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ABSTRACT
Effective treatment options for advanced colorectal cancer (CRC) are
limited, survival rates are poor and this disease continues to be a
leading cause of cancer-related deaths worldwide. Despite being a
highly heterogeneous disease, a large subset of individuals with
sporadic CRC typically harbor relatively few established ‘driver’
lesions. Here, we describe a collection of genetically engineered
mouse models (GEMMs) of sporadic CRC that combine lesions
frequently altered in human patients, including well-characterized
tumor suppressors and activators of MAPK signaling. Primary tumors
from these models were profiled, and individual GEMM tumors
segregated into groups based on their genotypes. Unique allelic and
genotypic expression signatures were generated from these GEMMs
and applied to clinically annotated human CRC patient samples. We
provide evidence that a Kras signature derived from these GEMMs
is capable of distinguishing human tumors harboring KRAS mutation,
and tracks with poor prognosis in two independent human patient
cohorts. Furthermore, the analysis of a panel of human CRC cell
lines suggests that high expression of the GEMM Kras signature
correlates with sensitivity to targeted pathway inhibitors. Together,
these findings implicate GEMMs as powerful preclinical tools with the
capacity to recapitulate relevant human disease biology, and support
the use of genetic signatures generated in these models to facilitate
future drug discovery and validation efforts.

KEY WORDS: KRAS, BRAF, MAPK, Colorectal cancer, GEMM,
Genomic signatures

INTRODUCTION
Human sporadic colorectal cancer (CRC) is a complex
heterogeneous disease, and this contributes to the low success rate
of its clinical trials and lack of robust therapeutics (Betensky et al.,
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2002; de Bono and Ashworth, 2010). Efforts have been made to
understand and account for the heterogeneity of several human
cancers, including CRC, with a focus on segmenting cancer
populations based on core genetic ‘driver’ lesions (Greenman et al.,
2007). In addition, several studies have identified genomic
signatures within large CRC datasets that predict clinical outcome
(Roth et al., 2010; Dry et al., 2010; Popovici et al., 2012; Budinska
et al., 2013; De Sousa E Melo et al., 2013; Sadanandam et al.,
2013).

To further understand and experimentally interrogate the biology
underlying genetically defined disease segments of interest, and to
facilitate discovery of relevant treatment paradigms, stochastic
preclinical disease models harboring homologous somatic alterations
are crucial. To this end, several studies have utilized genetically
engineered model organisms, including Drosophila (Vidal and
Cagan, 2006; Rudrapatna et al., 2012) and mice (Jonkers and Berns,
2002; Tuveson and Jacks, 2002), to recreate hallmark characteristics
of human cancers. Drosophila cancer models have shed light on
numerous biological underpinnings of cancer, including tumor
suppressors, invasion and metastasis (Rudrapatna et al., 2012),
providing substrate for further validation in mammalian models.
Genetically engineered mouse models (GEMMs) have been utilized
as the mammalian cancer model system of choice for decades
(Tuveson and Hanahan, 2011; Politi and Pao, 2011). Although
GEMMs have traditionally incorporated germline alterations in
disease-prevalent genes, models using conditionally controlled,
somatically acquired alleles allow a more accurate stochastic
modeling of the sporadic nature of human tumorigenesis (Heyer et
al., 2010). To address this, GEMMs have been further developed to
leverage restricted exposure of Cre recombinase to initiate latent
alleles exclusively in tissues of interest, closely mimicking the onset
of spontaneous lesions in humans (Johnson et al., 2001; Roper and
Hung, 2012; DuPage et al., 2009; Frese and Tuveson, 2007).

To provide maximal experimental utility and enable the
translation of preclinical mouse modeling experiments into human
disease, GEMMs of human CRC must be driven by homologous
allelic series, and exhibit similar clinical presentations to the human
disease, including disease histopathology and appearance of
metastatic lesions (Heyer et al., 2010; Roper and Hung, 2012).
Recently, primary tumors from GEMMs of pancreatic, colorectal
and non-small-cell lung cancers harboring genetic lesions that are
present in human cancers were shown to be histologically and
pathologically similar to their respective human counterparts
(DuPage et al., 2009; Hung et al., 2010; Martin et al., 2013). In
some cases, GEMMs have closely emulated the response seen in
humans to both standard of care and targeted therapies (Arnold et
al., 2005); furthermore, the mechanisms of acquired resistance to
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such agents have often closely resembled those seen in the clinic
(Engelman et al., 2008; Jorissen et al., 2009; Van Cutsem et al.,
2009; Hegde et al., 2013). Thus, GEMMs are useful preclinical
models for modeling human cancer biology and identifying potential
therapeutic targets.

