months (Reid et al.,
2011; Relman, 2012; Nobel et al., 2015; Stewardson et al., 2015).

Derangements of our intestinal microbiota can impact growth
and development in childhood and contribute to the
pathophysiology of chronic metabolic diseases such as diabetes
and obesity (Subramanian et al., 2014; Miele et al., 2015). Although
the complex and changing conditions that determine the
fluctuations of the intestinal microbial community over a lifetime
are poorly understood, mounting evidence suggests that the ability
to sculpt the intestinal microbial community could lead to new
therapeutic modalities for the prevention of chronic metabolic
diseases and intestinal infection. To understand host–microbe
interactions in mammals, investigators must consider the
complex, interdependent metabolic pathways of the host and the
trillions of microbes residing in the intestine. In contrast, the simpler
microbiota and signaling systems of the fruit fly Drosophila
melanogaster as well as the genetic tools available for use in this
model organism present the investigator with a unique opportunity
to test hypotheses regarding the impact of commensal and
pathogenic intestinal microbes on host metabolism in a more
controlled and targeted fashion.

Here, we will review what has been learned from the Drosophila
model about manipulation of host metabolism by both the
commensal microbiota of the intestine and intestinal pathogens.
Specifically, we will discuss the contributions made by Drosophila
researchers in elucidating the key metabolites secreted by intestinal
commensals and pathogens, host sensing of these metabolites, and
the endocrine signals released from the host intestine in response to
these metabolites.

After comparing the anatomy and metabolic regulatory pathways
of the Drosophila and mammalian intestines, we will review in turn
studies elucidating the impact of commensal bacteria, bacterial
pathogens and viruses of the intestine on host metabolism. Taken
together, these studies show that intestinal microbes manipulate host
metabolism and, furthermore, that the metabolisms of the host and
its intestinal inhabitants are intricately intertwined. Small changes in
microbial metabolism can result in large fluctuations in host
metabolic homeostasis. We propose that this knowledge can be
exploited in the design of prebiotic and probiotic therapies to treat
metabolic disease and mitigate the metabolic derangements caused
by intestinal infections.

Comparison of theDrosophilaandmammalian intestines and
their associated metabolic signaling pathways
Intestinal structures and cell types
In order to extrapolate from studies of flies to mammals in a
thoughtful way, the parallels and differences between the
intestines of these two organisms must first be considered. The
mammalian intestinal epithelium consists of enterocytes, goblet
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cells, enteroendocrine cells, Paneth cells and stem cells. These
cells are arranged to form protrusions and invaginations termed
villi and crypts, respectively (Fig. 1A). Ubiquitously distributed
goblet cells are dedicated to the synthesis of the intestinal mucus, a
proteoglycan that covers and protects the intestinal epithelium
(Birchenough et al., 2015). Enterocytes are principally responsible
for absorption of nutrients. To aid with this, their luminal face is

lined with small cellular protrusions known as microvilli, which
increase surface area.

Nutrients in the mammalian intestinal lumen are sensed by
enteroendocrine cells through active transport across the cell
membrane or activation of G-protein coupled receptors (GPCRs)
on the cell surface (Gribble and Reimann, 2016). Interestingly,
some of these GPCRs also function as taste (gustatory) receptors in
the mouth (Jang et al., 2007; Dotson et al., 2008; Kokrashvili et al.,
2009). For this reason, enteroendocrine cells have been described as
the taste organs of the gastrointestinal tract (Sternini et al., 2008;
Breer et al., 2012). Activation of these sensors on enteroendocrine
cells stimulates the release of small peptide hormones from
cytoplasmic vesicles into the local extracellular milieu and
systemic circulation. These peptides modulate carbohydrate
metabolism, lipid metabolism, intestinal peristalsis and satiety
(Drucker, 2001; Naslund and Hellstrom, 2007; Mellitzer and
Gradwohl, 2011). Therefore, enteroendocrine cells coordinate local
and systemic metabolic responses with the intestinal contents.

The intestinal epithelium is maintained by active and quiescent
populations of stem cells (Umar, 2010). The former, positioned at
the base of crypts, continually renews the epithelium by producing
cells that migrate up to the villus tips and are eventually sloughed
off. A second, quiescent, population of stem cells, which is
positioned four cells away from the crypt base, divides in response
to intestinal insult. Paneth cells, which neighbor the active
population of stem cells within the crypt, play a role in
maintaining the stem cell niche and also secrete antibacterial
peptides and enzymes (Sato et al., 2011; Clevers and Bevins, 2013).

