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ABSTRACT
Obesity is a disease characterized by chronic low-grade systemic
inflammation and has been causally linked to the development of 13
cancer types. Several studies have been undertaken to determine
whether tumors evolving in obese environments adapt differential
interactions with immune cells and whether this can be connected to
disease outcome. Most of these studies have been limited to single-
cell lines and tumor models and analysis of limited immune cell
populations. Given the multicellular complexity of the immune system
and its dysregulation in obesity, we applied high-dimensional
suspension mass cytometry to investigate how obesity affects tumor
immunity. We used a 36-marker immune-focused mass cytometry
panel to interrogate the immune landscape of orthotopic syngeneic
mouse models of pancreatic and breast cancer. Unanchored batch
correction was implemented to enable simultaneous analysis of tumor
cohorts to uncover the immunotypes of each cancer model and
reveal remarkably model-specific immune regulation. In the E0771
breast cancer model, we demonstrate an important link to obesity with
an increase in two T-cell-suppressive cell types and a decrease in
CD8 T cells.
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INTRODUCTION
Obesity is a risk factor for at least 13 types of cancer including breast
and pancreatic cancer (Genkinger et al., 2011; Pierobon and
Frankenfeld, 2013; Renehan et al., 2015; Picon-Ruiz et al., 2017). In
addition to being associated with risk of cancer, obesity correlates
with worse prognosis and higher mortality rates among breast and
pancreatic cancer patients (Yuan et al., 2013; Choi et al., 2016; Chan
andNorat, 2015; Calle et al., 2003; Chan et al., 2014). Themechanisms
by which obesity contributes to cancer development and outcome are
currently incompletely understood (Donohoe et al., 2017). Obesity
leads to local and systemic inflammation and immune system
dysregulation, characterized by increased levels of pro-inflammatory

cytokines and pro-inflammatory and immunosuppressive immune cells
(Apostolopoulos et al., 2016). Specific obesity-induced changes
include increased abundance of immunosuppressive myeloid-derived
suppressor cells (MDSCs), pro-inflammatory M1 and metabolically
activated macrophages, and associated crown-like structures found in
obese adipose tissue (Coats et al., 2017; Kratz et al., 2014; Pawelec
et al., 2019; Hale et al., 2015;Weisberg et al., 2003; Tiwari et al., 2019;
Xu et al., 2003). Breast and pancreatic tumors are likely to be impacted
by the local and systemic effects of obesity because these tumors
develop in close proximity to mammary and omental adipose tissue,
respectively.

Immunocompetent models of obesity and cancer are necessary to
study immune changes in cancer in the obese environment. The
C57Bl/6 mouse strain has been shown to have an obese phenotype
when fed a high-fat diet (HFD), including increased body mass,
elevated blood sugar levels and insulin resistance (Tiwari et al.,
2019; Coats et al., 2017). When paired with such diet-induced
obesity (DIO), syngeneic tumor cell lines can be used to study
cancer-associated immune system changes during obesity.
Increased tumor incidence and accelerated tumor growth have
been demonstrated in multiple obese murine models (Incio et al.,
2016a; Khasawneh et al., 2009; Tiwari et al., 2019; Cranford et al.,
2019; Wang et al., 2019; Chung et al., 2020; Qureshi et al., 2020;
Incio et al., 2016b). However, the immune cell compartment of the
tumor microenvironment and its possible impact on obesity-
induced tumors has not been systematically characterized at the
single-cell level.

Cancer progression is an evolutionary process in which the
fitness of cancer cells is dependent on reciprocal interactions
between tumor-intrinsic and -extrinsic factors, including immune
cells. In particular, CD8 T cells are central to tumor immunity, and
tumor-infiltrating CD8 T cells are associated with increased patient
survival (Martínez-Lostao et al., 2015; Liu et al., 2012; Mahmoud
et al., 2012). In the tumor microenvironment, MDSCs possess
strong T-cell-suppressive capacity, inhibiting T-cell function and
proliferation (Bronte et al., 2016; Parker et al., 2015). Tumor-
associated macrophages with the often oversimplified M1/M2
characterization – along with T cells, natural killer (NK) cells,
dendritic cells (DCs), B cells and eosinophils – have complex and
often inconsistent functions in cancer (Gonzalez et al., 2018;
Varricchi et al., 2017; Wylie et al., 2019; Noy and Pollard, 2014).

Because of this intricate immune cell composition, conventional
methods fail to reach the number of parameters required to profile
the tumor immune microenvironment. High-dimensional single-
cell approaches, such as mass cytometry, enable the simultaneous
characterization of these varied cell types with multi-dimensional
resolution.

Suspension mass cytometry (CyTOF) analysis of dissociated
tumors can detect the multiple immune cell subsets required for an
in-depth tumor immunotyping, but these datasets tend to be large
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and time consuming to collect. It is common to have datasets in
multiple batches that are prepared, stained and collected on different
days, owing to the length of time needed to process and stain the
samples and subsequently collect the data. Palladium-based metal
barcoding of up to 20 samples has allowed for simultaneous
collection of multiple samples without run/batch differences
(Zunder et al., 2015). This is a great improvement; however,
many studies are composed of more than 20 samples. Therefore, it is
common to end up with data in multiple batches that need to be
compared. Having a common, or anchor, sample used in every batch
can assist in the removal of batch effects but is not always available.
Here, we have implemented a robust mass cytometry analysis

pipeline to correct for batch effects between unanchored batches with
multistep clustering to maximize phenotyping and minimize bias. We
have immunophenotyped tumor immune infiltrate from two syngeneic
pancreatic and three syngeneic breast cancer models and present the
data as an immunotype atlas containing 21 immune cell metaclusters
present across the five tumor models. Additionally, we report

immunotyping of tumors grown in obese mice for all five models.
Our findings demonstrate that the tumor immune infiltrate composition
is highly model and cancer type specific. One model, E0771 tumors,
had significant immune cell differences between lean and obese mice.
This breast cancer model showed an increase inG-MDSCs and PD-L1+

(also known as CD274+) DCs and a decrease in CD8 T cells in tumors
from obese mice, making it a clinically relevant model (Jin and Hu,
2020; Mahmoud et al., 2012; Mahmoud et al., 2011).

RESULTS
Tumor immune infiltrating cells identified for seven CyTOF
batches from obese and non-obese mice
To mimic an obese environment, both male and female C57Bl/6
wild-type (WT) mice were fed HFD or chow for 10 weeks prior to
orthotopic transplantation of cancer cells (Fig. 1A). Higher body
weights were observed in the HFD-fed mice compared to the chow-
fed mice for males and females (Fig. 1B). Murine cancer cells were
then implanted orthotopically and tumors allowed to form while the

Fig. 1. Experimental design and analysis pipeline for mass cytometry data for immune infiltrate of seven CyTOF batches from five murine tumor
models. (A) Cartoon and timeline of experimental design, data collection, data preprocessing and analysis. For each batch, n=chow/HFD. E0771_1 (n=4/4),
E0771_2 (n=5/4), Wnt1 (n=6/6), TeLi (n=5/5), C11_1 (n=5/4), C11_2 (n=5/5), UN-KC (n=5/6). UND, uniform negative distribution. For B and C, each scatter dot
plot point is from a different animal (mean±s.d.). Unpaired Student’s t-tests were not adjusted, with s.d. assumed. (B) Representative mouse weights for
male (n=5/4) and female (n=5/4) C57Bl/6 mice on chow and HFD. Weights were collected at 16 weeks before tumor cell injection. (C) Tumor masses from the
seven batches for all experimental tumors run on CyTOF. An open square with ‘X’means that tumor was removed from further analysis due to poor viability in the
CyTOF dataset, fewer than 5000 live CD45+ cells. (D) Representative gating strategy for identifying live CD45+ tumor-infiltrating leukocytes. NA, nucleic
acid; marks DNA and RNA in nucleated cells. Cis, cisplatin; used as a membrane exclusion molecule for the viability assay. (E) Sankey plot visualization of
CD45+ live cells from total raw events collected for each experimental batch.
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mice were kept on their respective diets. To compile a model-
independent systematic analysis of the tumor immune effects of the
obese environment, we investigated five syngeneic cell line tumor
models in two cancer types (mammary adenocarcinoma: E0771,
TeLi and Wnt1; pancreatic ductal adenocarcinoma: C11 and UN-
KC; Table 1). Consistently, across the seven batches, tumors grown
in the obese environment displayed larger tumor mass than those
grown in non-obese environments (Fig. 1C).
Tumors grown in obese or non-obese environments were then

dissociated and immunophenotyped with a 36-marker immune-
focused panel (Table 2) and analyzed by Helios CyTOF mass
cytometry (Fig. 1A). Single-cell data from the five tumor models
were collected in seven individually barcoded batches (Fig. 1A),
allowing for samples in a single batch to be readily compared. Flow
cytometry standard (FCS) files were pre-processed, and live CD45+

(also known as PTPRC+) cells were gated separately for each batch
(Fig. 1A,D). For each experimental cohort, 2.6-13.2 million total raw
events were collected (see Table 3 for details). Tumor samples were
not enriched for immune cells in advance to avoid experimental bias,
and preliminary data indicated that the immune cells comprise ∼5%
of the total collected events. With this in mind, the goal was to collect
100,000 to 1 million events per barcoded sample. Because of the
lower percentage of target cells, the maximum number of barcodes
used for a single batch was limited to 14. The percentage of immune
cells per batch ended up ranging from ∼1% to 12% (Table 3). In all
tumor models, except TeLi, less than 5% of events collected were
gated as live CD45+ single cells (Fig. 1E).