To further our understanding of the molecular etiology underlying
common genotypic subsets of human CRC, and to assess the extent
to which they recapitulate human disease in animal models, we
amassed a collection of GEMMs that combine colon-specific
mutations, including somatic alterations in Apc (ApcCKO), Tp53
(Tp53flox/flox), Kras (KrasLSL-G12D) and Braf (BrafV600E), genes that are
among the most frequently mutated in human sporadic CRC (Cancer
Genome Atlas Network, 2012). Primary tumor material from this
collection was subjected to gene expression profiling to assess core
similarities and differences among these models, and to generate

unique signatures based on genotype. These signatures were then
evaluated in human CRC tissue with annotated clinical data to assess
the ability of these GEMMs to recapitulate the core transcriptional
biology of their human CRC counterparts. Overlapping gene
expression modules shared between GEMM and human signatures
represent potential points of therapeutic interrogation and provide key
substrate for follow-up validation and drug discovery efforts.

RESULTS
Development and profiling of genetically relevant CRC
GEMMs
Adult GEMMs harboring combinations of latent, inactive alleles of
the four most common somatic lesions observed in human CRC
(Cancer Genome Atlas Network, 2012) (APC, TP53, KRAS and
BRAF) were subjected to surgically restricted delivery of AdCre to
the distal colon; mice were then followed longitudinally for tumor
progression via endoscopy, and tumor material was harvested as
previously described (Hung et al., 2010; Martin et al., 2013). The
conditional Apc and Tp53 alleles harbor loxP sites (floxed), which,
upon exposure to AdCre, result in excision of critical exons,
resulting in loss-of-function proteins, as previously described
(Kuraguchi et al., 2006; Kirsch et al., 2007). The conditional Kras
and Braf alleles harbor floxed transcriptional stop elements upstream
of mutant forms of exon 1 (KrasG12D) (Hung et al., 2010) or exon 15
(BrafV600E) (Coffee et al., 2013). A list of primary tumors with allelic
combinations is provided (supplementary material Table S1).
Tumors and normal colonic tissue from wild-type littermate controls
were subjected to whole-genome expression profiling. Subsequently,
principal component analysis (PCA) and unsupervised hierarchical
clustering on the top 500 most variable genes was performed.
Individual CRC GEMMs clustered by genotype, both in the PCA
(Fig. 1A, genotype representing the first two principal components)
and hierarchical clustering (Fig. 1B). These results demonstrate that
the genotypes of these models represent the primary differentiating
feature, and suggest that each genotype likely possesses unique
underlying biological characteristics.

Allele-specific GEMM signatures
To further assess the underlying differences among our CRC
models, we identified gene signatures (lists of differentially
expressed genes) characteristic of each mutant allele (Apc, Tp53,
Kras, Braf) within the GEMM collection using a multivariable
analysis (see Materials and Methods). It is important to note that all
GEMMs contain Apc lesions; therefore, all results for Braf, Kras
and Tp53 alleles should be interpreted with this regard. A Venn
diagram (Fig. 2A) and heatmaps of supervised hierarchical
clustering on the signature-specific genes (Fig. 2B-E) demonstrate
that these gene lists partially overlap, suggesting common biological
characteristics, including redundant signaling and pathway
activation. To determine whether the unique or intersecting gene
lists associated with each mutant allele displayed enrichment in
known biological processes or curated gene signatures, we cross-
referenced each to the molecular signatures database [MSigDB
(www.broadinstitute.org/gsea/msigdb/)]. Indeed, common gene sets
enriched among upregulated Kras and Braf genes included several
annotated MAPK pathway sets, consistent with the established roles
of mutant Kras and Braf in activating this pathway (supplementary
material Table S2). Gene sets enriched among shared upregulated
Apc and Tp53 genes included several cell cycle gene sets as well as
DNA synthesis, replication and repair, consistent with their
established roles as tumor suppressors and thus with the
deregulation of these functions in our models (supplementary
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TRANSLATIONAL IMPACT
Clinical issue
Colorectal cancer (CRC) is the third leading cause of cancer mortality in
the United States, and ~80% of all cases are sporadic in nature,
involving the acquisition of tumorigenic somatic alterations. Treatment
options for CRC are limited, and the survival rates associated with
advanced-stage disease are low. The highly heterogeneous nature of
this disease is thought to contribute to the lack of success of novel
therapeutics in the clinic. Thus, preclinical models that recapitulate the
core biology of the human disease are needed for the identification of
new therapeutic strategies. Despite the heterogeneity associated with
sporadic CRC, the vast majority of cases display alterations in a limited
number of tumor suppressors and oncogenes. Here, the authors
amassed a unique collection of genetically engineered mouse models
(GEMMs) harboring conditional alleles that mimic acquired somatic
alterations observed in human sporadic CRC, including loss of the tumor
suppressors APC and TP53 and gain of oncogenic BRAF and KRAS. To
gain an understanding of the utility of these models, gene signatures
were derived and used to stratify genomically heterogeneous clinically
annotated patient samples, as well as human cell lines treated with
targeted inhibitors.

