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Introduction
Obesity is characterized by excess body fat, which is predominantly
stored in adipose tissue. The prevalence of obesity and its associated
co-morbidities – including non-alcoholic fatty liver disease
(NAFLD), type 2 diabetes and cardiovascular disease – has steadily
increased over the last 40-50 years, highlighting the pathogenic
relevance of an obesogenic environment (Catenacci et al., 2009).
Because obesity, insulin resistance, diabetes, dyslipidaemia and fatty
liver tend to co-occur in the same individual, it has been useful to
refer to this cluster of manifestations as ‘metabolic syndrome’. The
clustering of these pathologies is not considered a random event:
rather, they probably have common pathogenic mechanisms. As
our information technology becomes more sophisticated and
patient epidemiological data are better integrated, our
understanding of metabolic syndrome is becoming progressively
enriched. In particular, it is now clear that there is a high prevalence
of metabolic disturbances in individuals with schizophrenia and
other psychotic disorders (Saarni et al., 2009; Suvisaari et al., 2007).
Thus, the pathogenic mechanisms involved in metabolic syndrome
might also contribute to the development and/or acceleration of
these psychiatric disorders (although the converse could also be
true).

Complex diseases have an undeniably strong genetic component.
For example, heritability is estimated at 40% or more for metabolic
syndrome (Lusis et al., 2008) and 65% or more for schizophrenia

(Lichtenstein et al., 2009). Despite this, it is becoming increasingly
evident that current approaches used to study genetic associations
with disease traits explain only a small fraction of the known disease
heritability (Maher, 2008). According to a systems biology view,
most of the genetic component of complex disease susceptibility
is not individual genes, but in their interactions with other genes
and with the environment (Tang et al., 2009). In this context, the
measurement of traits that are modulated but not encoded by the
DNA sequence – commonly referred to as intermediate phenotypes
(Meyer-Lindenberg and Weinberger, 2006) – is of particular
interest.

Changes in the concentration of specific groups of metabolites
(small molecules generated in the process of metabolism) are
sensitive and specific to pathologically relevant factors such as
genetic variation (Illig et al., 2010), diet (Holmes et al., 2008),
development (Nikkilä et al., 2008), age (Maeba et al., 2007), immune
system status (Oresic et al., 2008b) and gut microbiota (Martin et
al., 2007; Velagapudi et al., 2010). Although the importance of
studying metabolites in the context of health and disease was
recognized decades ago (Pauling et al., 1971), analytical tools were
not previously available to study metabolites comprehensively. This
has changed over the past decade, with several important advances
in analytical and bioinformatics technologies that enable the
sensitive and comprehensive measurement of metabolites in
biological systems (Goodacre et al., 2004; Katajamaa and Oresic,
2007). Thus, metabolomics – the global study of metabolites – has
rapidly emerged as a powerful tool for characterizing complex
phenotypes and identifying biomarkers of specific physiological
responses (Oresic et al., 2006). Notably, the metabolome is sensitive
to both genetic and environmental factors, which makes
metabolomics a powerful phenotyping tool for personalized
medicine.

This article provides a brief overview of recent advances in
metabolomics as applied to biomarker discovery and the elucidation
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Primary obesity and psychotic disorders are similar with respect to the associated changes in energy balance and co-
morbidities, including metabolic syndrome. Such similarities do not necessarily demonstrate causal links, but instead
suggest that specific causes of and metabolic disturbances associated with obesity play a pathogenic role in the
development of co-morbid disorders, potentially even before obesity develops. Metabolomics – the systematic study of
metabolites, which are small molecules generated by the process of metabolism – has been important in elucidating
the pathways underlying obesity-associated co-morbidities. This review covers how recent metabolomic studies have
advanced biomarker discovery and the elucidation of mechanisms underlying obesity and its co-morbidities, with a
specific focus on metabolic syndrome and psychotic disorders. The importance of identifying metabolic markers of
disease-associated intermediate phenotypes – traits modulated but not encoded by the DNA sequence – is
emphasized. Such markers would be applicable as diagnostic tools in a personalized healthcare setting and might also
open up novel therapeutic avenues.