Unanchored range-based batch correction enabled
successful co-analysis of CyTOF data from multiple
barcoded batches
Streamlined analysis between batches is limited by technical issues
such as staining intensity and machine variation (Leipold et al.,
2018; Leipold, 2015; Schuyler et al., 2019; Kleinsteuber et al.,
2016). To enable streamlined cross-analysis between tumor batches
and models, we tested three unanchored batch correction algorithms
available through Cydar (Lun et al., 2017). To test the robustness of
the batch correction, we combined our seven batches with two
additional batches of tumor immune cells from 4T1 syngeneic
tumors grown in BALB/c mice with a different cell history and
staining panel. We first tested batch correction using warp, quantile
and range batch correction approaches on the nine testing batches
with 18 shared markers (Fig. 1A, Table 4; Fig. S1). The need for
batch correction can be seen in the variable distribution of CD11b
(also known as Itgam) and F4/80 (also known as Adgre1) positivity
in the uncorrected plots (Fig. 2A; Fig. S1A). Pre-batch correction,
the CD11b signal is low for C11_1, Wnt1 and TeLi, and high for

both 4T1 batches. The signal intensity becomes more normalized
with warp and range batch correction applied. Quantile batch
correction, on the other hand, performed poorly and caused an
increase in noise and a distortion of the density distribution in the
samples, as indicated by the black arrows in Fig. S1A. This distortion
of the data is most clearly observed for Ly6-G, for which the need for
batch correction was minimal, as seen by the closely aligned peaks in
the uncorrected Ly6-G plot. Warp and range correction had similar
performance to each other and were therefore further evaluated with
the nine testing batches (Fig. 2A; Fig. S1B-D).

Dimensionality reduction was performed with the Cytobank
viSNE implementation of BH-tSNE (Kotecha et al., 2010; Amir
et al., 2013). Warp- and range-corrected datasets resulted in almost
identical viSNE maps when run together (Fig. S1B) and separately
with the same seed (Fig. S1C). The marker signal intensity varied
somewhat between warp- and range-corrected files run in the same
viSNE, but the cell placement on the viSNE map was almost
identical (Fig. S1B). This alignment of cell placement can also be
seen in the linear regression of the tSNE1 and tSNE2 channels
between warp and range (Fig. S1D). Although the warp correction
algorithm closely aligns the density peaks (Fig. S1A), it also added
distortion artefacts to the data. The warp correction distorted
the CD11c (also known as Itgax) signal in the TeLi plot, making the
signal higher than in the uncorrected data and higher than in the
other batches (Fig. 2A; Fig. S1C, black arrow). The range-corrected
plots showed a more consistent maximum intensity for CD11c. The
warp correction also resulted in an unexplained bunching artefact
for the E0771_2 plot, wherein the cells in the lower left of the map
were stacked in a small area (Fig. S1C, pink arrow). To make the
final determination between warp and range correction, the 4T1
batches were removed, the seven experimental batches were batch
corrected by warp and range methods for 35 markers, and the
density plots for key markers were evaluated (Fig. 2B). For several
markers, including F4/80 and CD3 (also known as Cd3e), the warp
correction created an artificial gap in the data around zero, as
indicated by the black arrows in Fig. 2B. Because of this and
previously mentioned warping artefacts, Cydar’s range correction
algorithm was chosen as the batch correction method for the seven
experimental batches. With successful batch correction, the data
from the five models could then be analyzed in concert and a
uniform analysis pipeline was implemented.

viSNE-based immunotyping revealed diverse myeloid and
lymphoid immune infiltrate across the tumor models
Having successfully batch corrected the experimental data, we next
moved onto the analysis pipeline, beginning with dimensionality
reduction using viSNE (Kotecha et al., 2010; Amir et al., 2013).

Table 1. Cancer models

Cell line/model Cancer type Model details Number of cells injected

E0771 Breast cancer Basal-like spontaneous murine tumor 1000
Wnt1 Breast cancer Wnt1 tumors were passaged in vivo with MMTV-Wnt1 cells derived from

tumors from MMTV-Wnt-1 transgenic mice (Li et al., 2000)
20,000

TeLi Breast cancer TeLi cell line was derived from culture dish-passaged MMTV-Wnt1 cells
in the Halberg laboratory

40,000

C11 Pancreatic cancer C11 (TR) cell line was derived from spontaneous tumors in KPC
(KrasLSL-G12D; Trp53f/f; Pdx1-Cre/+) mice

10,000

UN-KC Pancreatic cancer UN-KC-6141 (TR) was derived from tumors in KC (KrasG12D;Pdx1-Cre)
mice (Torres et al., 2013)

10,000

Tumor cells are syngeneic with C57Bl/6 mice and were orthotopically implanted into immunocompetent C57Bl/6 mice. E0771 cells and C11 cells were
additionally implanted into TKO mice. Breast cancer cells were injected into female mice and pancreatic cancer cells were injected into male mice.
TR, triple reporter-labeled.

3

RESOURCE ARTICLE Disease Models & Mechanisms (2021) 14, dmm048977. doi:10.1242/dmm.048977

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

http://dmm.biologists.org/lookup/doi/10.1242/dmm.048977.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.048977.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.048977.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.048977.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.048977.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.048977.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.048977.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.048977.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.048977.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.048977.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.048977.supplemental


First, 5206 live CD45+ immune cells from each of 57 experimental
files and ten control files from the seven batches were run together in
a single viSNE analysis with a final Kullback–Leibler (KL)
divergence of 4.75. Then, 26 phenotyping markers were used to
generate the viSNE map (see Table 2 for details). Cell density was
plotted onto the viSNE map to visualize the overall cell distribution
and heterogeneity of the tumor immune infiltrate (Fig. 3A,B). The
presence of the multiple density ‘islands’ indicates a successful
viSNE run and a diverse range of immune cells present across tumor
types and diet groups. When assessing density differences between
the plots, the largest differences appear to be between tumor models
rather than between diet groups (Fig. 3A).
To enable visualization of all the data in one plot, the files were

concatenated (Fig. 3B-F). Interrogating the viSNE map by marker
intensity revealed the top half (denoted by the pink line in the first plot

in Fig. 3C) to be dominated by areas of distinct myeloid marker
expression [CD11b, CD11c, F4/80, CD206 (also known as MRC1),
Ly6-G, Ly6-C,MHC-II and CD14], indicating a diverse myeloid cell
tumor infiltrate. Similarly, the bottom half of the map consists of
diverse lymphocyte populations, which can be identified by the
marker heats for CD19, CD3, CD8, CD4, GITR (also known as
Tnfrsf18), IL-7Ra (also known as IL7R) and NK1.1 (also known as
Klrb1c) (Fig. 3D). Cells can be further characterized by looking at the
marker expression for activation and exhaustion markers (Fig. 3E)
and additional phenotyping markers (Fig. 3F) on the viSNE map.

Cross-model immunophenotyping of tumor immune cell
metaclusters
We next wanted to identify and characterize the different immune
cell subsets to compare cell type abundances between tumor

Table 2. Panel of antibodies for mass cytometry staining

Isotope tag Target Notes/expression/lineage
Target
site

Dilution
factor Clone

Catalog
number

089Y CD45 Pan-leukocyte marker Surface 100 30F11 3089005B
141Pr Ly6-G (v,m) Myeloid lineage, G-MDSC Surface 400 1A8 3141008B
142Nd c-Cas3 Apoptosis marker IC 500 D3E9 3142004A
143Nd CD357/GITR (v,m) Activation marker for T cells Surface 100 DTA1 3143019B
144Nd MHC-I/H-2Db MHC-I on C57BL/6 Surface 600 28-14-8 3144016B
145Nd CD4 (v,m) T-helper cells Surface 100 RM45 3145002B
146Nd F4/80 (v,m) Macrophage marker Surface 200 BM8 3146008B
147Sm CD36/FAT (v,m) Scavenger receptor Surface 200 No. 72-1 3147013B
148Nd CD11b/Mac-1 (v,m) Macrophages and MDSCs Surface 500 M1/70 3148003B
149Sm CD19 (v,m) B cells Surface 100 6D5 3149002B
150Nd Ly6-C (v,m) Ly6-C+ monocytes, M-MDSCs Surface 200 HK1.4 3150010B
151Eu CD25/IL-2R (v) Tregs Surface 100 3C7 3151007B
152Sm CD3e (v,m) T cells Surface 100 1452C11 3152004B
153Eu CD274/PD-L1 (m) Ligand of PD-1 (marker of activation or exhaustion) Surface 400 10F.9G2 3153016B
154Sm CD73 (v,m) B cells, T cells and macrophages Surface 700 TY/11.8 3154019B
156Gd CD14 (v,m) LPS co-receptor on monocytes and macrophages Surface 100 Sa142 3156009B
158Gd CD9 (v) Cancer cells, eosinophils, activated T cells Surface 1000 KMC8 3158009B
159Tb CD279/PD-1 (m) Immune-inhibitory receptor on T cells, activation or

exhaustion
Surface 200 J43 3159023B

160Gd CD5 T cells and some B cells Surface 500 537.3 3160002B
161Dy CD40 (v,m) Mature B cells, DCs and M1-like macrophages Surface 200 HM403 3161020B
162Dy CD11c (v,m) Dendritic cells, NK cells and macrophages Surface 300 N418 3162017B
163Dy CD54/ICAM-1 (m) B cells, T cells, monocytes, macrophages, NK cells

and DCs
Surface 600 YN1/1.7.4 3163020B

164Dy Ly6-A/E/Sca-1 (v,m) Hematopoietic stem cells and activated T cells Surface 900 D7 3164005B
165Ho CD161/NK1.1 (v,m) NK cells and NK T cells Surface 100 PK136 3165018B
166Er CD326/EpCAM (v) Cell adhesion in inflammation and carcinogenesis Surface 300 G8.8 3166014B
167Er CD335/Nkp46 (v) NK cells Surface 100 29A1.4 3167008B
168Er CD8a (v,m) Cytotoxic T cells Surface 200 53-6.7 3168003B
169Tm CD206/MMR (v,m) Mannose receptor, M2-like macrophages IC/

surface
200 C068C2 3169021B

170Er CD169/Siglec-1 (v,m) Macrophage restricted Surface 300 3D6.112 3170018B
171Yb CD44 (v,m) Cell–cell interactions, adhesion, homing and migration Surface 1000 IM7 3171003B
172Yb CD86 (v,m) T-cell responses, binds CTLA-4 and CD28, M1-like

macrophages
Surface 200 GL1 3172016B

173Yb CD117/c-kit Mast cells and hematopoietic stem cells Surface 100 2B8 3173004B
174Yb CD223/LAG-3 T-cell activation and NK cells Surface 100 C9B7W 3174019B
175Lu CD127/IL-7Ra (v,m) Memory T cells Surface 100 A7R34 3175006B
176Yb CD278/ICOS (m) Activated T cells Surface 100 7E.17G9 3176014B
209Bi MHC-II/I-A/I-E (v,m) APCs Surface 1000 M5/