Unlike the mammalian intestinal epithelium, the luminal surface
of the Drosophila intestine is unconvoluted and comprises only
three cell types: enterocytes, enteroendocrine cells and stem
cells (Fig. 1B). Only one type of intestinal stem cell has been
identified in Drosophila (Micchelli and Perrimon, 2006; Ohlstein
and Spradling, 2006). These cells replenish all intestinal cell types
that are lost as a result of normal senescence or acute intestinal injury
(Amcheslavsky et al., 2009; Apidianakis et al., 2009; Buchon et al.,
2009; Ren et al., 2010). The Drosophila epithelium is covered
by the peritrophic matrix, a structure that is analogous to intestinal
mucus; this matrix consists of chitin (a polymer of N-
acetylglucosamine), and proteins such as peritrophins and
drosocrystallin (Lehane, 1997; Kuraishi et al., 2011; Moussian,
2013; Shibata et al., 2015). Enterocytes carry out digestive,
absorptive and innate immune functions of the intestine (Marianes
and Spradling, 2013; Dutta et al., 2015). In contrast to thewide body
of published research elucidating the function of mammalian
enteroendocrine cells, Drosophila enteroendocrine cells remain
relatively unexplored. However, these cells also express gustatory
receptors on their cell surface (Park and Kwon, 2011). In addition,
they harbor vesicles filled with small peptides that regulate lipid
metabolism, carbohydrate metabolism and gut peristalsis (Veenstra,
2009; Song et al., 2014; Vanderveken and O’Donnell, 2014;
Kohyama-Koganeya et al., 2015); therefore, they possess all the
components required to fulfill the same function as mammalian
enteroendocrine cells in coordinating a systemic response to
nutrients and metabolites in the gut lumen.

Control of systemic carbohydrate mobilization and storage by the
mammalian and fly intestinal epithelia
Appropriate carbohydrate utilization and storage is important for the
maintenance of metabolic homeostasis in all animals and, therefore,
is tightly controlled by the endocrine system. In response to
ingestion of nutrients, both mammals and Drosophila release small
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Fig. 1. A comparison of the mammalian and Drosophila melanogaster
intestines. (A) The contour of the mammalian intestinal epithelium consists of
peaks and valleys termed villi (singular: villus) and crypts, respectively. Several
cell types with distinct functions are found within the epithelium. Enterocytes,
whose surface area ismaximized by numerous protrusions known asmicrovilli,
are principally responsible for nutrient absorption. Goblet cells, which are
distributed throughout the epithelium, secrete the protective mucus layer
composed of polysaccharides and proteins that covers the epithelial surface.
Located in crypts, enteroendocrine cells secrete small bioactive peptides in
response to signals from nutrients and commensal bacteria in the intestinal
lumen. Paneth cells, which are found at the crypt base, secrete antimicrobial
peptides and create a stem cell niche. Two stem cell populations are found in
the mammalian intestine. Stem cells positioned at the crypt base divide at a
constant rate to replenish the epithelium. Division of stem cells located at the
+4 position is activated by intestinal insult or infection. The resident commensal
microbiota is found within and on top of the mucus layer. (B) The Drosophila
intestinal epithelium lacks villi and crypts and consists of only three cell types:
enterocytes, enteroendocrine cells and stem cells. The peritrophic membrane
(or matrix), a structure analogous to intestinal mucus, covers the epithelial
surface. The intestinal lumen is colonized by a much less diverse microbiota.
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peptide hormones termed insulin or insulin-like peptides from
specialized cells (Barbieri et al., 2003; Nassel et al., 2013). Insulin
receptors on adipose tissue and muscle cells sense these peptides
and activate the insulin/insulin-like growth factor signaling (IIS)
pathways, which inhibit gluconeogenesis and glycogenolysis and
promote glycogen and triglyceride storage (Khan and Pessin, 2002;
Teleman, 2010; Padmanabha and Baker, 2014). In mammals, low
levels of carbohydrates result in secretion of glucagon, an endocrine
peptide that activates glycogen catabolism (Marroqui et al., 2014).
In Drosophila, adipokinetic hormone seems to fulfill the role of
glucagon (Bednarova et al., 2013).
In mammals, the commensal microbiota plays a role in the

regulation of systemic glucagon and insulin secretion through its
production of short-chain fatty acids (SCFAs), whose aliphatic tails
contain fewer than six carbon atoms (Shen et al., 2013; Everard and
Cani, 2014). Microbial metabolism within the intestine, which
results in excretion of acetate [two carbon atoms (C2)], propionate
(C3) and butyrate (C4), accounts for 95% of the body’s SCFAs.
These bacterial metabolites not only serve as nutrition for
enterocytes but are also sensed by the GPCRs GPR109A, FFAR2
and FFAR3 on intestinal cells (Fig. 2). GPR109A is expressed in
colonic enterocytes, where activation by butyrate suppresses
inflammation. Both FFAR2 and FFAR3 are expressed in
enteroendocrine L-cells, which secrete regulatory peptides such as
protein YY (PYY) and glucagon-like peptide 1 (GLP-1) in response
to SCFAs. GLP-1 inhibits glucagon release and promotes insulin
secretion, resulting in lowering of blood glucose, whereas PYY
reduces appetite (Kasubuchi et al., 2015; Psichas et al., 2015). Thus,
bacteria communicate the status of their own metabolism to
enteroendocrine cells through the metabolites they produce. The
enteroendocrine cells, in turn, appropriately adjust host food intake
and metabolism.
Although the regulatory cascade is not as well defined in flies, all

indications are that a similar process is at work. The regulatory
peptide IMPL2, which is synthesized and secreted by
enteroendocrine and possibly other cell types, blocks insulin
signaling (Garbe et al., 1993; Marianes and Spradling, 2013;
Sarraf-Zadeh et al., 2013; Dutta et al., 2015). It seems to function by
directly binding to and inhibiting the function of the Drosophila
insulin-like peptides (Dilps), which activate the insulin receptor
(Alic et al., 2011). Furthermore, evidence suggests that intestinal
acetate increases signaling through the insulin pathway by
repressing transcription of IMPL2 (Shin et al., 2011; Hang et al.,
2014; Kwon et al., 2015). Taken together, these data suggest that a
receptor for acetate is present in the Drosophila intestine, possibly
on the surface of enteroendocrine cells, and that, similarly to the
mammalian system, activation of this receptor modulates insulin
signaling.