Results
Primary tumors were isolated from GEMMs harboring common CRC
‘driver’ mutations, and these tumors were subjected to gene expression
profiling to generate genotype-specific signatures. GEMM-derived
signatures were applied to two independent human clinical CRC
datasets for which genomic profiling and survival data were available.
The GEMM Kras signature score was enriched in individuals with a
mutation in KRAS, and associated with shorter overall survival (OS),
relapse-free survival (RFS) and survival after relapse (SAR).
Interestingly, the signature further segregated the KRAS mutant CRC
patient population into two clinically distinct groups, consistent with
emerging evidence of heterogeneity in this population in both gene
expression and survival. Finally, the signature was predictive of response
to MEK inhibitors, which are widely used as cancer drugs, in human
CRC cell lines.

Implications and future directions
Together, these results demonstrate that gene signatures derived from
genetically and contextually relevant GEMMs are capable of further
resolving genomically heterogeneous populations of human CRC and
identifying patients with characteristics of aggressive disease. The
correlation of the GEMM Kras signature with response to targeted
inhibition of a clinically relevant pathway in a collection of human CRC
cell lines highlights its potential utility in predicting therapeutic response.
Future studies will focus on the application of this signature to other
therapeutic modalities of interest, and on further understanding the
contribution of key nodes or targets present within the signature itself.
On a wider scale, this study demonstrates the usefulness of GEMMs
expressing conditional alleles for exploring genetic heterogeneity in
human malignancies. 
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material Table S3). Gene sets enriched among unique genes for each
allele were also assessed. Gene sets found to be enriched in Kras-
specific genes included metabolism, signaling downstream of
receptors, and adhesion (supplementary material Table S4),
functions previously ascribed to mutant KRAS (Racker et al., 1985;
Pollock et al., 2005; Rajalingam et al., 2007; Levine and Puzio-
Kuter, 2010). Interestingly, gene sets enriched among unique Braf
genes also include metabolism, consistent with previously
established links between oncogenic BRAF and metabolic
deregulation (Yun et al., 2009); however, additional gene sets
included immune response signaling, consistent with additional roles
for oncogenic BRAF (Sumimoto et al., 2006) (supplementary
material Table S5). Gene sets found to be enriched in Apc-specific
genes included development (supplementary material Table S6),

consistent with the role of aberrant APC in WNT–β-catenin
signaling and development (Clevers, 2006), as well as several gene
sets associated with small-molecule transport, a role to our
knowledge not fully characterized for aberrant APC. Gene sets
enriched in Tp53-specific genes included ubiquitylation and
proteolysis pathways (supplementary material Table S7), consistent
with the central role of these pathways in regulating endogenous
TP53 (Lee and Gu, 2010). Taken together, these findings indicate
that lesions in our GEMM alleles of interest result in gene signatures
characteristic of known or putative biological roles for each allele.

Generation and validation of GEMM allelic signatures
We defined GEMM allele-specific scores as a difference of average
gene expression between the top 100 up- and top 100 downregulated
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A PCA on all tumor samples
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Fig. 1. GEMM primary tumors segregate by
genotype. (A) Principal component analysis (PCA)
on GEMM primary tumor samples and normal colon
tissue. wt, normal colon from wild-type untreated
mice. The following designations describe the alleles
present in CRC GEMMs: A, Apc; AB, Apc, Braf; ABP,
Apc, Braf, Tp53; AK, Apc, Kras; AKP, Apc, Kras,
Tp53; AP, Apc, Tp53. (B) Unsupervised hierarchical
clustering using the top 500 most differentially
expressed genes from samples as described in A.
WT, wild type.
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genes from the corresponding signature. The score for each
individual GEMM allelic signature (Kras, Braf, Apc, Tp53;
supplementary material Tables S8-S11, respectively) was computed
in each of the models (A: Apc; AK: Apc, Kras; AKP: Apc, Kras,
Tp53; AB: Apc, Braf; ABP: Apc, Braf, Tp53; AP: Apc, Tp53; WT,
wild type; supplementary material Table S1). As expected, the
models containing a given mutation had the highest score for that
allelic signature in the discovery set (Fig. 3A-D). For instance, the
GEMM Apc signature score was high in all GEMM models, because
all models contain this mutation (Fig. 3A), whereas the GEMM
Tp53 signature was high in models containing Tp53, including AP,