D
ise

as
e 

M
od

el
s &

 M
ec

ha
ni

sm
s  

    
   D

M
M



Disease Models & Mechanisms 615

Metabolomics of obesity COMMENTARY

of mechanisms underlying obesity and its co-morbidities, with
specific emphasis on metabolic syndrome and psychotic disorders.

Assessing individuals versus populations
It is thought that metabolic dysfunction can arise in part from
lipotoxicity caused by lipid intake that exceeds what an individual’s
adipose tissue can store (Unger, 1997; Virtue and Vidal-Puig,
2010). The capacity of adipose tissue to store lipids depends on
genetic and environmental factors. There is convincing evidence
from epidemiological studies that there is a near-linear relationship
between body weight (i.e. lipid storage) and insulin resistance.
However, such an association might be due to the ‘averaging effect’
of a population-wide analysis. The adipose tissue expandability
hypothesis suggests that, for each individual, there is a threshold
for body weight that depends on the capacity of that individual’s
adipose tissue to store lipids (Virtue and Vidal-Puig, 2008).
Exceeding this body weight threshold is accompanied by a notable
decrease in insulin sensitivity due to an overload of lipids and their
flux to other peripheral organs. According to this hypothesis, the
increase in body weight would still linearly associate with insulin
sensitivity, on average. However, the information about each
individual’s adipose tissue expandability threshold is lost in a
population-wide analysis.

Traditionally, molecular biomarkers such as those obtained by
metabolomics have been associated with specific clinical end-points
in epidemiological studies. Such markers can perform statistically
well in large population settings but, as explained above, might hold
little value when applied to individuals. Instead, biomarkers should
be sensitive to the organ-specific genetic vulnerability and to
specific pathophysiological mechanisms leading to obesity-related
complications. For example, a biomarker that is sensitive to the
metabolic status of adipose tissue could be used to identify
individuals whose adipocytes are close to reaching lipid storage
capacity – and who are therefore at risk of developing insulin
resistance owing to increased body weight. Finding such biomarkers
would provide powerful tools for detecting persons at risk much
earlier than is currently possible, and would enhance personalized
healthcare.

The lipidome in health and disease
Sensitive platforms for global and quantitative studies of lipids from
the cellular to organism level have been lacking. Recently, however,
‘lipidomics’ has emerged as a discipline closely related to
metabolomics; this approach globally assesses lipidomes,
comprising pathways and networks of cellular lipids in biological
systems (Oresic et al., 2008a). Lipids are a diverse group of essential
metabolites with many key biological functions, such as acting as
structural components of cell membranes, energy storage sources
and intermediates in signalling pathways. Lipids are under tight
homeostatic control (Oresic et al., 2008a), and exhibit spatial and
dynamic complexity at multiple levels. It is thus not surprising that
altered lipid metabolism has a global reach as a pathogenic
mechanism and is involved in diabetes and lipotoxicity-induced
insulin resistance (Medina-Gomez et al., 2007; Medina-Gomez et
al., 2009; Unger, 1997), Alzheimer’s disease (Han et al., 2001; Oresic
et al., 2011a), schizophrenia (Kaddurah-Daouk et al., 2007; Oresic
et al., 2012; Oresic et al., 2011b; Schwarz et al., 2008), cancer (Hilvo
et al., 2011) and atherosclerosis (Lusis, 2000).