114.15.2
3209006B

Ir191/193 Nucleic acid Iridium DNA intercalator IC (201192B) 201192B
Pt196_Cis Membrane exclusion Cisplatin, cell viability stain IC (201064) 201064
Palladium Non-specific covalent BarCode kit, 102, 104:106, 108, 110 IC (201060) 201060

All compounds were purchased from Fluidigm. APC, antigen-presenting cell; DC, dendritic cell; IC, intracellular; LPS, lipopolysaccharide; MDSC,myeloid-derived
suppressor cell; NK, natural killer; Treg, regulatory T cell. ‘v’ indicates markers used as parameters when running viSNE and CITRUS; ‘m’ indicates markers
used as parameters when running MEM. IRF4-155Gd (IC) was not included in the Wnt1 batch and was therefore removed from analysis. The staining
intensity was low in the other stained batches.
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models. To perform this analysis with minimal bias and without
manual gating, we performed a series of clustering and curating
steps to establish 21 biologically meaningful metaclusters. tSNE1
and tSNE2 were used as the input parameters for SPADE-based
k-means clustering so that the results of the dimensionality
reduction would be preserved in the clusters (Qiu et al., 2011).
We used a k of 40 for this first step to capture the immune diversity
while reducing the possibility of under-clustering. The 40 clusters
were then manually curated to reduce obvious over-clustering by
combining clusters within small islands for G-MDSC and NK cells,
resulting in a total of 37 clusters. To phenotypically characterize the
37 clusters and to hierarchically cluster them into metaclusters, we
next used 26 markers to generate the marker enrichment modeling
(MEM) scores and to perform hierarchical clustering of the SPADE
clusters and markers based on their MEM scores (Fig. 4A, Table 2)
(https://github.com/cytolab/mem). MEM provides insight into how
a cluster is positively (yellow) or negatively (blue) enriched for a
specific marker compared to the other cells from the other clusters
(Diggins et al., 2017). The cluster dendrogram (left side of Fig. 4A)
was used to create 21metaclusters (Fig. 4B). TheMEMheat map and
scores, median heat map (Fig. S2A) and viSNE plots (Fig. 3B-E)
were subsequently used to identify and label the 21 metaclusters.

Automated clustering instead of manual gating within the CD45+

cells means that no cells were excluded or double counted and user
bias was minimized. The multistep clustering pipeline (k-means
clustering, followed by manual curation and then dendrogram
metaclustering) ensured accurate placement for each cell while
minimizing over- and under-clustering. CD11b, F4/80, MHC-II,
CD11c, Ly6-C, CD3 and GITR had the largest contribution to the
MEM hierarchical clustering, as determined by the marker
dendrogram at the top of Fig. 4A. These are bright markers present
on many cells with large expression differences between the clusters.
This analysis pipeline allowed us to confidently identify six
macrophage, six T-cell, four DC and two MDSC metaclusters, in
addition to B cells, NK cells and eosinophils. All samples were
represented in all 21 of the metaclusters. An overview of the mean
percentage metacluster abundance for the non-obese group in each
model is shown in the bubble graph in Fig. 4B, and immune cell
populations from the chow control groups in the different tumors are
displayed as pie charts in Fig. 4C. The concatenated metacluster data
were plotted onto the viSNE map for visualization (Fig. 4D).

Of the six macrophage metaclusters, MC8 was M2-like and MC2
was M1-like in phenotype. The CD206+ macrophages in MC8 were
also enriched for CD14 and CD169 and had decreased expression of
MHC-II. The M1-like CD11c+ macrophages (MC2) were more
abundant in pancreatic cancer models and in the Wnt1 breast cancer
model. TheM2-like macrophages (MC8) were more abundant in the
E0771 and TeLi models (Fig. 4B). The other macrophage subsets
are discussed below. The E0771 tumors had the largest abundance
of Sca-1+ (also known as Atxn1+) macrophages (MC9) with ∼10%,
whereas they were minimally observed in the other models. MC3
macrophages were especially enriched for F4/80, whereas MC13
macrophages had no strong identifying markers. TeLi tumor
infiltrate was dominated by macrophages, specifically from MC3
F4/80hi macrophages, with 73% of TeLi chow immune infiltrate
falling into the six-macrophage metaclusters (Fig. 4B,C). The other
tumor models had a more diverse immune infiltrate makeup
(Fig. 4B,C). MC14 was a small subset of Ly6-C+ macrophages,
with the greatest abundance in the E0771 and Wnt1 models. The
breast cancer tumor immune infiltrate was dominated by myeloid
cells, whereas pancreatic cancer tumor immune infiltrate was
dominated by T cells (Fig. S2B,C).

Of the six T-cell metaclusters, two were CD8+, two were CD4+

and two were double negative (DN). The CD8+ T-cell metaclusters
MC6 and MC7 were touching on the viSNE map and quite similar
in phenotype (Fig. 4A,B,D). MC6 contained Ly6-C+ and Sca-1+

CD8 T cells. MC6 and MC7 were most abundant in the pancreatic
tumor models, with C11 average chow infiltrate at 9% and 11% and

Table 3. CyTOF batches

Batch

Days of
tumor
growth

Non-obese
tumors
analyzed by
CyTOF

Obese
tumors
analyzed by
CyTOF

Total
barcoded
samples
including
controls

Total raw
FCS files
collected

Raw
data
size in
GB

Total raw
events

Total CD45+ cells
including
controls and low
count samples

Percentage of
CD45/total raw
events

E0771_1 31 4 4 9 7 4.27 5,479,930 180,207 3.3
E0771_2 23 5 4 10 9 2.05 2,636,328 100,935 3.8
TeLi 41 5 5 11 8 7.43 9,544,773 1,102,767 11.6
Wnt1 27 6 6 14 17 4.89 6,284,192 193,650 3.1
C11_1 31 5 4(1) 10 10 7.93 10,180,942 207,180 2.0
C11_2 32 5(3) 5(2) 11 5 4.92 6,319,718 54,317 0.9
UN-KC 26 5 6(2) 14 11 10.3 13,193,861 369,684 2.8

All batches were collected on the Helios CyTOF machine in the Flow Cytometry Core at the University of Bergen. 69 channels were collected for all batches
including the Helios Gaussian channels. Values in parentheses indicate the tumors with more than 5000 immune cells that were used for downstream analysis
when not all tumors could be analyzed.

Table 4. Common channels used for batch correction testing with
nine batches

Common antibody
targets between
panels

Mass tags for
main project

4T1 mass tags for
supplementary
data only

Mass tag
details

CD11b 148 154 sdc
CD11c 162 142 sdc
CD19 149 166 sdc
CD206 169 169 same
CD25 151 165 sdc
CD274 PD-L1 153 153 same
CD279 PD-1 159 148 sdc
CD335 Nkp46 167 167 same
CD3e 152 152 same
CD4 145 145 same
CD40 161 163 sdc
CD45 89 147 sdc
CD86 172 172 same
CD8a 168 146 sdc
F4/80 146 159 sdc
Ly6-C 150 162 sdc
Ly6-G 141 174 sdc*
MHC-II 209 209 same

same, antibody target on the same channel; sdc, shared antibody, different
channel. The asterisk indicates a different clone.
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UNKC chow infiltrate at 12% and 9%, respectively (Fig. 4). Both
CD8 T-cell subsets were present across tumor models and expressed
similar levels of PD-1 (Fig. 3E). The CD4 T cells fell into an
activated GITRhi subset (MC1) and an effector subset that was
GITRlow (MC15). The DN T-cell metaclusters were phenotypically
distinct on the viSNE map and in the MEM heatmap, with MC5
consisting of L6-C+ DN T cells and MC20 consisting of IL-7Ra+

DN T cells (Fig. 4A,B,D).
Four DC metaclusters were identified in the five tumor models.

DCs in the four metaclusters were CD11c+, F4/80−, CD206− and
CD14−. MC21 was composed of PD-L1+ DCs that were also
enriched in MHC-II, CD86, ICAM-1, IL7Ra and GITR (Fig. 4A;
Fig. S2A) (ten Broeke et al., 2013). MC21 was a small metacluster
with less than 1% abundance in most cohorts and the largest
abundance in E0771, which was less than 4% (Fig. 4B).
Plasmacytoid DCs (pDCs) (MC10) were the least abundant of the
DC metaclusters across all models, less than 2% for Wnt1 tumors

and less than 1% for all other models (Fig. 4B,C). An ICAM-1+ DC
metacluster (MC11) was the second-largest DC metacluster for the
Wnt1 model and the largest metacluster for the other four models.
Wnt1 had the most DCs of the tumor models, with DCs primarily
falling into MC16 and MC11. MC16 was composed of CD11b+

DCs and was the most abundant metacluster for the Wnt1 model,
with ∼8% for chow tumors.

MDSCs were subsetted into two metaclusters, G-MDSC (also
known as PMN-MDSC) in MC19 and M-MDSC in MC18. Both
cell types are CD11b+; G-MDSCs are Ly6-G+ and Ly6-Clow,
while M-MDSCs are Ly6-C+ and Ly6-G− (Bronte et al., 2016).
MDSCs are known suppressive cells, with G-MDSCs resembling
granulocytes and M-MDSCs resembling monocytes. The G-MDSCs
in MC19 were particularly abundant in the E0771 chow tumors
(Fig. 4B,C).