ABP and AKP, but low in A, AB and AK (Fig. 3B). In the case of
the GEMM Kras signature, the score was high in models containing
Kras, including AK and AKP (Fig. 3C). The highest Braf score was
found in models containing Braf, including AB and ABP (Fig. 3D).
Interestingly, the GEMM Kras score was also high in models with
Braf and Apc mutation (AB), but not in those containing Braf, Apc
and Tp53 mutation (ABP) (Fig. 3C), suggesting that the addition of
Tp53 to the Apc, Braf mutant background might result in less
reliance on MAPK-driven signaling. Similar trends were seen in
other genotypes, with Tp53 mutation leading to a systematically
lower signature score compared with their counterparts without the
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Fig. 2. Multivariable analysis identifies genes associated with each allele from the GEMM cohort. (A) Venn diagram depicting the number of unique or
shared genes associated with each GEMM allele. Red, upregulated genes; blue, downregulated genes. (B-E) Clustering of GEMMs based on expression
profiles of genes associated with each allele.
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mutation (Apc signature in AP versus A, Fig. 3A; Kras signature in
AKP versus AK, Fig. 3C; ABP versus AB, Fig. 3D). A potential
explanation for these observations could include the increased
presence of genomic instability, a well-known consequence of
aberrant Tp53.

We next applied the signature to an independent GEMM CRC
sample set consisting of acute activation of shared alleles, including
Apc, Tp53 and Kras. Consistent with the findings in our discovery
cohort, our GEMM allelic signatures scored highest in GEMMs
derived from an independent cohort that contained the
corresponding mutant allele (supplementary material Fig. S1A-C),
further validating their predictive utility.

Overlap of allele-specific GEMM Kras and Braf signatures
with clinically annotated CRC datasets
To assess the extent to which our GEMMs recapitulate the genetic and
biological features of human CRC, and to assess the utility of this
collection for preclinical studies, we compared their genomic
signatures to those of clinically annotated human CRC datasets. To
this end, we utilized the Pan-European Trials in Alimentary Tract
Colon Cancers (PETACC-3), a large Phase III randomized trial in
which 688 patients with stage II or III CRC were characterized by
genomic and mutational analysis, including KRAS and BRAF.
Because the mutant Kras allele in the GEMM cohort (KrasLSL-G12D)
is a gain-of-function mutation, for the purpose of comparison we
considered all KRAS gain-of-function mutations in the PETACC-3
dataset, with the caveat that different types of KRAS mutations
potentially have unique biological characteristics (Kirk, 2011). As
indicated in Fig. 4A, the average GEMM Kras signature score was
significantly higher in patients with the KRAS mutant than those with
wild-type KRAS. Given the variability in the GEMM Kras signature

score among individuals with wild-type KRAS and the fact that our
Kras signature scored high in our Braf-containing models, possibly
picking up on common MAPK pathway mechanisms, these patients
were further annotated based on BRAF mutation or similarity to a
published BRAF-like signature (Popovici et al., 2012). Interestingly,
of the KRAS wild-type patients, both BRAF mutant (Fig. 4A, red
circles) as well as those with a high BRAF-like signature score
(Fig. 4A, green circles) tended to display a higher signature score,
supporting our hypothesis that, in addition to distinguishing KRAS
mutant patients, the GEMM Kras signature also captures those with
high MAPK pathway activity. Together, these data indicate that the
GEMM signature is enriched in patients with KRAS mutation, as well
as BRAF mutation or a high degree of similarity to a BRAF-like
signature, the latter of which is potentially indicative of a common
biology shared among KRAS and BRAF mutant patients.

To determine whether our GEMM Kras signature is representative
of human KRAS mutant CRC tumors, we compared it to a human
KRAS signature derived in the multivariable model with KRAS and
BRAF mutation as covariates in PETACC-3 patients. Consistent with
the GEMM, the PETACC-3 KRAS signature score was higher among
KRAS mutant patients than KRAS wild-type patients, whereas, again,
BRAF mutant and BRAF-like patients tended to score highest among
the KRAS wild-type population (Fig. 4B). The GEMM and PETACC-
3 KRAS signature scores showed a high degree of correlation both
among GEMMs (Fig. 4C, R2=0.74) and among patients (Fig. 4D,
R2=0.32). These findings suggest that the Kras signature derived from
a relatively homogeneous background such as the GEMM might be
capable of capturing common and disease-relevant biology present in
human KRAS patients.

Interestingly, our GEMM Braf signature score did not correlate
with the human BRAF signature score of Popovici et al. (Popovici
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et al., 2012), nor was it able to predict BRAF mutant tumors in the
PETACC-3 data. Also, the recent BRAF signature derived from
human samples did not predict correctly Braf mutant status in our
GEMMs (data not shown). This, together with the results of the Braf
signature pathway analysis pointing to proliferation, shows that our
Apc-based Braf models are potentially less representative of the
human BRAF mutant population. This is consistent with the low
frequency of concomitant BRAF and APC lesions observed in
human cases (Cancer Genome Atlas Network, 2012).