Lipid uptake and mobilization in the intestine
In mammals, continued ingestion of lipid-laden foods correlates
with the development of diabetes and obesity (Moran-Ramos et al.,
2012; de Souza et al., 2015), and modulation of the metabolic
response to dietary lipids through manipulation of the intestinal
microbiota has been proposed as a therapeutic option for these
diseases (Cani et al., 2008; Serino et al., 2014). An in-depth
understanding of how intestinal microbiota modulate lipid uptake is
key to the development of such therapies.
The dietary lipids of mammals are principally composed of

triacylglycerols (TAGs). These lipids are emulsified by bile and
then enzymatically degraded by pancreatic lipase, yielding free fatty
acids (FFAs) and monoacylglycerols (MAGs) in the intestinal

lumen (Fig. 2) (Mansbach and Gorelick, 2007). Through as-yet
poorly defined pathways, these lipid products are taken up by
enterocytes by mechanisms that include both passive diffusion and
active transport. The fatty acid transport proteins (FATPs), which
are hypothesized to function as acyl-CoA synthases and/or
transporters, the fatty acid translocase FAT (CD36) and the
plasma-membrane-associated fatty-acid-binding protein FABpm
have all been implicated in fatty acid uptake from the intestinal
lumen (Mansbach and Gorelick, 2007). Once imported, fatty acids
are transported to the endoplasmic reticulum, where they are
reassembled into TAGs, which accumulate between the leaflets of
the endoplasmic reticulum membrane. These collections of TAGs
eventually bud off to form lipid-storage droplets or are packaged
into lipoprotein particles, known as chylomicrons, within the ER
lumen and released into the lymph (Buttet et al., 2014). In addition
to proteins, chylomicrons contain large amounts of TAG as well as
cholesterol and fat-soluble vitamins (Iqbal and Hussain, 2009).
They are surrounded by a phospholipid monolayer that is principally
composed of phosphatidylcholine. Chylomicron-associated
proteins as well as the particles themselves are synthesized by
enterocytes expressly for transport of dietary fat.

Many aspects of the lipid uptake mechanisms of the Drosophila
intestine remain largely unexplored. A biliary system is not present
in the fly intestine and, although an emulsifying substance might be
secreted by enterocytes, none has been identified to date. In fact, one
might argue that, because TAG is not abundant in the natural food
sources of Drosophila (such as rotting fruit), an emulsifying agent
analogous to bile is not essential for lipid absorption in this
organism. Luminal digestion of TAG is carried out by the Magro
protein, a homolog of the mammalian gastric lipase (Sieber and
Thummel, 2009, 2012). Absorption of fatty acids from the intestinal
lumen has not been studied. However, homologs of FATP, CD36
and FABPpm are all present in the Drosophila genome (Adams
et al., 2000). Absorbed dietary lipids are presumably then trafficked
to the endoplasmic reticulum, where they are either retained in
lipid droplets or packaged for transport through the hemolymph
to the specialized Drosophila adipose tissue known as the fat
body for storage, or to other organs for catabolism. Tachykinin,
an enteroendocrine-cell-derived regulatory peptide, activates
mobilization of lipids from the intestine to the hemolymph (Song
et al., 2014). Although the precise mechanism by which Tachykinin
acts has not been elucidated, alterations in the transcriptional profile
of genes involved in lipid metabolism seem to play a role.

Three lipoproteins – lipophorin (Lpp), the lipid transfer particle
(LTP) and Crossveinless D (Cv-D) – have been implicated in
systemic lipid transport in Drosophila (Palm et al., 2012). Lpp is
responsible for the transport of 95% of the lipids carried in the
hemolymph, whereas LTP and Cv-D contribute to a much lesser
extent. Knockdown of both LTP and Lpp leads to accumulation of
lipid droplets in the intestine, demonstrating that these proteins are
required for mobilization of intestinal lipid stores and dietary fat
(Palm et al., 2012). By facilitating recruitment of Lpp to the Lpp
receptor, LTP, in particular, seems to be crucial for the transfer of
lipids from the gut to Lpp and for the uptake of lipids by distant
tissues (Rodriguez-Vazquez et al., 2015).

Whereas the mammalian proteins dedicated to the transport of
dietary lipids are synthesized by enterocytes, Lpp and LTP are
synthesized in the fat body and are transported to the intestine.
Furthermore, whereas chylomicrons principally contain TAG and
phosphatidylcholine, the principal lipids associated with lipophorin
in the hemolymph are diacylglycerol and phosphatidylethanolamine
(Panakova et al., 2005; Palm et al., 2012). However, the
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evolutionary and physiological significance of these small
differences in lipid transport has not been investigated.