For the non-obese groups, this unbiased analysis highlights a
remarkable heterogeneity between the syngeneic models. The

Fig. 2. Batch correction algorithm testing. All plots were generated from normalized arcsinh-transformed live CD45+ cells. Transformed datasets were warp
and range corrected, resulting in three datasets, including the uncorrected (uncorr.) dataset. (A) Biaxial contour density plots from the nine testing batches
with 18 common markers. The files displayed are the first chow/control sample from each batch. The quadrant gate is shown to assist in visual comparison
between plots. (B) Cydar batch correction density plots of four representative markers, showing the third file from each of the seven experimental batches
with 36 common markers in total. Black arrows indicate a gap in the density near zero created by the warp correction algorithm.
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overall myeloid cell abundance was 50% or greater for the breast
cancer models and less than 40% for the pancreatic cancer models.
In the pancreatic tumor models, over 50% of the infiltrate was
T cells (Fig. 4C; Fig. S2C). A comparison of breast and pancreatic
cancer immune infiltrate for the non-obese groups revealed multiple
significant differences in metacluster abundance (Fig. S2B).
However, a limitation is that additional variables such as sex,
cancer cell line and tumor location have not been controlled for in
this analysis.

The obese microenvironment leads to model-specific
alterations in immune cell populations
Having defined 21 phenotypically relevant metaclusters, we next
asked whether an obese environment was associated with differential
abundance in immune cell types. Metacluster percentages out of total

tumor-infiltrating immune cells were plotted for chow and HFD
tumors for each model (Fig. 5A,B).

Surprisingly, the two Wnt1-driven mammary tumor models
(Wnt1 and TeLi) displayed no significant differences between chow
and HFD in tumor immune infiltrate (Fig. 5A). However, in the
E0771 breast cancer model, we observed significant differences in a
small PD-L1+ DC metacluster (MC21) and the large G-MDSC
metacluster (MC19), both showing increased abundance in HFD
(Fig. 5A). The E0771 tumors from obese mice contained the highest
percentage of G-MDSCs, which was significantly more than the
tumors from non-obese mice (Fig. 5A). Both CD8 T-cell
metaclusters (MC6 and MC7) were trending towards a decrease in
HFD (Fig. 5A). In the pancreatic cancer models, the obese tumor
microenvironment did not lead to any major alterations in the tumor
immune infiltrate.

Fig. 3. Immune infiltrate phenotyping using viSNE. All range-corrected experimental files were run together in the same viSNE run to generate one universal
viSNEmap. (A) Cell density on viSNE plots for concatenated experimental files for chowand HFD groups in each cohort. E0771 (n=9/8), Wnt1 (n=6/6), TeLi (n=5/
5), C11 (n=8/3), UN-KC (n=5/2). (B-F) The total concatenated data were used to generate viSNE plots (n=57). (B) Density plot of total concatenated cells.
(C-F) viSNE plots showing marker intensity on a spectrum heat scale. Heat scales are specific to individual markers. (C) Marker heat for key myeloid phenotypic
markers. The pink line on the CD11b plot indicates the phenotypic divide between myeloid and lymphoid cells. (D) Marker heat for key lymphocyte
phenotypic markers. (E) Marker heat for activation/exhaustion markers. (F) Marker heat for additional phenotyping markers.
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DIO led to an increased abundance of G-MDSCs and a
decrease in CD8 T cells in the E0771 triple-negative breast
cancer model
To further explore the connection between the obese microenvironment
and immune infiltrate in the E0771 model, we examined the ratio
between CD4 and CD8 T cells. This ratio has been used in peripheral

blood and tumor tissue as a measure of immune health (Das et al.,
2018). In breast cancer, an elevated CD4/CD8 ratio has been associated
with tumor progression and poor survival (Yang et al., 2017; Wang
et al., 2017). Here, we found that the CD4/CD8 ratio was higher in
tumors that evolved in obese compared to non-obese mice in the E0771
model (Fig. 6A). Further, the CD8 T-cell percentage out of the total

Fig. 4. Immune infiltrate metacluster characterization of murine breast and pancreatic cancers. (A) Hierarchical clustering of MEM scores for 37 curated
clusters and 26 markers. The dendrogram on the left was used to create 21 metaclusters. MEM scores and marker heat were used to label the metaclusters
(labels in B). n=57: E0771 (n=9/8), Wnt1 (n=6/6), TeLi (n=5/5), C11 (n=8/3), UN-KC (n=5/2). B and C show mean values for immune infiltrate metaclusters
form chow-fed mice; E0771 (n=9), Wnt1 (n=6), TeLi (n=5), C11 (n=8), UN-KC (n=5). (B) Bubble graph using area to show the mean percentage abundance
out of the total CD45+ cells for each metacluster for immune infiltrate of each chow-fed non-obese tumor type. (C) Pie charts showing mean percentage
abundance of the 21 metaclusters across the five models for the chow tumors. (D) Annotated viSNE map of concatenated data, showing the metaclusters
by number. The black line indicates the divide between myeloid and lymphoid lineage cells/clusters (n=57).
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T cells was significantly decreased in HFD tumors in the E0771 model
(Fig. 6B). We did not detect differences for the CD4 T-cell population
in the E0771 model (Fig. S3A). For E0771, the total T cells out of the
CD45+ cells were trending towards a decrease in HFD but the results
were not significant (Fig. S3B).
To independently validate the E0771 findings, we next ran a

CITRUS analysis on the E0771 cohort (Bruggner et al., 2014).
Consistently, the CITRUS SAM model found significant cell
abundance differences for the three groups described above:
G-MDSCs, CD8 T cells and MHC-IIhi DCs (Fig. 6C,D). A subset
of the significant clusters was mapped onto the viSNE map for cell
type identification and visualization (Fig. 6D). The abundance
differences were in the same direction as identified in the
metaclusters in Fig. 5A, with G-MDSC and MHC-IIhi

DCs increasing in HFD and CD8 T cells decreasing in HFD
(Fig. S3C). G-MDSCs have been reported to inhibit CD8 T-cell
function and proliferation (Youn and Gabrilovich, 2010). We thus
hypothesized that the increased G-MDSC population was inhibiting

CD8 T-cell effector function and proliferation, resulting in larger
tumors in the obese E0771 model.

To functionally test this, we implanted E0771 cancer cells into the
mammary gland of C57Bl/6 mice deficient in T, B and NK cells
[Rag2−/−::Cd47−/−::Il2rg−/−; triple knockout (TKO)] and
compared the tumor growth to tumors in WT C57Bl/6 mice.
Overall, the E0771 tumors grew faster in the TKO model. However,
interestingly, the tumor growth advantage observed in the obese
environment of WT mice was abrogated in the immune-deficient
environment in the TKO mice (Fig. 6E,F). Consistent with our
immune profiling, this suggests that E0771 cancer cells that evolve in
the obese environment have the ability to attract G-MDSCs to help
overcome T-cell cytotoxicity. This renders tumor growth independent
of T-cell infiltration in the obese state. In the non-obese state,
however, E0771 tumor growth is affected by cytotoxic T cells, and
tumor growth is therefore enhanced in the non-obese TKO mice. In
addition to the E0771model, we also performed the TKO experiment
in the C11 pancreas tumor model. Our immunotyping of this tumor

Fig. 5. Analysis and quantification
of metacluster abundance
differences between chowand HFD.
(A,B) Box and whisker plots with all
data points shown (mean, minimum to
maximum). (A) Box and whisker plots
comparing chow and HFD
metaclusters for the breast cancer
cohorts. Unpaired Student’s t-tests
were not adjusted, with s.d. assumed
between chow and HFD for individual
metacluster comparisons. Significant
P-values are shown. The blue ‘T’s
indicate P-values less than 0.07 that
are trending towards significance.
E0771 (n=9/8), Wnt1 (n=6/6), TeLi
(n=5/5). (B) Box and whisker plots for
pancreatic cancer cohorts. There were
too few HFD tumors with live immune
cells so statistics could not be
performed for those cohorts.
C11 (n=8/3), UN-KC (n=5/2).
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did not suggest any deregulated immune populations in HFD
(Fig. 5B). Consistently, the C11 tumor growth advantage in the obese
environment was sustained in the TKO model (Fig. 6G). Combined,
this demonstrates that, in the E0771 model, tumor evolution in obese
environments is linked to a functional differential immune interaction
and that such interaction is highly model dependent.

DISCUSSION
Here, we compared the tumor-infiltrating immune cell populations
from seven unanchored batch-corrected Helios CyTOF runs
collected from two different tumor types adapted to obese and
non-obese environments. The batches were then combined to form
five tumor models for in-depth immunotype analysis.
Although anchored batch correction is the new gold standard for

batch correction methods, there are many datasets that do not have
this luxury. Our unanchored batch correction implementation here
enabled the implementation of a single comprehensive analysis
pipeline and provides a path forward for the streamlined analysis of
other unanchored multi-batch mass cytometry datasets. Being able
to analyze datasets together provides a great advantage over
analyzing them in parallel. Batch-corrected datasets can be gated,
clustered, visualized and statistically analyzed in unison, making for
stronger conclusions. Application of unanchored batch correction
could allow for the meaningful re-analysis of previously collected
datasets that may have been set aside due to batch effects and lack of
anchor or reference samples.

The implementation of automated clustering approaches over
manual gating have introduced a shift in cell subset classification
rendering clustering less reliant on the +/− classification system
traditionally used for characterizing cell types (Misharin et al.,
2013; Zaynagetdinov et al., 2013). Cluster subsetting herein was
performed with dimensionality reduction and a multistep clustering
approach that minimized bias due to a lack of manual gating. For
example, CD11b+ DCs (seen in MC16) have typically been
described as F4/80 positive or negative (Misharin et al., 2013),
but because we used F4/80 to classify cells, F4/80+ cells are
separated from F4/80– cells. Here, F4/80+ cells were classified as
macrophages, eosinophils or M-MDSCs, and all of the DC subsets
were F4/80−.