Clinical characteristics of patient samples based on GEMM
Kras signature score
We assessed differences in available clinical variables among all
individuals in the PETACC-3 cohort. Patient populations were defined
based on each GEMM signature score into allele-like and non-allele-
like groups (threshold 0 on inter-quartile range normalized scores).
GEMM Kras-like tumors exhibited a statistically significant
enrichment for various characteristics, including mucinous histology,
KRAS mutant, BRAF mutant, right-side, stage 3, and similarity to a
BRAF-like population shown previously to be associated with poor
prognosis (Popovici et al., 2012) (supplementary material Table S12),
implicating the ability of the GEMM Kras signature at distinguishing
aspects of advanced disease.

GEMM Kras signature is associated with poor outcome
To determine whether the GEMMs are representative of advanced
disease, we examined survival differences among annotated patients
in PETACC-3. Differences in overall survival (OS), relapse-free

survival (RFS) and survival after relapse (SAR) were compared. To
validate our findings, we performed a similar assessment on an
independent publicly available sample cohort (GEO GSE14333)
(Jorissen et al., 2009), consisting of 115 stage II/III human CRC
samples with gene expression profiling and survival data. Of the
four core GEMM signatures generated (Apc, Tp53, Braf, Kras), the
Kras signature score produced the highest hazard ratios for OS and
SAR in the PETACC-3 dataset, and among the highest hazard ratios
for OS, RFS and SAR in the GSE14333 dataset (Table 1),
suggesting that it is most indicative of advanced disease. OS, RFS
and SAR based on GEMM Kras signature was plotted for the
PETACC-3 dataset (Fig. 5A-C) and for the GSE1433 dataset
(Fig. 5D-F). Additional Kaplan-Meier plots for GEMM Braf, Apc
and Tp53 signatures in PETACC-3 as well as GSE144333 can be
found in supplementary material Figs S2 and S3, respectively.
Because the GEMM Kras signature was associated with some
prognostic clinical variables (e.g. stage), we also fitted a
multivariable survival model with GEMM Kras-like signature,
BRAF mutant, KRAS mutant, mucinous status, grade and MSI,
within stage-3 patients of the PETACC-3 dataset (stage 2 patients
were enriched for relapsed patients, so were not representative of the
population). The GEMM Kras signature remained significant for
both OS and RFS (supplementary material Table S13). Together,
these findings suggest that our GEMM Kras signature could offer
insight into survival characteristics in two independent large human
CRC patient cohorts.

Given that KRAS mutant CRC patients have been shown to be
heterogeneous (Budinska et al., 2013; Sadanandam et al., 2013) and
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given the ability of the GEMM Kras signature to distinguish patients
with poor prognosis, we sought to determine whether this signature
could further delineate clinical features, specifically in a KRAS
mutant patient population. Although not statistically significant, a
trend toward worse prognosis was observed for KRAS mutant
patients with high GEMM Kras signature score for OS, RFS and
SAR (Fig. 6A-C, P=0.480, P=0.398 and P=0.341, respectively).

Together, these data indicate that the GEMM Kras signature can
distinguish a subpopulation of patients with poor prognosis, perhaps
owing to its ability to further distill a heterogeneous patient
population to the core underlying biology beyond simply the status

of a given driver lesion, much like the recent BRAF signature
(Popovici et al., 2012) with which it is correlated.

GEMM Kras signature is predictive of sensitivity to targeted
inhibitors
To determine the utility of the GEMM Kras signature as a
preclinical model selection tool, we assessed its ability to predict
response to targeted inhibitors in a panel of cell lines. Given the
clinical potential in applying MEK inhibitors to treat various tumor
types, including CRC, we sought to determine whether the GEMM
signature was predictive of response to these inhibitors as
determined by a publicly available study of drug sensitivity 
across a comprehensive collection of cancer cell lines
(http://www.cancerrxgene.org), with a focus on CRC. A high
GEMM Kras signature score was associated with increased
sensitivity of CRC cell lines to two independent MEK inhibitors
used in the study, PD-0325901 and AZD6244 (Fig. 7A,B,
respectively). To independently validate these findings, we selected
representative cell lines with relatively high and low GEMM Kras
signature scores (high: LS-1034, LS-513; low: Colo-320, SW948),
and assessed cell viability following a full-dose response of these
MEK inhibitors. The cell lines with higher GEMM Kras signatures
displayed relatively greater sensitivity than those lines with lower
GEMM Kras signatures to the MEK inhibitors PD-0325901 and
AZD6244 (Fig. 7C,D, respectively). This supports our hypothesis
that the GEMM Kras signature is associated with an increased
dependency on MAPK signaling, and therefore an enhanced
sensitivity to pathway inhibition via selective targeting of MEK.
This is consistent with the known ‘driver’ phenotype of mutant
KRAS and the increased dependency on the MAPK pathway
observed in several KRAS mutant cell lines. Interestingly, the
GEMM Kras signature score added predictive utility beyond simply
KRAS mutation status of the cell lines: a signature score positively
correlated with sensitivity to MEK inhibition, even within a set of
KRAS mutant cell lines. Taken together, these findings provide
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Table 1. Survival characteristics associated with each GEMM
signature