Commensal microbiota and host metabolism: impact on
development and health
A universal feature of organisms with open digestive tracts is
colonization of the gastrointestinal tract bya characteristic commensal
microbiota. This microbiota, which thrives on the nutrients produced
by digestion of the host’s diet and intestinal secretions, is shaped by
host-specific selective pressures such as the intestinal environment,
food preference and eating habits (Ni et al., 2015). In turn, the
microbiota manipulates host metabolism by altering nutrient
availability, generating essential nutrients, and excreting
metabolites that serve as a form of interspecies communication
(Fig. 3). As touched upon above, this complex interaction plays a key
role in childhood growth and development, and in adult metabolic
homeostasis (Ukhanova et al., 2012; Ahmed et al., 2014).
Because of its less-complex and more-tractable microbiota in

comparison to mammals, Drosophila melanogaster provides a
useful model in which to study the governing principles of the host’s
metabolic interaction with its microbiota. Whereas humans are
exposed to the diverse microbiotas that populate a wide array of
plant and animal food sources, wildDrosophila have a more limited
diet of overripe fruits and vegetables, decomposing plants, and
fungi. Accordingly, the intestinal microbiota of the wild fly consists
of five to 30 taxa (Wong et al., 2011; Broderick and Lemaitre,
2012), as compared with the greater than 500 taxa in the human

intestinal microbiota (The Human Microbiome Project Consortium,
2012). The laboratory fly’s microbiota is further limited by its
artificial environment. The intestinal microbiome of a captive fly
consists principally of the microbes expelled by its predecessors into
the fly medium (Blum et al., 2013). In spite of this, some bacterial
species, such as those belonging to the genera Acetobacteraceae and
Lactobacillaceae, are found in both laboratory-raised and wild
Drosophila (Cox and Gilmore, 2007). Of course, it is possible that
the genomes of the Acetobacteraceae and Lactobacillaceae found
in wild and laboratory-raised flies have diverged in metabolically
important ways owing to the distinct selective pressures of the
laboratory and natural environments.

The simplicity of the laboratory-raised fly microbiome affords
experimental tractability. Acetobacter and Lactobacillus species,
which predominate in the intestines of laboratory-raised flies, are
readily cultured and easily eliminated to generate axenic, or ‘germ-
free’, animals. Furthermore, comparative studies of development,
nutrient allocation and metabolic signaling in conventional and
axenic flies suggest that the intestinal microbiota impacts the
physiology of flies and mammals in parallel ways.

The microbiome and development
In the developing world, the microbiota has been shown to influence
risk of malnutrition, growth retardation and cognitive delay (Smith
et al., 2013; Ahmed et al., 2014; Kane et al., 2015). However, the
particular microbes involved and their specific functions in these
pathophysiological processes are often difficult to pinpoint. Similar
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Fig. 2. Signaling pathways through which
gutmicrobiotamodulate host carbohydrate
and lipid metabolism. Consumed nutrients
are metabolized by the gut microbiota to
produce bioactive metabolites that are sensed
by themammalian and possibly theDrosophila
epithelium. Short-chain fatty acids (SCFAs),
the product of bacterial carbohydrate
fermentation, and other bacterial metabolites
are taken up by enterocytes (note that the villi
are not shown in this representation) and
converted into metabolically active molecules
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G-protein-coupled receptors (GPCRs)
expressed on the surfaces of enterocytes and
enteroendocrine cells. This, in turn, triggers
release of enteroendocrine peptides into the
systemic circulation and activates signaling
cascades thatmodulate host carbohydrate and
lipid utilization both in the intestine and
systemically. Dietary triacylglycerides (TAGs)
are hydrolyzed into monoacylglycerides
(MAGs) and free fatty acids (FFAs) before
being absorbed by enterocytes. These lipids
accumulate within the leaflets of the
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are then packaged either into lipid droplets for
storage or into lipoprotein particles for
transport to other tissues.
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to mammals, the Drosophila microbiota is important for normal
development. Because the Drosophila genome is genetically
tractable and less redundant than mammalian genomes, the
mechanism by which the microbiome impacts development is
better understood. Drosophila are generally raised on nutrient
media containing a source of sugar and protein as well as yeast or
yeast extract. Yeast is a rich source of lipids and B vitamins as well
as proteins and carbohydrates. A decrease in the yeast content of
Drosophila medium has been shown to cause developmental delay
due to a reduction in signaling through the target of rapamycin
(TOR) pathway, a highly conserved pathway also found in
mammals (Layalle et al., 2008; Storelli et al., 2011; Wong et al.,
2014). A similar developmental delay was found in axenic flies, and
this developmental delay could be rescued not only by
supplementation with yeast or B vitamins (Shin et al., 2011;
Wong et al., 2014) but also by re-association with Acetobacter
pomorum (Shin et al., 2011) or Lactobacillus plantarum (Storelli
et al., 2011). Re-colonization with either of these commensal
organisms activated insulin signaling, a process that is central to
Drosophila development (Nassel et al., 2015).
Highlighting the power of the fly model, Shin and colleagues

went on to identify the A. pomorum protein pyrroloquinoline
quinone-dependent alcohol dehydrogenase (PQQ-ADH) as being
required to rescue development, by generating a library of
A. pomorum transposon mutants and re-associating each mutant
singly with an axenic fly population (Shin et al., 2011). Finally,
Shin determined that acetate, the product of PQQ-ADH, was the
microbial signal that was essential for activation of insulin signaling
and normal Drosophila development. In another example of the
power of the Drosophila model, Erkosar et al. recently showed that
the beneficial effect of L. plantarum on host development is
mediated by its activation of host intestinal proteases (Erkosar et al.,
2015). This effect could be replicated by intestinal overexpression of
one of these proteases in germ-free larvae and negated by infection
of L. plantarum-monocolonized flies with a pathogen.
Because screens of individual bacterial mutants in mice are labor

