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Vemurafenib improvesmuscle histopathology in amousemodel of
LAMA2-related congenital muscular dystrophy
Ariany Oliveira-Santos, Marisela Dagda, Jennifer Wittmann, Robert Smalley and Dean J. Burkin*

ABSTRACT
Laminin-α2-related congenital muscular dystrophy (LAMA2-CMD) is a
neuromuscular disease affecting around 1-9 in 1,000,000 children.
LAMA2-CMD is caused by mutations in the LAMA2 gene resulting in
the loss of laminin-211/221 heterotrimers in skeletal muscle. LAMA2-
CMD patients exhibit severe hypotonia and progressive muscle
weakness. Currently, there is no effective treatment for LAMA2-CMD
and patients die prematurely. The loss of laminin-α2 results in
muscle degeneration, defective muscle repair and dysregulation of
multiple signaling pathways. Signaling pathways that regulate muscle
metabolism, survival and fibrosis have been shown to be dysregulated
inLAMA2-CMD. As vemurafenib is aUSFood andDrugAdministration
(FDA)-approved serine/threonine kinase inhibitor, we investigated
whether vemurafenib could restore some of the serine/threonine
kinase-related signaling pathways and prevent disease progression in
the dyW−/− mouse model of LAMA2-CMD. Our results show that
vemurafenib reduced muscle fibrosis, increased myofiber size and
reduced the percentage of fibers with centrally located nuclei in dyW−/−

mouse hindlimbs. These studies show that treatment with vemurafenib
restored the TGF-β/SMAD3andmTORC1/p70S6K signaling pathways
in skeletal muscle. Together, our results indicate that vemurafenib
partially improves histopathology but does not improvemuscle function
in a mouse model of LAMA2-CMD.
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INTRODUCTION
Laminin-α2-related congenital muscular dystrophy (LAMA2-
CMD), also known as merosin-deficient congenital muscular
dystrophy type 1A (MDC1A), is a severe form of congenital
muscular dystrophy (CMD) that accounts for∼30-40% of all CMDs
in Europe (Allamand and Guicheney, 2002; Muntoni and Voit,
2004). The prevalence of LAMA2-CMD is not well known, but it is
estimated to be about 1-9 per 1,000,000 of the total population
(Durbeej, 2015; Graziano et al., 2015; Norwood et al., 2009).
LAMA2-CMD is caused by mutations in the LAMA2 gene

inherited in an autosomal recessive fashion that results in a complete
loss or truncated expression of the laminin-α2 chain (Geranmayeh

et al., 2010; Helbling-Leclerc et al., 1995). Laminin-α2 is essential
for the assembly of laminin-211/221 heterotrimers, the major laminin
isoforms expressed in adult skeletal muscle (Aumailley et al., 2005;
Durbeej, 2010). Laminin-211 is the predominant isoform in the
basement membrane surrounding the muscle fibers and axon–
Schwann cell units of peripheral nerves, whereas laminin-221 is
specifically found in the synaptic cleft of the neuromuscular junctions
in adult skeletal muscles (Patton, 2000; Patton et al., 1997).

Laminin-α2 deficiency leads to the disruption of the basement
membrane, resulting in muscle degeneration, fibrosis, inflammation
(Gawlik and Durbeej, 2011, 2020; Pegoraro et al., 1996), abortive
skeletal muscle regeneration (Kuang et al., 1999) and peripheral
neuropathy (Mercuri et al., 1996; Shorer et al., 1995). LAMA2-CMD
patients rarely achieve independent ambulation and exhibit severe
hypotonia with muscle weakness and joint contractures at birth or
within the first 6 months of life. Premature death is mainly caused by
respiratory insufficiency in LAMA2-CMD patients (Geranmayeh
et al., 2010; Jones et al., 2001; Philpot et al., 1995; Xiong et al.,
2015; Zambon et al., 2020). Currently, there is no cure or effective
treatment for LAMA2-CMD. The clinical practice guidelines
recommend the multidisciplinary management of the symptoms.
The standard medical care includes, among others, the treatment of
joint contractures to promote joint and bone development, the use of
orthotics and splinting for facilitation of standing and walking,
activities to improve respiratory function, assisted ventilation, and
management of pain (Oliveira et al., 2020; Wang et al., 2010).
Clinical care only temporarily mitigates the symptoms of the disease.

Transgenic expression of the Lama2 gene has been effective at
preventing disease progression in mouse models of LAMA2-CMD
(Kuang et al., 1998). However, laminin-α2 is encoded by a ∼10 kb
transcript (Miyagoe-Suzuki et al., 2000), and therefore current gene
therapy approaches that aim to replace the defective gene and restore
laminin-α2 expression remain a challenge. Other gene therapy
approaches aiming to stabilize the basement membrane of the muscle
fibers have been shown to improve muscle disease in different mouse
models of LAMA2-CMD (Aoki et al., 2013; Doe et al., 2011; Gawlik
and Durbeej, 2010; Gawlik et al., 2004, 2018; Kemaladewi et al.,
2017; McKee et al., 2009; Moll et al., 2001; Reinhard et al., 2017).
However, the translation of gene therapies to the clinic remains a
challenge at present owing to safety concerns including gene editing
accuracy, insertional mutagenesis, limited long-term expression of
the corrected gene and host immune response (Tang and Xu, 2020).
Therefore, there is an urgent need to develop therapies that can slow
disease progression and act on the downstream effects caused by the
loss of laminin-α2, such as basement membrane disruption, muscle
atrophy, apoptosis, regeneration, inflammation and fibrosis.