PETACC-3 GSE14333

Parameter HR P-value HR P-value

Kras-like vs non Kras-like
OS 1.64 0.00077 2.72 0.00656
RFS 1.46 0.00251 3.25 0.00132
SAR 1.49 0.01204 4.28 0.01616

Braf-like vs non Braf-like
OS 1.58 0.00142 0.88 0.71205
RFS 1.72 0.00001 1.54 0.22355
SAR 0.9 0.48413 0.94 0.89929

Tp53-like vs non Tp53-like
OS 0.64 0.00144 0.93 0.84505
RFS 0.59 0.00001 0.31 0.00128
SAR 1.1 0.55328 1.08 0.88514

Apc-like vs non Apc-like
OS 0.73 0.02836 2.72 0.01102
RFS 0.75 0.01871 1.45 0.28122
SAR 0.94 0.68965 1.71 0.30573

GEMM Apc, Tp53, Kras and Braf signatures were applied to the PETACC-3
and GSE14333 datasets as described in Fig. 5, and OS, RFS and SAR were
compared for each respective signature. Shown are P-values and hazard
ratios (HR) for each parameter.
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motivation for using the GEMM Kras signature for predicting
response to targeted inhibitors of the MAPK pathway, including
those targeting MEK.

DISCUSSION
The identification of core ‘driver’ lesions among tumor indications
provides a means for segmenting patients and, in some cases,
selecting treatment regimens. Despite advances in patient

stratification and treatment selection, there are still sizeable
segments of human disease with limited effective treatment options.
One such segment is defined by the presence of KRAS mutations,
constituting roughly 30-40% of sporadic CRC (Jorissen et al., 2009;
Cancer Genome Atlas Network, 2012). Further compounding this
problem is the lack of informative preclinical models in which to
conduct rapid drug discovery efforts.

Next-generation GEMMs have gained prominence as preclinical
cancer models (DuPage et al., 2009; Heyer et al., 2010; Politi and
Pao, 2011). Specific advantages of these models include the ability
to selectively activate latent alleles of interest, effectively modeling
the stochastic gain of activating mutations and/or loss of tumor
suppressors commonly observed in sporadic human cancers. Our
GEMM collection contains combinations of genes frequently
mutated or lost in human CRC, including Apc, Tp53, Braf and Kras,
thereby allowing us to model a broad spectrum of human disease.
Adding to the utility of these models, primary tumors are used as
substrate to generate tumor-derived cell lines that maintain much of
the biology of the original tumors, and retain key alleles of interest
(Martin et al., 2013). Further, these cell lines serve as a platform for
in vitro and in vivo interrogation because they are amenable to
growth in subcutaneous space, in sites common for metastasis such
as the liver, and in the native colonic environment of syngeneic,
immunocompetent recipients (Martin et al., 2013). As in any
GEMM, there are also clear drawbacks to these models, such as the
limited number of defined genetic lesions and tumor heterogeneity
relative to their human counterparts, in large part due to the inherent
nature of an inbred model. In addition, owing to their historically
short lifetime as preclinical models, their translational value of has
yet to be fully realized. Thus, it is important to understand the role
of these models as a complementary tool in a larger comprehensive
preclinical drug discovery program.

In the current study, we investigated the genomic characteristics
of primary tumors from our collection of CRC GEMMs containing
genetic lesions that are present in a large portion of human disease
cases. The genomic profiles of these tumors properly segregated
based on their core genotypes, with each genotype containing
unique distinguishing signatures. Our Braf models were exclusively
generated along with loss of Apc, a condition likely not indicative
of human CRC progression as indicated by a recent assessment of
human CRC mutational data (Cancer Genome Atlas Network, 2012)
and also reflected in our GEMM Braf signature failing to classify
BRAF mutant clinical samples.

The GEMM Kras signature was effectively validated within an
independent collection of GEMMs, as it properly distinguished Kras
mutant models from non-mutant. A more detailed analysis of the
GEMM Kras signature revealed that it was enriched in human CRC
patients with advanced disease and poor prognosis. The signature was
also able to further stratify the KRAS mutant segment of a large
clinical cohort, suggesting that a comprehensive signature can provide
additional power in further segregating a patient population of interest,
beyond simply the status of a given driver lesion, and indicating that
there are likely additional underlying characteristics that account for
severity of disease beyond the mutation status of KRAS. Finally, the
signature provided additional utility in predicting sensitivity to
targeted MEK inhibition across a panel of CRC cell lines, because
those lines with a high signature score tended to display increased
sensitivity to two independent MEK inhibitors, suggesting a utility in
predicting pathway dependence. The correlation was maintained even
within a set of cell lines that harbor KRAS mutation: KRAS mutant cell
lines with relatively higher signature scores displayed increased
sensitivity compared with mutant lines with lower signature scores.
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This approach could potentially be used to identify additional pathway
dependencies and corresponding therapeutic sensitivities. Taken
together, this study highlights instances in which signatures generated
from the GEMMs are applicable to recapitulating biological
characteristics of human disease, including prognosis and response to
targeted therapeutics. Although several limitations preclude the use of
GEMMs as a stand-alone discovery model, the features described
herein provide further insight into the power of these GEMMs of
sporadic CRC as a companion preclinical discovery model in a
comprehensive drug discovery effort.