Lipidomics is considered one of the key technologies for
studying metabolic disorders. For example, lipotoxicity is
characterized by the overproduction of reactive (lipo)toxic lipids
such as ceramides and diacylglycerols in peripheral organs. This
occurs owing to increased flux of fatty acids from the adipose
tissue – i.e. because an individual’s capacity to store fat in their
adipose tissue has been exceeded (Virtue and Vidal-Puig, 2010).
When characterizing the lipid profiles of metabolic organs such
as liver or muscle, it is therefore not sufficient to measure the
amount of lipids in these organs; it is necessary also to consider
the quality of lipids – that is, to investigate the detailed molecular
composition of lipids in the tissue. Such information can be
obtained by lipidomics.

Detecting early markers of metabolic disorders
Determining the metabolic profiles associated with obesity and its
metabolic co-morbidities is an active area of research. For example,
a large-scale metabolomics study of the Relationship Between
Insulin Sensitivity and Cardiovascular Disease (RISC) cohort
identified -hydroxybutyrate as an early marker of insulin resistance
(Gall et al., 2010). Several other studies also linked increased
concentrations of branched-chain amino acids in the circulation
with insulin resistance and risk of diabetes mellitus (Newgard et
al., 2009; Pietiläinen et al., 2008; Wang et al., 2011). Lipidomic
studies have also revealed that triglycerides with lower carbon
number and double-bond content are associated with insulin
resistance (Kotronen et al., 2009b), high liver fat (Kotronen et al.,
2009a; Westerbacka et al., 2010) and diabetes risk (Rhee et al., 2011).

Because monozygotic twins share the same DNA and
upbringing, the contribution of genetic and early environmental
factors to adult body mass and related phenotypes is accounted for
in metabolic studies involving twins. Recently, we applied mass-
spectrometry-based lipidomics to study fat tissue biopsies of
several sets of monozygotic twins (Pietiläinen et al., 2011). The twin
pairs were discordant for body weight – i.e. in each twin pair, one
was obese but metabolically compensated (i.e. ‘healthy obese’) and
the other was of normal weight. Unexpectedly, the obese twins had
higher amounts of membrane lipids containing polyunsaturated
fatty acids in adipose tissues than did non-obese twins, despite
having lower amounts of polyunsaturated fatty acids in their diets.
To investigate whether the observed differential membrane lipid
composition affected the physical properties of membranes, such
as fluidity and thickness, we used comprehensive molecular
dynamics simulations to model lipidomics data. This analysis
indicated that the lipids in the membranes of the obese twins
balanced each other such that overall membrane fluidity was
unaffected. Thus, membrane lipid remodelling in obese individuals
might be an adaptation that serves to maintain membrane function
in expanding cells (Fig. 1). A network analysis on combined
genomic, clinical and lipidomic data identified ELOVL6, encoding
a fatty acid elongase, as a network hub involved in fatty acid
remodelling in the lipid membranes from obese twins. Follow-up
studies in an adipocyte cell line showed that silencing of ELOVL6
expression prevented the maintenance of adaptive membrane
lipids that was observed in obese twins. Lipidomic analyses of
another cohort of morbidly obese individuals showed that this
adaptation mechanism breaks down in the morbidly obese
(Pietiläinen et al., 2011).
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Notably, the types of lipids that accumulated in the membranes
of adipocytes in the obese twins are precursors of pro-inflammatory
lipid mediators such as leukotrienes and prostaglandins (Murphy,
2001). Thus, although membrane lipid remodelling in metabolically
compensated obese individuals might help to maintain normal
membrane function, it might also make the adipose tissue more
vulnerable to inflammation. These findings might explain why
obese individuals are at higher risk of developing inflammatory
disorders such as diabetes mellitus.

The results from this twin study suggest that membranes of
adipocytes hold clues about the early pathophysiological processes
of obesity-associated co-morbidities. Measurement of adipose
tissue membrane lipids, or their correlates in blood, as an
intermediate phenotype could therefore provide powerful early
markers. The study also suggests that new opportunities might arise
for the prevention or treatment of obesity-related metabolic
complications if it were possible to modulate the adipose tissue
lipid network to regulate membrane functional maintenance and/or
the vulnerability to inflammation.