intensive and costly, technologies such as signature-tagged
mutagenesis (STM) and transposon sequencing (Tn-seq) have
been developed to assess sub-libraries of 100 or more mutants
simultaneously (Shea et al., 1996; van Opijnen et al., 2009).
Importantly, using these high-throughput approaches, the presence
of a mutant carrying a mutation in a gene such as PQQ-ADH, which

eliminates excretion of the bioactive metabolite acetate, would be
detected neither by the host nor the investigator. Thus, the approach
taken by Shin, namely screening of bacterial mutants singly, is the
most powerful approach for identification of bacterial genes
responsible for the production of active microbial metabolites in
the host intestine. Such an approach is accessible to most
investigators only when undertaken in a model invertebrate host
such as D. melanogaster, highlighting the potential of this model to
accelerate investigations of the role of the microbiota in normal
development and developmental disorders. In line with the scope of
this article, below we focus specifically on insights into the role of
the intestinal microbiota in the development of obesity that have
been gleaned from studies of the fly intestinal microbiome.

The microbiota and obesity
In mammals, metabolites secreted by the microbiota modulate adult
metabolism as well as juvenile development. For instance, SCFAs
regulate appetite, insulin signaling and adipogenesis through
specific GPCRs located on enteroendocrine cells, sympathetic
neurons and adipose tissue (Ichimura et al., 2009, 2014; Hara et al.,
2014). Not surprisingly, therefore, the intestinal microbiota can
direct host storage of lipids in adipose tissue, leading to obesity. For
instance, specific antibiotic-driven perturbations of the mouse
microbiota during development predispose these mice to obesity
(Cox et al., 2014). By contrast, when fed a high-fat diet, germ-free
mice are less prone to obesity as compared with their conventionally
raised counterparts (Rabot et al., 2010). However, in the mouse,
the specific microbe or microbes responsible for this effect have
not been identified. Experimental manipulation of the Drosophila
microbiota also suggests a role in nutrient allocation and
metabolism. Investigators in the Douglas and Lee labs showed
that germ-free flies given access to standard fly medium
develop hyperglycemia and hyperlipidemia (Shin et al., 2011;
Ridley et al., 2012; Newell and Douglas, 2014; Wong et al.,
2014). Recolonization with single bacterial species reversed
hyperglycemia, whereas multiple bacterial partners were required
to reverse hyperlipidemia (Newell and Douglas, 2014). These
studies demonstrate the power of the Drosophila model as a
platform on which to dissect the effects of distinct intestinal
microbes on host metabolism and to experiment with the design of
an intestinal microbiota that maximizes metabolic health and
minimizes obesity risk.
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Fig. 3. Pathogens and non-pathogens modulate
intestinal metabolism differently. The metabolites
produced by commensal (non-pathogenic) bacteria
play a key role in maintaining gut homeostasis, and
bacteriophages trim and tailor the bacterial population.
The peritropic membrane comprises chitin and
proteins. By secreting proteases and chitinases,
bacterial pathogens can digest, and thus weaken, the
peritrophic barrier, allowing these bacteria to invade
the intestinal epithelium. Alternatively, a non-invasive
pathogen might interrupt signaling between
commensals and the host intestine by consuming
commensal metabolites or producing virulence factors
that mute host signaling pathways. If intestinal lipid
metabolism is dysregulated, the resulting lipid droplets
within enterocytes can provide a platform for replication
of viruses that exploit these organelles, thus promoting
viral superinfection.
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In humans, genetic background is known to contribute to the
development of diabetes and obesity (Bouchard, 1997; Ridaura
et al., 2013; Basile et al., 2014). Because the intestinal microbiota
also plays a role in the development of these diseases, the role of
host genetics in shaping the intestinal microbiota remains a top
research priority. In humans, accumulating evidence suggests that
the genetic background of the host alters the intestinal microbiota
and this, in turn, modulates host metabolism (Goodrich et al., 2014;
Zhang et al., 2015). In one study, mice of three different genetic
backgrounds with varying susceptibility to obesity and diabetes
were bred in a common environment (Ussar et al., 2015). Metabolic
phenotypes were found to be the product of not only the
environment, but also the host genetic background. However,
precise host genes were not implicated. The power and ease of
Drosophila genetics make this an ideal model for such studies. In a
genome-wide association study (GWAS) using the Drosophila
Genetic Reference Panel (DGRP), Dobson and colleagues
demonstrated that host genetic polymorphisms greatly influence
microbiota-dependent nutritional phenotypes (Dobson et al., 2015).
These studies suggested that a single gene mutation could, in some
cases, reverse a microbiota-dependent nutritional effect. However,
correlations of nutritional phenotypes with host genotype were
evaluated only by testing loss-of-function mutants. Although
additional genetic experiments are required to solidify these
associations, this work paves the way for future mechanistic
studies exploring the impact of host genotype on the host–
microbiota metabolic interaction.
The intestinal microbiome affects our well-being by ensuring

normal development, adequate nutrition, and appropriate
carbohydrate and lipid metabolism throughout life. Therefore, the
ability to maintain a microbiome ideally matched to the host would
greatly improve human health. Because of the genetic tools
available to Drosophila researchers and the obvious parallels to
the mammalian system, this is an ideal host in which to explore the
genetic barriers to the maintenance of the designer microbiome.