Macrophages and DCs form a complex family of myeloid cells
with overlapping functions and phenotypes (Misharin et al., 2013).
Their highly plastic nature and tissue-specific phenotypes make
identification difficult (Leopold Wager and Wormley, 2014). We
chose to name the metaclusters with the most likely cell type based
on standard marker classifications and by the marker that most
distinguished them from the other metaclusters of that cell type.
Additionally, we included a wide range of phenotyping data in the
figures to act as a resource for others to identify cell types of interest
regardless of the name used to define them. This study identified
multiple tumor-infiltrating macrophage and DC subsets.

Macrophages, identified by high expression of CD11b, F4/80 and
MHC-II, fell into six metaclusters representing macrophages of

Fig. 6. CD8 T cells were decreased in the HFD DIO E0771 model of triple-negative breast cancer, and tumor growth advantage was lost when the T-cell
compartment was lost in the TKO model. (A,B) Box and whisker plots with all data points shown (mean, minimum to maximum). Unpaired Student’s
t-tests were not adjusted, with s.d. assumed between chow and HFD for individual cell subsets. E0771 (n=9/8), Wnt1 (n=6/6), TeLi (n=5/5), C11 (n=8/3), UN-KC
(n=5/2). (A) CD4/CD8 ratio for each tumor model. (B) Percentage of CD8 T cells of total T cells. (C) CITRUS SAM results for E0771 model. CITRUS clusters that
are significantly different between chow and HFD are not blue and are circled with a gray background (n=9/8). (D) Selected significant CITRUS clusters
were plotted back onto the viSNE map. Plotted clusters are color coded to match the CITRUS plot in C. viSNE data shown are concatenated data for the ten
CITRUS clusters and total cell numbers for the E0771 model. The black line indicates the divide between myeloid and lymphoid lineage cells/clusters. (E,F)
Tumor growth volume over time for E0771 WT (n=4/4; E) and E0771 TKO (n=5/5; F) cohorts (mean±s.d.). Unpaired Student’s t-tests were not adjusted, with s.d.
assumed. (G) Final tumor masses for C11 tumors grown in TKO mice, showing that the HFD tumor growth difference remains (n=5/5). The appropriate
comparison is to the C11 tumor masses for C11_1 and C11_2 batches shown in Fig. 1C. Data are graphed as scatter dot plots (mean±s.d.). Unpaired
Student’s t-test, with s.d. assumed.
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differing phenotypes and function. CD206 expression is associated
with an M2 or pro-tumor phenotype (Haque et al., 2019; Nawaz
et al., 2017). CD11chi macrophages (MC2) were phenotypically
similar to an M1, known to be an anti-tumor phenotype,
macrophage (Zhu et al., 2017; Gautier et al., 2012; Noy and
Pollard, 2014). The CD11chi macrophages were also high for
MHC-II, indicating an activated state (ten Broeke et al., 2013).
MC14 was composed of Ly6-C+ macrophages, which have been
described in the literature as playing a detrimental role in
multiple disease states (Gibbons et al., 2011; Kimball et al.,
2018). The Ly6-C+ macrophages may also represent newly
infiltrating monocytes, which may further differentiate into
other macrophage phenotypes (Noy and Pollard, 2014;
Movahedi et al., 2010; Rahman et al., 2017). Sca-1+

macrophages (MC9) were additionally enriched for ICAM-1
and PD-L1. ICAM-1 has been reported to have anti-tumor effects,
whereas PD-L1 is associated with T-cell inhibition with pro-tumor
effects (Yang et al., 2015; Han et al., 2020; Patsoukis et al., 2012).
Sca-1 expression is associated with stemness and a self-renewing
state (Walasek et al., 2013), making this macrophage phenotype
particularly complex. These six metaclusters reveal the complexity of
tumor-associated macrophages and quantify their contributions to the
tumor microenvironment.
It is interesting to note that the Wnt1 and TeLi immunotypes are

so different, with TeLi infiltrate being dominated by macrophages.
These models only differ by passaging method; Wnt1 cells are
passaged in vivo, whereas TeLi cells are Wnt1-derived cells that
have been established and passaged in vitro.
Surprisingly, this extensive and unbiased analysis did not reveal

any differences in tumor-infiltrating macrophage populations
between either breast or pancreas tumors grown in obese and non-
obese environments. This is in contrast to literature describing the
influx of macrophages in obese adipose tissue (Weisberg et al.,
2003). There is an assumption that increased macrophages in
adipose tissue will correspond to increased macrophages in tumors.
This has not been well documented and direct comparisons with the
literature are difficult to make. Tumor-infiltrating macrophage
increases are often determined by changes in gene or protein
expression and not at the single-cell level (Cranford et al., 2019).
The inclusion of different tumor models and their knockout
counterpart analyses also make it difficult to compare macrophage
abundance between obese and non-obese tumor microenvironments
(Incio et al., 2016b). It is possible that tumor-infiltrating
macrophage differences are not in abundance and that a more
macrophage-focused panel might reveal macrophage phenotypic
differences between the obese and non-obese setting.
DCs are major antigen presenters and good targets for anti-tumor

immunity therapy (Wculek et al., 2020). This mass cytometry study
was not specifically designed to subset DCs, but the analysis
pipeline still managed to identify and characterize four DC
metaclusters with distinct phenotypes. The MC21 DCs are
characterized by high PD-L1 positivity, indicating that this subset
is T-cell suppressive (Oh et al., 2020). Although the shift was small,
MC21 was significantly increased in the obese E0771 group. The
CD11b+ DCs found in MC16 are likely to be conventional cDC2
dendritic cells and are strong activators of CD4 T cells (Binnewies
et al., 2019). pDCs (MC10) are associated with tumor
aggressiveness and poor prognosis (Wylie et al., 2019). Although
they were present in all groups, there was no measurable difference
in abundance between the different groups, indicating that pDCs do
not play a major role in obesity-associated cancer. The addition of
CD103 to the panel would also enable the identification of cDC1

subsets, which are important for activating CD8 T cells and play a
large role in anti-tumor immunity (Wylie et al., 2019).

The published research on the cancer-obesity link is sizable and
growing. There are many different models and experimental designs
in use. One key feature of our experimental design is the live
cryopreservation of the tumor cells. This approach depletes the
neutrophils, enabling a definitive identification and characterization
of G-MDSCs (Graham-Pole et al., 1977; Kotsakis et al., 2012).
Neutrophils and G-MDSCs are almost phenotypically
indistinguishable by fluorescence flow and mass cytometry (Zilio
and Serafini, 2016; Zhou et al., 2017). Because neutrophils do not
survive the freeze-thaw process, CD11b+ Ly6-G+ cells in our
analysis are G-MDSCs and not neutrophils (Graham-Pole et al.,
1977; Kotsakis et al., 2012). Some G-MDSCswere likely lost due to
the freeze-thaw process; however, the cell loss remained
comparable across samples (Trellakis et al., 2013).

The multistep clustering pipeline provides useful insight into the
phenotypic relatedness of these cell types. Owing to differing Ly6-
G expression, G-MDSCs (MC19) and M-MDSCs (MC18) are quite
distant on the viSNE map. The strong Ly6-G staining on the
G-MDSC population contributed to those cells being placed in a
separate viSNE island for that metacluster. The similarity of
expression for the other markers (mainly CD11b and Ly6-C)
resulted in the MDSC metaclusters being very close in the
hierarchical clustering. With the data available here, it would be a
mistake to combine the MDSC subsets into a single metacluster.
The metacluster spacing on the viSNE map makes it clear that they
are distinct populations of cells, which is consistent with the
literature; however, a less-stringent metaclustering using the
dendrogram would have resulted in a single MDSC metacluster,
which would have been far less informative and counter to the cell
spacing on the viSNE map and the literature. Although we
attempted to minimize bias in this analysis pipeline, expert
knowledge was still crucial for correctly subsetting these cell
types. Here, we found that the G-MDSCs were increased in
abundance in the obese E0771 group, meaning that for the E0771
model, there are two distinct T-cell-suppressive cell subsets.

T cells, specifically CD8 T cells, are major players in tumor
immunity. Although tumor-infiltrating CD8 T cells, often referred
to as TILs, are the most-studied T-cell type in cancer, CD4 and DN
T cells are both commonly found in the tumor microenvironment.
T cells play various roles in the tumor microenvironment. Here, we
found two phenotypically distinct and perhaps functionally distinct
CD4 T-cell subsets. The GITRhi CD4 T cells in MC1 were also
enriched for Sca-1. Both of these markers indicate an activated
phenotype (Whitmire et al., 2009; Nocentini and Riccardi, 2009).
GITR is also high on regulatory T cells (Tregs), but there were very
few CD25+ cells in this metacluster so it is unlikely that there were
many Tregs in MC1. Low GITR indicates naïve or effector T cells,
which characterize the second CD4 T-cell metacluster, MC15. It is
notable here that two distinct DN T-cell populations were
identified. The two DN T-cell metaclusters are phenotypically
distinct and far apart on the viSNE map. The Ly6-C+ DN T cells
(MC5) were near the NK cells between the CD4 and CD8 T cells,
while the Il-7Ra+ DN T cells (MC20) are in a separate island on the
far side of the map. DN T cells are known suppressor cells and
have been shown to suppress cancer cell growth in culture
(Lu et al., 2019; Young et al., 2003).