The liver is another key metabolic organ that is known to be
associated with diabetes risk. NAFLD, leading to chronic liver
disease and liver failure, is characterized by deposits of fat in the
liver, mainly in the form of triglycerides. The prevalence of NAFLD
in adults in the United States doubled from 5.51% to 11.01%
between 1988 and 2008, and could reach epidemic proportions if
the current rates of obesity and diabetes continue to escalate
(Younossi et al., 2011). Furthermore, liver fat is a major determinant
of metabolic syndrome (Cohen et al., 2011; Kotronen and Yki-
Järvinen, 2008; Van Gaal et al., 2006).

Liver fat is usually determined by histology or estimated by
magnetic resonance spectroscopy. The former method is highly
invasive, requiring a liver biopsy, so is only applied in chronic liver
conditions, whereas the latter method is too expensive for
healthcare screening purposes. A non-invasive test that could be
widely applied in a healthcare setting is not available, so there is
an urgent need to identify molecular markers that are present in

the blood that reflect the amount of fat in the liver with high
sensitivity. Encouragingly, preliminary lipidomic and metabolomic
studies have already provided hope that reliable biomarkers
associated with NAFLD might soon be uncovered (Barr et al., 2010;
Puri et al., 2007).

Assessing obesity co-morbidities beyond metabolic
syndrome
Epidemiological studies have shown that obesity is associated with
a higher risk of developing many diseases other than diabetes,
including several cancers (Møller et al., 1994), Alzheimer’s disease
(Kivipelto et al., 2005) and certain psychotic disorders (Saarni et
al., 2009; Suvisaari et al., 2007). These associations do not imply
direct causal links between diseases, but instead suggest that the
causes of and metabolic disturbances associated with obesity might
also play a pathogenic role in the development of co-morbidities,
potentially before obesity develops. Identification of the key
metabolic disturbances might help to predict disease and point to
novel preventive or therapeutic avenues. For example, in a recent
study of lipidomic profiles in breast cancer tissue, we identified
specific phospholipids related to cellular fatty acid synthesis (Hilvo
et al., 2011); these results highlighted the same pathways that were
differentially affected in obese twins (Pietiläinen et al., 2011). In
individuals with breast cancer, these phospholipids were associated
with cancer progression and patient survival. Our follow-up studies
in cancer cell lines, which included silencing of multiple genes
involved in the regulation of phospholipid metabolism, identified
multiple genes behind the lipid changes observed in human
tumours (Hilvo et al., 2011). The findings of this study confirm the
diagnostic potential of phospholipids and demonstrate that
modulation of phospholipid metabolism might lead to new
therapeutic opportunities in breast cancer treatment.

The association between obesity and psychotic disorders is
another domain of increasing research interest (Kaidanovich-
Beilin et al., 2012). Psychotic disorders are mental disorders
characterized by impaired reality testing or reality distortion.
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Fig. 1. A model for physiological regulation of lipid membrane composition in obesity. In healthy obesity, lipid membranes adapt as adipocytes expand in
size. Given that adaptation seems to involve a relative increase in precursors of pro-inflammatory mediators, adaptation might increase vulnerability to
inflammation. MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid. Reproduced with permission (Pietiläinen et al.,
2011).
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Psychotic symptoms include delusions, hallucinations, disorganized
speech, and bizarre or catatonic behaviour. The incidence of
psychotic disorders peaks in young adulthood (Suvisaari et al.,
1999), a period of development when significant changes in fatty
acid composition occur in the cerebral cortex due to axonal

myelination. Lifetime prevalence of these disorders is 3.5%, and the
most common is schizophrenia, which has a lifetime prevalence of
~1% (Perälä et al., 2007).