Bacterial pathogens and host metabolism
Anorexia, malaise and diarrhea are all symptoms of intestinal
infection. In the developing world, multiple intestinal infections in
rapid succession are an important cause of malnutrition, wasting and
a general failure to thrive in children under five (Kotloff et al.,
2013). Although the rapid transit of nutrients through the intestine
that defines diarrhea is bound to be responsible for some of this,
research in Drosophila has elegantly revealed pathogen impacts on
host metabolism that extend beyond decreased intestinal transit
time.
Mycobacterium marinum, a mycobacterial species that causes

skin infections associated with abrasions acquired during water
exposure, is sometimes used as a model for Mycobacterium
tuberculosis (Deng et al., 2011). Early work by the Schneider
laboratory showed that, when injected into the Drosophila
hemolymph, this extra-intestinal pathogen caused wasting through
dysregulation of insulin signaling (Dionne et al., 2006). The
ultimate result was a decrease in glycogen and triglyceride stores
along with an elevation in systemic glucose levels, suggesting that
systemic infections might cause insulin resistance in Drosophila as
they do in mammals (Gheorghita et al., 2015). The study by Dionne
et al. set the stage for subsequent explorations of the impact of
diarrheal pathogens on Drosophila metabolism.
It has been shown using flies that systemic infection with the

intestinal pathogens Salmonella typhimurium and Listeria
monocytogenes, but not the common intestinal inhabitant

Enterococcus faecalis, results in anorexia (Ayres and Schneider,
2009). Development of anorexia, in turn, impacts expression of
antimicrobial peptides and susceptibility to infection. Thus, the host
metabolic state can alter interactions with invading pathogens by
modulating the innate immune response. Interestingly, this group
also reported that anorexia was induced by decreased expression of
the gustatory receptor Gr28b (Ayres and Schneider, 2009), which is
highly expressed in enteroendocrine cells (Buchon et al., 2013;
Marianes and Spradling, 2013). This gustatory receptor, as well as
others expressed on the surface of intestinal cells, provides a
mechanism whereby the products of pathogenic intestinal microbes
can activate signaling pathways that alter host satiety and
susceptibility to infection.

The group led by David Schneider subsequently employed
metabolomic studies to demonstrate that L. monocytogenes
infection decreased glycogen and triglyceride stores as well as the
glucose concentration in the hemolymph (Chambers et al., 2012).
The group also noted that levels of the anti-oxidant uric acid were
decreased. Although these changes are presumably the result of
infection-induced anorexia and other bacterial impacts on the
host, this study did not conclusively identify these changes in host
metabolism as components of a pathogen virulence program, a host
innate immune response or a specific host–pathogen interaction
pathway.

Because of the speed and affordability of genetics, the
comprehensive mutant and transgenic RNA interference (RNAi)
lines, and the eminently accessible and extensive databases, the
Drosophila model is ideally suited to rapid dissection of host–
pathogen interactions (Ni et al., 2008, 2011; Cook et al., 2010; dos
Santos et al., 2015). Using these tools, subsequent studies have thus
far revealed three distinct pathways co-opted by intestinal pathogens
to modulate host metabolism. Pseudomonas entomophila, a
bacterium originally isolated from flies, causes a lethal infection
when ingested (Liehl et al., 2006). By contrast, Pectobacterium
carotovorum strain 15 (Ecc15) induces a strong innate immune
response when ingested, but does not kill the fly (Basset et al.,
2000). Chakrabarti and colleagues compared the transcriptomes of
flies infected with these two bacteria and found that a number of
stress response genes were selectively activated in P. entomophila
infection (Chakrabarti et al., 2012). In addition, whereas
transcription of antimicrobial peptides was greatly activated by
infection, expression of a diptericin-lacZ reporter fusion could not
be detected, leading the authors to conclude that translation but
not transcription was inhibited by P. entomophila. The mechanism
of translation inhibition was determined to be the result of
phosphorylation of elf2α by the GCN2 kinase and inhibition of
the TOR pathway, which is known to activate protein translation.
The P. entomophila pore-forming toxin, monalysin, was found to be
at least partially responsible for this block in translation. Although a
connection between host metabolism and protein translation in the
intestine was not explored in this study, we hypothesize that a burst
of transcription and subsequent translation is likely part of the
intestinal response to the ingestion of dietary nutrients. When this is
blocked by an intestinal pathogen, the host metabolic response
might be altered such that intestinal nutrients are not optimally
utilized. Therefore, a block in protein translation could be a cause of
wasting in particular intestinal infections.