CD8 T cells are the primary tumor-cytotoxic lymphocyte
(Martínez-Lostao et al., 2015). CD8 T cells in cancer are often
exhausted and no longer capable of cancer cell killing. Checkpoint
blockade immunotherapy (CBI), such as anti-CTLA-4 and anti-
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PD-1/PD-L1, works to reactivate the CD8 T cells and can lead to
better patient outcomes in multiple cancer types (Christofi et al.,
2019). CBI only works in a small subset of patients though and it is
not clear why (Zugazagoitia et al., 2016). Understanding the CD8
T-cell contribution to the tumor microenvironment is key to taking
full advantage of checkpoint blockade therapies. Previous reports
have suggested that obese patients tend to have worse responses to
traditional cancer therapies but do better with immunotherapy than
non-obese patients (Wang et al., 2019). It is not clear why obese
patients respond so well to checkpoint blockade immunotherapies,
but it may be due to the existing immune dysregulation and chronic
low-grade inflammation in obese patients (Naik et al., 2019). It has
been shown that patients with lower CD8 expression in the tumor
microenvironment tend to have worse outcomes in response to
traditional therapies (Mahmoud et al., 2012; Liu et al., 2012). It is
not clear how intratumoral CD8 levels relate to CBI success or to
obese patient outcome. However, a recent paper by Ringel et al.
further examines the connection between T-cell function and
cancer in the obese setting using the murine colorectal
adenocarcinoma cell line, MC38 (Ringel et al., 2020). Similar to
the E0771 results presented here, MC38 tumors developed in
obese mice displayed decreased CD8 and increased MDSC
infiltration. Mechanistically, cellular adaptations to the obese
environment resulted in differential fatty acid uptake between
cancer and CD8 cells, leading to impaired CD8 infiltration and
function. Further, depletion of CD8 T cells using an inhibitory
antibody reversed obesity-induced growth rates. This is consistent
with our findings using the E0771 TKO model. They also
examined the E0771 orthotopic tumors; however, they did not see
differences in CD8 T-cell or MDSC abundance between chow and
HFD. These conflicting results may be due to the large difference
in E0771 cell injection numbers [1000 herein compared to
200,000 cells by Ringel et al. (2020)].
Here, we were able to provide an in-depth characterization of

multiple T-cell subsets, which could be valuable for future studies in
determining the therapeutic value of checkpoint blockade therapies
across patients and cancer types. The two CD8 T-cell subsets we
found were quite similar in phenotype and both metaclusters were
decreased in the obese E0771 group. This fits well with the
increased abundance of two T-cell-suppressive cell types,
G-MDSCs and PD-L1+ DCs.
Although DIO led to tumor immune infiltrate changes in

the E0771 model, it did not have an effect across all models.
Despite the systemic nature of the obese phenotype, our results
suggest that the interplay between obesity and tumor immune
infiltrate is very cancer subtype specific. Different treatment
approaches might be needed depending on the cancer subtype’s
ability to alter the tumor immune infiltrate in the obese setting. It is
possible that there were detectable obesity-dependent immune
changes outside this 36-marker CyTOF panel. Investigating
additional activation/inactivation markers, chemokine receptors
and cytokine production could shed light on those changes. But,
overall, our broadly defined immune panel performed well, and
provided deep and robust tumor immune phenotype across models.
High-dimensional positional data such as imaging mass cytometry
might further help unravel the obesity effect. Several recent studies
have indicated that tumoral cell–cell interactions and local
neighborhoods play a role in cancer severity (Jackson et al., 2020;
Keren et al., 2018; Schürch et al., 2020), indicating that such spatial
information adds phenotypic information compared to cell
frequencies obtained with suspension-based mass cytometry. The
limited data from the TKO mice suggest that the obese immune

system might play a stronger role in breast cancer than in pancreatic
cancer, at least at the tumor immune infiltrate level. Several studies
support this concept, showing that non-immune cell components
contribute strongly to pancreatic cancer prognosis in obesity (Chung
et al., 2020; Eibl and Rozengurt, 2019).

Here, we have presented a pipeline for analyzing large mass
cytometry datasets collected across multiple time points without
anchor samples. This is a powerful approach for analyzing data
collected before the use of anchor samples was introduced. The
multistep clustering approach allows for a reduction of biases while
still allowing for expert input to guide the final metaclusters. The
detailed characterization of immune infiltrate across five tumor
models provides a valuable resource for planning tumor immunity
studies. We found that although cell subsets were conserved across
models, subset abundance was highly model specific. The inclusion
of tumor immune infiltrate from obese groups provides insight into
cancer models that may or may not be relevant for studying immune
infiltrate differences in obesity. We propose that the E0771 breast
cancer model is a clinically relevant model for assessing immune
infiltrate in obesity. G-MDSC and PD-L1+ DC suppression of
T cells is clinically relevant in regard to patient care and treatment
options.

MATERIALS AND METHODS
Experimental mouse models
The Norwegian Animal Research Authority approved all animal
experiments. Experiments were carried out according to the European
Convention for the Protection of Vertebrates Used for Scientific Purposes.
The Animal Care and Use Programs at the Faculty of Medicine, University
of Bergen is accredited by AAALAC International. Male and female WT
C57BL/6J (stock number 000664) mice were purchased from The Jackson
Laboratory. TKO (Rag2−/−::Cd47−/−::Il2rg−/−) mice were purchased from
The Jackson Laboratory (stock number 025730). C57Bl/6 TKO mice are
deficient in T, B and NK cells. Mice were kept in IVC-II cages (SealsafeÒ
IVC Blue Line 1284L, Tecniplast) and housed in the laboratory animal
facility at the University of Bergen. Up to six mice were housed together and
maintained under standard housing conditions at 21±0.5°C, 55±5%
humidity and 12 h artificial light-dark cycle. Mice were provided with
food and water ad libitum.

At 6 weeks of age, mice in the obese cohort were randomly placed on a
HFD (60% kcal from fat, 20% from protein, and 20% from carbohydrates,
Research Diets, D12492) for 10 weeks, while lean mice were kept on a
standard chow diet (7.5% kcal from fat, 17.5% from proteins and 75% from
carbohydrates, Special Diet Services RM1, 801151). At 16 weeks of age,
mice were weighed (Fig. 1B), and breast cancer cell lines were
orthotopically injected into the 4th inguinal mammary fat pad for female
mice. At the same time point, pancreatic cancer cell lines were
orthotopically injected into the lower body of the pancreas of male mice
(Fig. 1A). For pancreatic implantations, hair was removed at the incision
area and skin disinfected twice with 70% ethanol, before the pancreas was
visualized by making a left flank incision in the epidermis and peritoneum
below the ribcage. The spleen, body and tail of the pancreas were then gently
extra corporealized by the use of forceps and cotton tips. After injection, the
muscle layer was closed by suturing (Vicryl suture 5-0, V388H, Ethicon)
and the skin was closed by the use of wound clips (EZ Clips™ 59027). To
maintain body temperature, mice were placed under a heating lamp for
20 min post-surgery. For mammary tumors, cells in phosphate buffered
saline (PBS) were mixed 1:1 by volume with Matrigel (Corning, 356231)
and injected in a total volume of 50 μl for fat pad injections and 30 μl for
pancreas injections. Feeding regimens were maintained throughout the
experiment. Tumor growth and mouse weight were monitored over time.
Breast cancer tumor size was measured by caliper. Pancreatic tumors were
monitored and removed based on optical imaging of luciferase expressing
cancer cells and careful monitoring of mouse distress based on the grimace
scale. The experiment was stopped when the first mouse showed signs of
distress. At endpoint, the micewere euthanized by cervical dislocation while
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anesthetized, and tumors were harvested for weight measurements and
downstream analysis (Fig. 1A). See Table 1 for tumor model cell line details
and cell injection numbers.

The UN-KC cell line was kindly provided by Dr Surinder Batra
(University of Nebraska Medical Center, Omaha, NE, USA). The E0771
cell line was acquired from CH3 BioSystems. The in vivo passaged MMTV-
Wnt1 cells were kindly provided by Stein-Ove Døskeland, University of
Bergen. The TeLi cell line was generated in house by in vitro passaging of
dissociated cells from the MMTV-Wnt1 cell line injected in the mammary
fat pad. The tumor was dissociated using a mouse tumor dissociation kit
(Miltenyi Biotec, 130-096-730) according to the manufacturer’s
instructions. Dissociated MMTV-Wnt1 tumor cells were cultured in vitro
for 2 months to obtain pure tumor cells now referred to as TeLi. E0771,
TeLi, C11 and UN-KC cells were cultured at 37°C, 5% CO2 in high-glucose
Dulbecco’s modified Eagle medium (Sigma-Aldrich, D5671)
supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, F-
7524), 100 U/ml penicillin and 100 μg/ml streptomycin (pen/strep; Sigma-
Aldrich, P-0781) and 2 mM L-glutamine (Sigma-Aldrich, G-7513). All cell
lines were regularly (approximately every 6 months) tested for mycoplasma
contamination. Cell lines were not authenticated.

Tumor processing and dissociation
Tumors were collected from seven different mouse cohorts. Representative
tumors (those with tumor mass closest to the median) collected from those
seven cohorts became the data for the seven batches collected on the Helios
CyTOF (Table 1). Tumors were collected, weighed, minced and incubated
with collagenase II (Sigma-Aldrich, C6885) and DNase I (Sigma-Aldrich,
DN25) based on the Leelatian protocol (Leelatian et al., 2017). Changes to
incubation were as follows: minced tumors in RPMI-1640 (Sigma-Aldrich,
R7388) were incubated with enzymes in capped 15 ml conical tubes in a
warm water bath with periodic inversion while waiting for all tumors to be
collected. Tumors were then placed in a 37°C incubator and rotated on a
Ferris wheel for 1 h. DNase was used throughout the dissociation protocol
and was especially important for pancreatic tumors in which free DNA was
observed without the continuous use of DNase. Cells were counted with
Trypan Blue and a Countess™ Automated Cell Counter (Invitrogen) before
freezing. Live cells in 10% FBS, 90% dimethyl sulfoxide were cryopreserved
with CoolCell (Sigma-Aldrich, CLS432001) at −80°C overnight before
transfer to liquid nitrogen. Tumor weights and cell viability are reported in
Table 5.

Determining the number of samples to barcode and number
of cells to collect
Before data collection, it is imperative to know the size of the target
population to enable a robust analysis, particularly in heterogeneous
populations. Preliminary testing on E0771 tumors suggested that the CD45+

target cells were ∼5% of the total events collected; that held roughly true for
the barcoded batches (Table 3). The following equations were used to guide
the number of samples barcoded together and the time spent at the Helios for
collection. The event rate was ∼500 events/s.