MATERIALS AND METHODS
This research protocol was approved by our attending veterinarian, and by
the Pfizer Institutional Animal Care and Use Committee (IACUC).

CRC GEMMs
The generation and genotyping of Apc (ApcCKO), Tp53 (Tp53flox/flox), Kras
(KrasLSL-G12D) and Braf (BrafV600E) genetically engineered mice has been
previously described (Hung et al., 2010).

CRC GEMM tumor samples and gene expression data
Murine primary tumor samples from GEMMs treated with AdCre, and
normal colon tissue from untreated wild-type mice were collected. Wild-type
mouse colon tissue used for RNA extraction and microarray analysis was
enriched for epithelial cells. Briefly, colons were opened lengthwise, cut into
3-5 mm fragments, and washed in HBSS-glucose. Fragments were then
resuspended in 20 ml HBSS-glucose-dispase-collagenase solution, placed
into a conical tube and agitated on a shaking platform for 25 minutes at
25°C. The digested tissue was further disaggregated by hand pipetting and
vigorous shaking for 3 minutes and inspected under an inverted microscope.
Subsequently, enzymes were neutralized with 50 ml DMEM-sorbitol and
crypt cell suspensions were separated from intestinal fragments and passed
through a 70-μm cell strainer. The epithelial-enriched fraction was briefly
centrifuged and used for RNA extraction and microarray analysis. RNA was
isolated and processed for hybridization on Mouse Affymetrix GeneChip

430 2.0 arrays (Affymetrix, Santa Clara, CA) as previously described
(Martin et al., 2013). All gene expression data can be found at the Gene
Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) under accession number
GSE50794. Our training set consisted of Affymetrix Mouse 430 2.0 gene
expression profiles of 33 primary tumors representing the following
genotypes: Apc (7), Apc/Kras (6), Apc/Kras/Tp53 (8), Apc/Tp53 (3),
Apc/Braf (4), Apc/Braf/Tp53 (5) and nine normal colon tissue samples.

The validation set consisted of Affymetrix Mouse 430 2.0 gene expression
profiles of 15 primary tumors of genotypes: Apc (3), Apc/Kras (6),
Apc/Tp53(6) and three normal colon tissues.

Clinical and cell line data
803 stage II or III human CRC gene expression profiles from both the
PETACC-3 trial [688 formalin-fixed paraffin-embedded samples profiled on
ALMAC CRC DSA platform (Almac, Craigavon, UK) (Budinska et al.,
2013)] and Moffit samples [115 fresh frozen samples profiled on Affymetrix
HG U133+ 2.0 platform (Jorissen et al., 2009)] with available clinical and
survival data were used to test whether our GEMM models are
representative of human disease. The PETACC-3 data are available from the
Array Express database under the accession number E-MTAB-990; the
Moffit data are available from the GEO database under accession number
GSE14333. Cell line gene expression profiles with drug sensitivity
(http://www.cancerrxgene.org) (Garnett et al., 2012) profiled on Affymetrix
HG U133A platform (Affymetrix, Santa Clara, CA) were downloaded from
the Array Express database under the accession number E-MTAB-783.

Microarray data normalization and data filtering
All Affymetrix gene expression data were normalized and summarized using
the function three step of affyPLM R package (www.bioconductor.org) with
default settings, background correction, quantile normalization and median
polish probe summarization. ALMAC gene expression profiles from the
PETACC-3 trial were processed as previously described (Popovici et al.,
2011; Popovici et al., 2012). In each dataset, one probeset with the highest
variability was selected as a representative of each EntrezGene ID. The
variability for each probeset was estimated by robust linear regression (rlm
function in R package MASS) as the robust scale estimate (RSE). This
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Fig. 7. GEMM Kras signature predicts sensitivity to
targeted MEK inhibition. The top 100 most significant
GEMM Kras signature genes were used to segregate cell
lines based on similarity to these genes (x-axis, GEMM
Kras signature score; increasing value indicates
increasing signature score), and compare this to the
relative sensitivity to targeted MEK inhibitors reported in
the Sanger dataset (www.cancerrxgene.org) [y-axis, ln
(IC50); increasing value indicates decreasing sensitivity to
the inhibitor], including PD-0325901 (A) and AZD6244 (B).
KRAS mutant cell lines are in red, BRAF mutant cell lines
are in green, KRAS/BRAF wild-type cell lines are in black.
The associated Pearson correlations and R2 values
relating Kras signature score to inhibitor sensitivity are
shown above each graph. (C,D) Independent confirmation
of sensitivity to MEK inhibitors. Representative cell lines
with relatively high (LS-1034, LS-513) and low (Colo-320,
SW948) GEMM Kras signature scores were
experimentally tested as an independent assessment of
sensitivity to MEK inhibitors PD-0325901 (C) and
AZD6244 (D). KRAS mutant cell line names are in red,
KRAS/BRAF wild-type cell line names are in black.
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resulted in the following number of EntrezGene IDs: 21,758 in GEMM
datasets, 14,926 in PETACC-3 dataset, 20,752 in GSE 14333 dataset and
11,237 in the cell line dataset. For all analyses with clinical data, an
overlapping set of 13,265 EntrezGene IDs between the two clinical datasets
(from ALMAC and Affymetrix platforms) was used. For signature
development, mouse EntrezGene IDs were matched to their human
homologs, reducing the number of EntrezGene IDs to 15,888 and intersected
with 13,265 EntrezGene IDs of clinical datasets, leading to a final subset of
11,745 EntrezGene IDs.