It has been suggested that unhealthy lifestyle and
pharmacological side effects are the main causes of excess morbidity

A

 

B

 

C

Fig. 2. Results of using systems
approaches to study metabolic aspects
of psychotic disorders. (A)Dependency
network in schizophrenia and other
psychotic disorders, in the context of other
environmental, metabolic and drug-use
data (Oresic et al., 2011b). Node shapes
represent different types of variables and
platforms, node colour corresponds to
significance and direction of regulation
(schizophrenia vs controls), and line width
is proportional to strength of dependency.
The two metabolic variables that are
directly linked with schizophrenia (insulin
and LC9), and two other metabolic network
hubs (MC5 and MC3), are highlighted with
green outlines. BDI, Beck Depression
Inventory (Beck et al., 1961); BMI, body
mass index; Chol, cholesterol; CRP, C-
reactive protein; DiastBP, diastolic blood
pressure; GGT, -glutamyltransferase;
HOMA-IR, homeostatic model assessment
index; LC, lipid cluster; MC, metabolite
cluster; NIDDM, non-insulin-dependent
diabetes mellitus; ONAP, other nonaffective
psychosis; SystBP, systolic blood pressure;
TG, total triglycerides; Tot, total.
Reproduced with permission (Oresic et al.,
2011b). (B)Receiver operating characteristic
(ROC) curve for a diagnostic model of
schizophrenia. ROC curve is a plot of the
true-positive rate (sensitivity) against the
false-positive rate (1 – specificity) for the
different possible cut-points of a diagnostic
test. A random estimate would give a point
along a diagonal line (shown as a
reference). The diagnostic model shown
uses only concentrations of proline and
triglyceride TG(18:1/18:0/18:1) to
discriminate between schizophrenia and
other psychoses (Oresic et al., 2011b). The
key model performance parameters and
their 90% confidence intervals are also
shown: AUC, area under the ROC curve; OR,
odds ratio (Inf, infinity); RR, relative risk.
Reproduced with permission (Oresic et al.,
2011b). (C)Associations between cortical
grey matter distribution (four images show
four different sections of the brain) and
serum triglyceride levels, based on
integrative analysis of MRI and plasma
lipidomics in all twins participating in the
study (Oresic et al., 2012). Brain regions in
which cortical grey matter density is
significantly negatively correlated with
serum triglyceride levels are shown in red
or white (see key). Reproduced with
permission (Oresic et al., 2012).
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and mortality in individuals with psychotic disorders. Among these
individuals, those with negative symptoms (i.e. with deficits in
normal emotional responses or other thought processes) are more
prone to being overweight and to developing metabolic syndrome.
These individuals also have less healthy and more sedentary
lifestyles, which might induce increased cardiovascular morbidity
(Arango et al., 2011). A confounding issue is that the use of
antipsychotic drugs, especially second-generation drugs, has been
consistently associated with weight gain, insulin resistance and
development of metabolic syndrome (Correll et al., 2011). For
example, after only 6 months of treatment with some second-
generation antipsychotics, the percentage of previously drug-naïve,
first-episode adolescent patients who are at risk of developing
metabolic syndrome rises from 17% to 40% (Fraguas et al., 2008).
Kaddurah-Daouk et al. examined the effects of antipsychotic
medication on the serum lipidome, and found significant changes
in lipid metabolism after just 2-3 weeks (Kaddurah-Daouk et al.,
2007). In line with these findings, gene expression studies found
that antipsychotics strongly activate genes involved in lipid
homeostasis (Fernø et al., 2005). This suggests that these
psychotropic drugs target central nervous system neurons that also
regulate mechanisms controlling energy balance and associated
metabolic alterations.