Ideal cell number of target population

Estimated percentage of total events
� Barcoded sample number

¼ Total events to collect ð1Þ

Total events to collect

Event rate� 3600
¼ Minimum collection time ðhÞ: ð2Þ

Cell staining and running on Helios
Cells were thawed in a warm water bath at 37°C, and 1 ml warm DNase-
supplemented medium (RPMI-1640 with 10% FBS, 1% pen/step and
DNase) was added to each thawed cryovial. Contents were then dumped into
labeled 15 ml conical tubes containing 8 ml warm DNase medium.
Cryovials were washed with 2 ml warm DNase medium and added to the
contents in the corresponding 15 ml conical tube. Cells were then rested for
5 min before being centrifuged at 200 g for 5 min at room temperature (RT).

Cells were again counted with Trypan Blue using the Countess automated
cell counter and stained with cisplatin (Fluidigm, 201064) in the DNase
medium using the Fluidigm protocol. Cells were kept in warm DNase
medium until they were fixed with paraformaldehyde (PFA) at 1.6% final
concentration. Following fixation, cells were barcoded using a palladium
cell barcoding kit (Fluidigm, 201060) and vendor protocol, with the
modification of incubating with barcodes for 45 min instead of 30 min.
After barcoding, combined cells were kept in PBS+1% bovine serum
albumin (BSA; Sigma-Aldrich, A7030), blocked with anti-CD16/CD32 Fc
block (eBoscience, 16-0161-82) and stained with a pre-made cocktail of
antibodies shown in Table 2. All antibodies were conjugated and validated
by Fluidigm. Following surface staining, cells were permeabilized with
2-3 ml 100% pure cold methanol overnight at −20°C. Cells were vortexed
vigorously before and after methanol addition to prevent clumping. The next
day, 2 ml PBS was added to dilute methanol. Cells were spun down at 900 g
and methanol/PBS mixture was pipetted off. Cells were washed with PBS
again and decanting was performed as usual. Intracellular staining was
performed in Dulbecco’s PBS (DPBS)+1% BSA for 30 min. After 20 min,
DNase and iridium intercalator (Fluidigm, 201192B) were added. DNase
was used on fixed and permeabilized cells to reduce clogging on the Helios
and cut down on visible clumping when running samples. This was
especially important for the pancreatic tumors that seemed to have a high
level of cell death and free DNA.

All staining was performed in capped 5 ml FALCON polystyrene tubes
(Corning, 352052) on amoving platform or with manual agitation to prevent
cells from fully settling. Final washes were all with 3 ml, followed by vortex,
centrifugation at RT at 900 g and decanting: three PBS+1% BSA washes,
three PBS washes, three MilliQ washes. Cells were kept in the void volume
plus 100 μl of 1× beads inMilliQ water at 4°C until ready to run. Then, 25 µl
of cells were removed at a time and added to 2 ml diluted 1× Fluidigm EQ
calibration beads in MilliQ water immediately before running on the Helios
mass cytometer. Cell concentration was adjusted as needed so cells were
running at 300-600 events/s. Cells were run on the Fluidigm Helios mass
cytometry machine using a narrow bore injector.

A control sample was included in every batch and was used to manually
check for antibody staining and machine performance. Control samples
were from two different E0771 tumors that had already been phenotyped
and used to test the staining panel. Controls were not used as anchor samples
for batch correction because more than one control was used across the
batches.

4T1 tumor model used for batch correction testing
Control group 4T1 breast cancer tumors from female BALB/c mice from
two batches were used to test the robustness of the batch correction
algorithms. The 4T1 cell line was purchased from ATCC and cultured in a
humidified atmosphere (37°C, 5% CO2). The 4T1 cells were cultured in
RPMI-1640 medium (Sigma-Aldrich) with 10% FBS, 2 mM L-glutamine
and pen/strep. MycoAlert (Lonza, LT07-318) was continuously used to
confirm that the cell line was mycoplasma free throughout the study.
Female BALB/c mice (Envigo) were fed a standard chow diet. At 4-
6 weeks, 2.0×105 4T1 cells were mixed 1:1 with BD Matrigel Matrix
Growth Factor Reduced (BD Biosciences) and injected into the right
mammary fat pad.

Upon sacrifice, tumors were harvested and dissociated using a mouse
tumor dissociation kit (Miltenyi Biotec, 130-096-730). After dissociation,
erythrocytes were lysed with Red Cell Lysis Buffer (Miltenyi Biotec, 130-
094-183), according to the manufacturer’s protocol.

The dissociated 4T1 tumor cells were stained with cisplatin for viability
with RPMI1640 (10% FBS, 0.25 μMcisplatin, RT) for 5 min and fixed with
1.6% PFA (electron microscopy grade, Electron Microscopy Sciences,
15710) before freezing. After 10 min incubation, samples were centrifuged
and the supernatant was aspirated before being placed in−80°C freezer until
analysis.

The panel contained 18 mass-tagged antibodies with the same target as
the seven experimental batches. Many of the same antibody targets were on
different channels (marked as ‘sdc’ in Table 4) and onewas a different clone.
A similar protocol, detailed below, was used for staining and cells were run
on the same Helios CyTOF machine.
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Table 5. Viability and tumor masses for experimental tumors

Cohort
name

Sample
ID

Trypan Blue % viability at
dissociation

Trypan Blue % viability
post thaw

Tumor mass
(g)

Mouse weight
(g)

Excluded if <5000 live
CD45+ cells

E0771_1 C1 no data 78 0.84 25.5
C2 no data 78 0.73 24.1
C4 no data 76 0.97 24.8
C6 no data 76 0.66 20.8
H1 no data 87 1.37 28.9
H2 no data 84 0.80 27.2
H3 no data 81 1.31 31.1
H5 no data 85 1.20 35.2

E0771_2 C1 76 72 0.23 24.8
C2 81 82 0.49 24.5
C3 91 83 0.78 29.0
C4 84 81 0.65 25.4
C5 85 76 0.05 24.9
H1 80 78 0.68 42.2
H2 89 80 0.89 33.4
H3 89 84 0.66 35.6
H5 75 88 0.64 34.7

Wnt1 C1 58 75 0.25 23.3
C2 no data 64 0.37 26.3
C3 no data 72 0.99 26.0
C4 no data 70 0.69 35.6
C5 no data 76 0.19 24.4
C6 86 67 0.11 23.3
H1 no data 69 0.67 23.0
H2 no data 64 0.88 33.5
H3 no data 78 0.24 35.5
H4 61 73 0.75 52.9
H5 no data 80 0.65 28.8
H6 79 65 0.19 31.9

TeLi C1 75 62 0.06 23.4
C2 73 77 0.20 23.0
C3 75 78 0.11 22.4
C5 74 71 0.26 22.2
C6 75 76 0.22 22.2
H1 81 73 0.47 28.8
H2 76 77 0.36 31.1
H3 68 81 0.29 25.9
H4 83 79 0.30 32.0
H5 87 77 0.51 25.9

C11_1 C1 90 no data 0.19 28.1
C3 90 no data 0.14 30.2
C4 62 no data 0.12 28.5
C5 91 no data 0.30 32.6
C6 82 no data 0.25 32.2
H1 73 no data 0.99 43.0 excluded
H2 66 no data 0.70 42.9
H3 45 no data 0.67 42.5 excluded
H5 45 no data 0.81 42.9 excluded

C11_2 C1 49 85 0.16 22.2 excluded
C2 62 67 0.29 29.5 excluded
C3 40 76 0.22 27.4
C4 69 83 0.24 27.6
C5 73 83 0.15 31.2
H1 32 78 0.79 36.9 excluded
H2 69 75 0.76 39.6 excluded
H3 29 74 0.47 38.9 excluded
H4 85 84 0.27 35.5
H5 68 83 0.61 39.4

UN-KC C1 61 40 0.28 32.3
C2 62 60 0.17 33.4
C3 66 51 0.15 31.2
C4 56 57 0.15 32.5
C5 62 37 0.24 32.4
H1 63 34 0.55 41.9 excluded
H2 65 44 0.38 43.1
H3 49 63 0.28 39.7

Continued
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Prior to staining, samples were thawed at RT and resuspended in
cell washing buffer (CWB) [DPBS (Thermo Fisher Scientific, 14040-133)
with 1% BSA, 0.02% NaAzide and 0.025% DNaseI (Sigma-Aldrich,
DN25-1G)]. Cells were counted using the Countess automated cell counter
and ∼3×106 cells per sample were used for barcoding. Counted cells were
washed in 1× Maxpar® Barcode Perm Buffer (perm buffer; Fluidigm,
201057) twice, before being resuspended in 1× perm buffer (195 µl).
Samples were then mixed with 5 µl barcoding solution (Fluidigm, 201060),
or 1 µl (500 µM) Intercalator-103Rh (Fluidigm, 201103A) for the control,
and incubated for 30 min at RT. After incubation, cells were washed in
CWB twice, then pooled with CWB before washing in Maxpar® Cell
Staining Buffer (CSB; Fluidigm, 201068).

Surface antibodies were diluted in CSB, while antibodies targeting
intracellular proteins were diluted in CSB/perm (10% 10× perm buffer).
Samples were blocked on ice for 10 min using anti-CD16/CD32 (75 µl per
3×106 cells) diluted in CSB. The surface staining antibody cocktail was
prepared to total 40 µl per 3 million cells. Samples were incubated with the
antibody cocktail for 30 min (RT) before washing in CWB with a 10 min
(RT) incubation. Samples were then washed in PBS (2 mM EDTA) and
fixed with 200 µl 2% PFA per 3 million cells for 30 min (RT, in the dark).
Fixed cells were then washed in CSB/perm twice and blocked with anti-
CD16/CD32 in CSB/perm as described above. Samples were incubated with
the intracellular staining antibody cocktail for 30 min (RT) before being
washed in CWB and subsequently in 2 mM EDTA/PBS. Cellular DNAwas
stained by incubating the samples in Ir191/193 Intercalator (0.33 µl 500 µM
Intercalator-Ir per 2×106 cells, Fluidigm, 201192B) mixed with 2% PFA
(1 ml per 20×106 cells) overnight (4°C). The following day, samples were
centrifuged and resuspended in CWB with 10 min incubation (RT).
Samples were then washed in PBS (2 mM EDTA) and kept on ice until the
mass cytometer was ready. Before acquisition, an aliquot of cells was
washed in MilliQ water four times (400 g, 5 min, RT). The aliquot was
then resuspended in 1× EQ Four Element Calibration Beads solution
(Fluidigm, 201078) to a final concentration of ∼1-2×106 cells/ml, and
strained through a 40 µm cell strainer. The cells were then acquired on the
Helios mass cytometer (Flow Cytometry Core Facility, Department of
Clinical Science, University of Bergen). All centrifugation steps were
performed with a swing-bucket rotor at 900 g for 5 min at RT unless
otherwise specified.