The human intestine has evolved to detect and respond to the
metabolic waste products of its commensal bacterial inhabitants,
and the importance of the host response to these bacterial
metabolites in human health and metabolic disease is just
beginning to be appreciated (Canfora et al., 2015). Parallel
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symbiotic interactions between Drosophila and its commensal
intestinal microbiota have been identified, although the cell types
and receptors that detect these bacterial metabolites have not yet
been identified (Shin et al., 2011). We hypothesize that intestinal
pathogens contribute to and catabolize metabolites within the host
intestine uniquely such that the host response to pathogens is distinct
from its response to commensals. However, this aspect of the host–
pathogen interaction remains poorly understood and is an area in
which Drosophila researchers have made and are poised to make
seminal contributions.
In Drosophila, unique metabolites of intestinal pathogens have

been reported to activate the host intestinal innate immune system.
In particular, Lee et al. determined that the metabolite uracil secreted
by Ecc15 is an activator of intestinal transcription of theDrosophila
gene encoding the reactive-oxygen-generating protein dual oxidase
(Duox) (Lee et al., 2013). Based on the signaling pathwaymediating
duox activation, they proposed the existence of a GPCR that
responds to uracil (Lee et al., 2015). Furthermore, they reported that
this metabolite is also secreted by the intestinal pathogens Vibrio
fluvialis, Shigella sonnei, Pseudomonas aeruginosa and Serratia
marcescens but not by the commensal organism Commensalibacter
intestini when cultured in minimal medium. Notably, Klebsiella
pneumoniae, which is a normal inhabitant of the human intestine,
also produced uracil in culture. Because essential metabolic
pathways of bacteria are highly conserved, we propose that
commensal bacteria and pathogens could differ primarily in how
these metabolic pathways are regulated within the intestinal
environment, resulting in differences in the repertoire of
metabolites produced. Although the Lee et al. study did not
specifically study the effect of Duox activation on host metabolism,
we predict that the resulting activation of a non-specific intestinal
innate immune response, which decreases the number of pathogenic
and commensal bacteria, could result in disruption of host metabolic
homeostasis.
Another example of the interaction of host and pathogen

metabolisms was discovered by Hang et al. (2014). In this case,
acetate, a metabolite normally supplied to the host by the
commensal microbiota, was consumed by the intestinal pathogen
Vibrio cholerae, leading to a decrease in insulin signaling, depletion
of lipid stores in the fat body and the appearance of large lipid
droplets in enterocytes. This metabolic phenomenon is likely due to
the observed transcriptional activation of intestinal IMPL2, an
inhibitor of insulin signaling (Honegger et al., 2008). Interestingly,
overexpression of IMPL2 has recently been implicated in organ-
wasting phenotypes (Figueroa-Clarevega and Bilder, 2015; Kwon
et al., 2015). This presents an additional mechanism by which
intestinal infection could lead to host wasting.
Manipulation of host metabolism by bacterial pathogens could

have the added effect of predisposing the host to viral infection.
Recently, the Cherry laboratory has demonstrated that insulin
signaling protects D. melanogaster against infection by certain
viruses, through activation of the MAPK signaling pathway and
phosphorylation of ERK (Xu et al., 2012, 2013). This supports the
hypothesis that, by suppressing insulin signaling, bacterial infection
of the intestine might predispose the host to viral superinfection.
The metabolites of commensal intestinal bacteria are sensed by

enterocytes, enteroendocrine cells, and possibly cells of other types
in the intestine. The host responds to these bacterial signals by
adjusting carbohydrate and lipid metabolism. Wasting in the setting
of intestinal infection, which has been documented in both humans
and Drosophila, is likely to be partially the result of pathogen
interference with these ‘conversations’ between the host and its

intestinal microbiota. Studies of this phenomenon in Drosophila
have revealed a variety of mechanisms by which pathogens interrupt
this communication (Fig. 3). Intestinal pathogens might secrete
toxins that block the host translational response to bacterial signals.
They might activate the innate immune response leading to a shift in
the commensal population and, therefore, the bacterial metabolites
produced by this population. Finally, they might silence the
communication by consuming the metabolites secreted by the
commensal population. The benefit to the pathogen of silencing
the host–commensal communication has not yet been explored.
However, these studies suggest the hypothesis that disruption of
intestinal nutrient transport and metabolism leaves more dietary
nutrients in the intestinal lumen. These nutrients are available to the
luminal pathogen to support its growth and replication. In other
words, the host wastes while the intestinal pathogen feasts.

Intestinal viruses and host metabolism
Researchers are just beginning to mine the virome of the healthy and
diseased mammalian intestine (Minot et al., 2013; Norman et al.,
2015). This virome includes both enteric viruses that target
eukaryotic cells and viruses also known as bacteriophage, which
target intestinal bacteria. Owing to the requirement for a specific
host receptor, bacteriophage cause lysis in a very narrow range of
bacterial hosts (Buckling and Brockhurst, 2012; Diaz-Munoz and
Koskella, 2014). Therefore, it has been hypothesized that enteric
bacteriophage exclude particular microbes from the intestinal
milieu, thus shaping the commensal bacterial population (Mills
et al., 2013). Because the intestinal microbiota plays a role in
regulating host metabolism, it seems inevitable that relationships
between the enteric virome and host metabolism will also be
established. A similar multi-species interaction is likely to be at play
in the Drosophila intestine, supporting its use as a model to explore
these relationships and their importance in the maintenance of
human health.

Many viruses that are pathogenic in humans, including dengue
and hepatitis C, use lipid droplets as a platform for viral replication
(Saka and Valdivia, 2012). In the case of hepatitis C, infection is
associated with an increase in the number of lipid droplets in
hepatocytes (Filipe and McLauchlan, 2015). Although the
mechanism by which lipid droplets multiply in response to
infection has not been elucidated, the virus might use this to
amplify its own replication.