Nevertheless, other evidence suggests that metabolic disruptions
occur in individuals with psychotic disorders independently of drug
effects. Studies from the pre-antipsychotic era of people with
schizophrenia showed that the prevalence of diabetes or glucose
intolerance was higher in patients than in controls (Henneman et
al., 1954). A more recent study showed that abnormal glucose
tolerance, hyperinsulinaemia and accumulation of visceral fat are
already exhibited during the first episode, in drug-naïve patients,
prior to antipsychotic treatment and independently of obesity
(Kirkpatrick et al., 2012). Furthermore, unaffected first-degree
relatives of people with schizophrenia have high rates of diabetes
(19-30%, compared with 1.2-6.3% in the general population)
(Mukherjee et al., 1989). Recent genetic studies have detected genes
that increase the risk of both schizophrenia and diabetes (Hansen
et al., 2011). Interestingly, it has been recently shown that
endocannabinoids – a class of endogenous lipid-derived mediators
that activate cannabinoid receptors – are involved in the regulation
of energy conservation via signalling through cannabinoid receptors
in the forebrain (DiPatrizio and Piomelli, 2012; Jung et al., 2012);
notably, this brain region is crucially involved in the development
of schizophrenia (Teffer and Semendeferi, 2012). Together, these
observations suggest that metabolic disturbances associated with
obesity also contribute to the pathogenesis of psychotic disease,
and that metabolic status should be investigated as an intermediate
phenotype in psychotic disorders.

Metabolomic studies have also highlighted the significance of
glucoregulatory processes (Guest et al., 2010) and lipid
abnormalities (Schwarz et al., 2008) in psychotic disorders,
particularly in schizophrenia. Interestingly, some of the
disturbances in glucoregulatory processes in first-episode psychosis
seem to improve after the initiation of antipsychotic medication
(Holmes et al., 2006). Lipid abnormalities in the brain that are
observed in schizophrenia include alterations in free fatty acids and
phosphatidylcholine in grey and white matter, and an increase in
ceramides in white matter (Schwarz et al., 2008). Our recent

metabolomics investigation including individuals with
schizophrenia, other nonaffective psychosis (ONAP) or affective
psychosis indicated that schizophrenia is associated with elevated
serum levels of specific triglycerides, hyperinsulinaemia and
upregulation of the serum amino acid proline (Oresic et al., 2011b).
Using a network approach, we combined metabolic profiles with
other clinical and lifestyle data (Fig. 2A) to create a diagnostic model
that discriminated schizophrenia from other psychoses (Fig. 2B).
In addition, in a recent lipidomic study of twin pairs discordant for
schizophrenia, we found that the schizophrenic twins had higher
triglycerides and were more insulin resistant than the healthy twins
(Oresic et al., 2012). In the same study, integrative analysis of
magnetic resonance imaging (MRI) and lipidomic data revealed
significant associations between decreased grey matter density and
elevated triglycerides in plasma (Fig. 2C). Finally, a recent study by
Yang et al. found that several fatty acids and ketone bodies were
elevated in the serum and urine of individuals with schizophrenia
(Yang et al., 2011). These changes were similar in first-episode and
chronic patients. These studies illustrate the power of network
analyses and metabolomics for dissecting complex disease-related
metabolic pathways, and for identifying candidate diagnostic and
prognostic markers in psychiatric research.

Conclusions
There is an urgent need to identify molecular markers that will
enable early detection of the pathophysiological processes leading
to the co-morbidities of obesity. Although epidemiological studies
detect associations between specific disease risk factors at a
population level, more focus is needed on identifying and
understanding disease-associated intermediate phenotypes and
their markers in individuals. Markers of relevant intermediate
phenotypes would be more applicable in personalized healthcare
settings than are disease-associated risk factors acquired from
population-wide screening because they could detect the presence
of a specific disease-related pathophysiological process occurring
in an individual. Furthermore, clarifying intermediate phenotypes
and their markers might lead to novel therapeutic and diagnostic
strategies for obesity-associated co-morbidities, including diabetes,
as well as other diseases, including cancer, Alzheimer’s disease and
psychiatric disorders.

This article is part of a special issue on obesity: see related 
articles in Vol. 5, issue 5 of Dis. Model. Mech. at
http://dmm.biologists.org/content/5/5.toc.
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