Statistical analysis, clustering and classifier development
A multivariable linear additive model was built on a GEMM training set of
15,888 EntrezGene IDs to estimate mutation-allele-specific (Apc, Kras, Braf,
Tp53) effects, with WT in all alleles as baseline. The genes that were assigned
a statistically significant effect in a given mutation made up the mutation-
specific gene list. Unsupervised hierarchical clustering with average linkage
and Pearson correlation as a measure of similarity was used to cluster sets of
the top 500 most variable EntrezGene IDs and then the top 500 most variable
allele-specific genes and samples. For classifier construction, the final subset
of 11,745 human homolog EntrezGene IDs was used.

The top 100 up- and downregulated genes from multivariable analysis
specific for a given allele were used to define the allele-specific score,
defined as a difference of average gene expression between up- and
downregulated genes of the allele. The rule score >0 served as classifier
defining allele-like group, except for the KRAS mutant subpopulation, where
the median of the KRAS-like score was taken as threshold. Prior to
application of the classifier and consequent survival analysis, the genes in
the datasets were median-centered and normalized by inter-quartile range.

MSigDB analysis
Gene lists associated with each mutant allele (Kras, Braf, Apc, Tp53)
generated from the multivariable analysis above (P<0.01 regulated for each
allele) were uploaded to the MSigDB analysis tool [Broad Institute
(http://www.broadinstitute.org/gsea/msigdb/index.jsp)]. Enrichment in
MSigDB gene sets from all major canonical pathway collections were
assessed and ranked by P-value. The top 10-20 MSigDB gene sets with the
most significant enrichment for each allelic gene list were identified.

Comparison of GEMM Kras signature score and cell line
sensitivity
GEMM Kras signature score classifier was applied to normalized,
EntrezGene ID summarized cell line dataset (http://www.cancerrxgene.org).
For this purpose, 66 upregulated and 74 downregulated EntrezGene IDs
from the original GEMM Kras classifier that were found on the Affymetrix
HG U133A platform were used to calculate the GEMM Kras score for each
CRC cell line in this dataset. This score was then plotted with the
corresponding IC50 values of drug response to the MEK inhibitors PD-
0325901 and AZD6244 for each cell line, as reported in this dataset, and a
linear model was fitted.

Independent confirmation of cell line sensitivity to MEK
inhibitors
An independent validation of sensitivity to MEK inhibitors PD-0325901 and
AZD6244 based on GEMM Kras signature score was performed by
selecting representative cell lines with relatively high GEMM Kras signature
scores (LS-1034, LS-513) and low signature scores (Colo320, SW948).
Briefly, cell lines were seeded at 1000 cells/well in 96-well culture plates in
growth medium with 10% FBS. Cells were incubated overnight and treated
with DMSO (0.1% final) or serial diluted compound for 4 days. Cell
viability was assessed adding Cell Titer Glo reagent (CTG, Promega,
Madison, WI) and plates were incubated at room temperature for
30 minutes. Luminescence signals were read and IC50 values were calculated
by plotting luminescence intensity to drug concentration in nonlinear curves
using GraphPad Prism (GraphPad, La Jolla, CA).

Survival analysis
Outcome variables were overall survival (OS), relapse-free survival (RFS)
and survival after relapse (SAR). Survival probabilities were estimated using

the Kaplan-Meier method, and Cox proportional hazards model and Wald
test were used to assess association of GEMM Kras signature with outcome
variables. Cox proportional hazards model was used also for multivariable
model. Survival times were cut at 84 months.

Gene expression data
All gene expression data can be found at the Gene Expression Omnibus
(www.ncbi.nlm.nih.gov/geo/) under accession number GSE50794.
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