Data preprocessing
Raw Helios FCS files were bulk normalized in the Fluidigm CyTOF
software version 6.7.1014 using the bead normalization passport EQ-
P13H2302_ver2 (https://www.fluidigm.com/binaries/content/documents/
fluidigm/resources/helios-user-guide0400250/helios-user-guide0400250/
fluidigm%3Afile). The Fluidigm normalization tool was chosen so that all
datasets could be normalized to the normalization passport. The ‘Original
data’ box was checked and the files were not concatenated at this time. The
randomization was set to uniform negative distribution (UND) with linear
output values, conversion compatible with FlowJo, and the default time
interval normalization of 100 s. Beads were not removed. After
normalization, the MATLAB debarcoding tool was used to simultaneously
debarcode and concatenate the samples, with the exception of batch C11_1
(Zunder et al., 2015). The C11_1 raw batch files were concatenated using the
Fluidigm software before debarcoding because the multiple large files were
too much for the MATLAB debarcoding tool to open. Each batch was
debarcoded separately with the same filter values set to minimum separation
of 0.12 and a maximum Mahalanobis distance of 30.

After debarcoding, the R Premessa package was used to resolve a channel-
naming conflict (Fig. 1A) (https://github.com/ParkerICI/premessa). The

Wnt1 cohort was not stained for IRF4 so that channel was excluded for all
seven batches/cohorts. ‘155Gd_IRF4’ was changed to ‘155Gd’ for all FCS
files and the channel was ignored during analysis. The signal was low to
negative in all stained cohorts so there was minimal potential for spillover.
Premessa was used more extensively in Figs S1-S3 (nine-batch dataset) to
merge two very different panels so that the 18 common markers could be
analyzed even if they were on different channels or had different naming
conventions. The code ‘sdc’, for shared different channel, was created to
denote shared antibody targets on different channels between the panels.
Figs S1-S3 also required the use of the R package cytofCore to reorder
channels in the different panels (https://rdrr.io/github/nolanlab/cytofCore/).

After channel renamingwith Premessa, all the newlywritten FCS files were
uploaded to Cytobank to check for panel discrepancies and to gate for live
CD45+ cells. Gating was performed manually to obtain a population of live
CD45+ events (Fig. 1D). The four Helios Gaussian parameters (Center,
Offset, Width and Residual), Event_length, 140-bead channel and Iridium
(193) were gated on versus time using the cleanup strategy recommended by
Fluidigm (https://www.fluidigm.com/binaries/content/documents/fluidigm/
search/hippo%3Aresultset/approach-to-bivariate-analysis-of-data-
acquired-using-the-maxpar-direct-immune-profiling-assay-technical-
note/fluidigm%3Afile). Iridium intercalator was used to mark intact cells;
cisplatin was used as a membrane exclusion stain to differentiate between live
and dead cells. Cleaved caspase3 (c-Cas3) was used to exclude apoptotic
cells, and CD45 was used as a pan-leukocyte marker (Fig. 1D).

Gated sample files that contained fewer than 5000 live CD45+ singlets
were excluded from further analysis. This metric was not pre-established.
Because of the low viability of the pancreatic tumors, especially those from
HFD, we had to remove samples from all three pancreatic cancer tumor
cohorts (Fig. 1C, an open squarewith ‘X’means that the tumor was removed
from further analysis). Three HFD samples were removed from the C11_1
cohort, two chow and three HFD samples were removed from the C11_2
cohort, and four HFD tumors were removed from the UN-KC cohort. No
tumors were removed from the four breast cancer cohorts (Table 1).

Live CD45+ cells from the remaining 67 files (including ten controls files)
from seven batches were exported to new FCS files and downloaded from
Cytobank. The CD45+ FCS files were imported to R/RStudio for batch
correction using Cydar with ncdfFlow and flowCore used as support
packages (Lun et al., 2017; https://rdrr.io/bioc/ncdfFlow/; https://rdrr.io/
bioc/flowCore/; https://www.R-project.org; http://www.rstudio.com/).
Thirty-five markers were arcsinh transformed with a scale argument/
cofactor of 5 before batch correction. c-Cas3 was not batch corrected
because it was used only during pregating and was no longer relevant. Cydar
offers three batch correction algorithms: warp, range and quantile. All three
algorithms were tested without the use of common group/anchor files. Initial
batch correction algorithm testing was performed on the chow files from the
seven experimental batches and the control group files from two batches of
4T1 tumors from BALB/c mice stained with a different panel and under
different conditions to test for algorithm robustness. The seven experimental
batches were additionally batch corrected separately from the two testing
batches using warp and range correction. Range correction was then chosen
as the best algorithm for this use, and the range-corrected data were used
throughout the rest of the analysis. New FCS files were created, binding
together the original and transformed range-corrected data. The 35 new
corrected channels were marked with ‘c_’ as the prefix.

Analysis pipeline
The range-corrected files were uploaded to Cytobank for analysis. viSNE
was run using 26 of the corrected markers (Table 2, Fig. 3). Phenotyping
markers were chosen to be included as the viSNE input parameters. Markers

Table 5. Continued

Cohort
name

Sample
ID

Trypan Blue % viability at
dissociation

Trypan Blue % viability
post thaw

Tumor mass
(g)

Mouse weight
(g)

Excluded if <5000 live
CD45+ cells

H4 45 21 0.77 50.1 excluded
H5 67 50 0.54 40.7 excluded
H6 56 27 0.54 43.5 excluded
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that were previously used to define the population, that were low or negative,
or markers of activation state were not used to generate the viSNEmap. CD5
was also excluded to prevent over-representation of T cells on the map.
viSNE settings were 4000 iterations on 348,802 events (5206 events per
FCS file) and the default settings for perplexity (30) and theta (0.5) were
used. The automatic seed was 21,258,186. The run time was 5.58 h and the
final KL divergence was 4.75. SPADE was used for clustering, with tSNE1
and tSNE2 as the clustering channels. This preserved the viSNE
dimensionality reduction in the clustering process. All cells from viSNE
were put into SPADE with 40 nodes/clusters chosen and the default 10%
downsample. Cytobank automatic cluster gating was used to gate the
events in all 40 SPADE clusters. Clusters were then manually curated and
combined to reduce over-clustering for G-MDSCs and NK cells. The new
cluster count was 37 clusters. Cell data for all experimental files were
concatenated into one file for each of the 37 clusters using Premessa to
concatenate the files. The data were imported into R to generate MEM
scores, MEM heat map, median heat map and hierarchical clustering
(Fig. 4A; Fig. S2A). Event count numbers for clusters/metaclusters were
exported for all FCS files. Excel was used to calculate abundance
percentages for each metacluster out of the total CD45+ cells. In addition to
exporting cluster/metacluster events counts, some manual gating was
performed on the viSNE map, and event counts were exported for
statistical analysis (Fig. 6A,B; Fig. S3A,B). Total CD3 cells were gated on
the viSNE map using CD3 marker intensity, and subsequent CD3 subsets
(CD4, CD8 and DN T cells) were biaxially gated using the CD4 and CD8
channels.

CITRUS was run on the E0771 data after viSNE analysis as a
confirmative analysis for the metacluster statistics. CITRUS clustering
was performed in Cytobank on the same 26 channels as viSNE. There were
nine files in the chow group and eight files in the HFD group. All events
were sampled with a minimum estimated cluster size of 1% (∼885 events).
The Significance Analysis of Microarrays (SAM) association model was
used for analysis. Select significant CITRUS clusters were plotted onto the
viSNE map for visualization.

Software sources
The Fluidigm Helios software version 6.7.1014 is available upon request
from Fluidigm. Manual gating, viSNE, SPADE and CITRUS were all
used on the Cytobank Cellmass enterprise server. The single-cell
debarcoding tool is a standalone MATLAB application found on github
(https://github.com/nolanlab/single-cell-debarcoder). The R packages can
be found on CRAN (https://cran.r-project.org/), Bioconductor (Huber et al.,
2015) or github. The devtools package is needed for the installation of github-
based R packages (https://cran.r-project.org/web/packages/devtools/index.
html). The Cydar (https://www.bioconductor.org/packages/release/bioc/
html/cydar.html), ncdfFlow (https://www.bioconductor.org/packages/
release/bioc/html/ncdfFlow.html) and flowCore (https://www.bioconductor.
org/packages/release/bioc/html/flowCore.html) packages are all available
from Bioconductor. Premessa (https://github.com/ParkerICI/premessa),
cytofCore (https://github.com/nolanlab/cytofCore) and MEM (v3) (https://
github.com/cytolab/mem) can all be found on github.

Statistics
Abundance percentages were calculated in Excel and transferred to
GraphPad Prism to perform statistics. GraphPad Prism 8.4.3 was used to
plot the data and to calculate P-values using multiple unpaired two-tailed
Student’s t-tests. Consistent standard deviation was not assumed between
metaclusters and cell subsets, but was assumed between chow and HFD
within the Student’s t-test comparison. Statistics were not applied for
UN-KC and C11 lines owing to the limited sample numbers caused by low
cell viability. The two batches for both C11 and E0771 were combined so
that large trends would be observed and noise would be minimized.
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