A similar virulence mechanism is observed in D. melanogaster
infection by the flock house virus (FHV), a natural insect pathogen.
Infection of Drosophila cells with FHV increased transcription of
genes encoding lipid metabolism proteins such as the CTP:
phosphocholine cytidylyltransferases, Cct1 and Cct2 (Castorena
et al., 2010). These proteins, which are found in association with the
surface of lipid droplets, are required for the synthesis of
phosphatidylcholine from diacylglycerol (Moessinger et al.,
2014). RNAi inhibition of Cct1 and Cct2 expression resulted in
decreased viral replication, suggesting that FHVmight also use lipid
droplets as a platform for replication. Although additional studies
are required, these examples suggest that use of the lipid droplet
surface as a replication platform is a conserved virulence
mechanism in viruses that infect both mammals and Drosophila.

Summary and future directions
Although the cast of commensal and pathogenic microbes in the
Drosophila and mammalian intestines are distinct, the literature
reviewed here strongly suggests that the pathways by which these
microbes interact with their host intestines are highly conserved. In
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both, the relevant intestinal structure holds bacteria at a distance
from the epithelium, provides a surface for attachment, and serves as
a source of nutrition for intestinal bacteria (Ritchie et al., 2010;
Kuraishi et al., 2011; Purdy and Watnick, 2011; Hang et al., 2014;
Faderl et al., 2015; Tailford et al., 2015). Furthermore, the intestinal
epithelium senses and responds to nutrients and microbial
metabolites by altering intestinal motility and host metabolism
(Drucker, 2001; LaJeunesse et al., 2010; Vanderveken and
O’Donnell, 2014).
One important aspect in which these two epithelia differ is in their

topology (Fig. 1). Whereas the intestinal epithelium of the fly is flat,
the villi and crypts of the mammalian epithelium create
invaginations in the epithelial surface that might not be accessible
to all intestinal bacteria. Although the factors that enable crypt
colonization have not been defined, this ability is characteristic of
particular intestinal pathogens (Iimura et al., 2005; Olivier et al.,
2007). Because the antimicrobial-peptide-secreting Paneth cells
reside at the crypt base, we hypothesize that the high concentration
of antimicrobial peptides at the crypt base shapes both the crypt
microbiota and susceptibility to pathogen colonization (Shim et al.,
2010). Furthermore, because stem cells and enteroendocrine cells
reside towards the bottom of these crypts, access of both commensal
and pathogenic bacteria to these spaces might impact their influence
on renewal of the epithelial surface and host metabolism. Therefore,
although the cell types and intestinal signaling pathways that control
host metabolism are similar, the proximity of the microbiota to the
analogous mammalian host cell must be considered before
extrapolating from Drosophila to mammals.
The differences in the microbiota of mammals and flies must also

be considered when drawing parallels between these two organisms.
Whereas the principal members of the fly microbiota are
Lactobacilli, which are Gram-positive facultative anaerobic rods
of the Firmicutes phylum, and Acetobacter species, which are
Gram-negative aerobic rods of the Proteobacteria phylum, a much
more diverse microbiota is found in the mammalian gastrointestinal
tract. However, because each microbiota is exquisitely matched to
its host intestine, considerable differences in microbiota are found
even when using a mammal, such as the mouse, to model the human
gastrointestinal tract (Nguyen et al., 2015). These differences in
microbiota do not invalidate the use of non-human models. As we
have highlighted in our discussion, studies with model organisms
suggest that, although the participants in the conversation are very
different, the metabolic dialog itself is quite similar.
In mice and humans, many of the intestinal receptors that sense

the byproducts of microbial metabolism have been identified. In
Drosophila, these receptors are also likely to exist. However, not
one has been identified to date. This represents a great gap in our
understanding of the interaction of Drosophila with its intestinal
microbiota, and one that can be rapidly filled given the genetic tools
available for this model.We believe that this is one areawhere future
research efforts should be focused.
Microbes that reside within our intestines can both promote and

impede optimal nutrient utilization by sharing and catabolizing the
nutrients we consume. We share our nutrients with commensal
microbes, and they, in return, catabolize indigestible foods,
delivering to us digestible byproducts (Hooper et al., 2002;
Rakoff-Nahoum et al., 2014). To streamline this process, the
eukaryotic intestine has evolved pathways, such as those housed by
enteroendocrine cells, to sense and respond to the metabolites
produced by symbiotic enteric microbes (Cani et al., 2013; Galland,
2014). Although it is not surprising that this tenuous metabolic
equilibrium between the eukaryotic host and its intestinal

inhabitants is easily perturbed, it is essential that we understand
and learn to control such perturbations because they might
contribute greatly to the obesity and diabetes epidemics that are
rampant in the developed world. Because of the ease with which
the Drosophila model can be designed and manipulated, the
accessibility of host genetic tools, and the simplicity of the fly
genome and microbiota, this organism provides an ideal system in
which to investigate the principles of the host interaction with its
enteric microbial population.

This article is part of a subject collection on Spotlight on Drosophila: Translational
Impact. See related articles in this collection at http://dmm.biologists.org/collection/
drosophila-disease-model.
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