Several small molecules and biological treatments have been
tested in laminin-α2-deficient mouse models – these include the
administration of laminin-111 protein (Barraza-Flores et al., 2020;
Rooney, 2012; van Ry et al., 2014) to compensate for the loss of
laminin-211/221; IGF-1 (Accorsi et al., 2016; Lynch et al., 2001)
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and clenbuterol (Hayes and Williams, 1998) to promote muscle
growth; omigapil (Erb et al., 2009; Yu et al., 2013), doxycycline
(Girgenrath et al., 2009) and losartan (Elbaz et al., 2015) to inhibit
apoptosis; anti-fibrotic (Elbaz et al., 2012; Meinen et al., 2012;
Nevo et al., 2010, 2011) and anti-inflammatory (Connolly et al.,
2002; Dadush et al., 2010) drugs; and several drugs targeting other
important signaling pathways (Carmignac et al., 2011a,b; Fontes-
Oliveira et al., 2018; Körner et al., 2014; Körner and Durbeej, 2016;
Millay et al., 2008; Tomomura et al., 2011).
Studies show that loss of laminin-α2 leads to the dysregulation of

several signaling pathways in the skeletal muscle of laminin-α2-
deficient mouse models (de Oliveira et al., 2014; Durbeej, 2015;
Nguyen et al., 2019; Taniguchi et al., 2006; Mehuron et al., 2014).
The Ras-Raf-MEK-ERK signaling pathway, including proteins of the
mitogen-activated protein kinase (MAPK) family, is an important
signaling pathway that regulates several cellular processes, including
metabolism, differentiation, proliferation, survival, apoptosis and
inflammation (Peti and Page, 2013; Schultze et al., 2012; Turjanski
et al., 2007), and its dysregulation has been associated with several
human diseases (Kim and Choi, 2015). Enhanced extracellular
signal-regulated kinase (ERK) activation is correlated to muscle
wasting in cancer cachexia and Emery–Dreifuss muscular dystrophy,
and its inhibition was shown to reduce skeletal muscle loss (Muchir
et al., 2013; Penna et al., 2010). Increased ERK phosphorylation has
also been reported in a LAMA2-CMDmousemodel, and its inhibition
after treatment with losartan improved forelimb and hindlimb grip
strength and reduced fibrosis (Elbaz et al., 2012).
Vemurafenib, a US Food and Drug Administration (FDA)-

approved serine/threonine kinase inhibitor (Zhang et al., 2017), is
used for the treatment of melanomas (Czirbesz et al., 2019; Luke and
Hodi, 2012) and reported to be effective in the treatment of
Langerhans cell histiocytosis (Evseev et al., 2021) and gliomas
(Bautista et al., 2014) in pediatric patients through its inhibition of the
serine/threonine-protein kinase B-Raf, an upstream activator of ERK
(Macdonald et al., 1993; McCubrey et al., 2007). Vemurafenib has
also been reported to inhibit JNK signaling (Vin et al., 2013), an
important signaling pathway in skeletal muscle development (Xie
et al., 2018) and wasting (Mulder et al., 2020), and when combined
with other drugs for the treatment of melanomas, it can modulate
other signaling pathways (Li et al., 2022). Considering that the loss of
laminin-α2 dysregulates several signaling pathways in LAMA2-CMD
mouse models (Meinen et al., 2012;de Oliveira et al., 2014; Elbaz
et al., 2012), we investigated whether vemurafenib could prevent
disease progression by modulating the activity of serine/threonine
kinases in the dyW−/− mouse model of LAMA2-CMD, in which
Lama2 is disrupted. Our studies show that short-term treatment
with vemurafenib partially improves histomorphology, reduces
fibrosis and downregulates the TGF-β/SMAD3 and mTORC1
pathways, but not the Ras-Raf-MEK-ERK signaling pathway.
Despite the improvements observed, vemurafenib did not improve
skeletal muscle function in dyW−/− mice, suggesting that the use of
vemurafenib alone might not be a promising treatment option to
prevent muscle disease progression in patients with LAMA2-CMD.

RESULTS
Muscle histopathology is partially improved with
vemurafenib treatment in dyW−/− mice
The skeletal muscle histopathology in dyW−/− mice is characterized
by a significant reduction in muscle area and the number of PAX7-
positive cells during fetal development (Nunes et al., 2017). After
birth, reduced body weight, muscle cross-sectional area and number
of fibers are observed along with increased apoptosis and

embryonic myosin heavy chain (eMHC, or MYH3) expression
(Mehuron et al., 2014).

In this study, we investigated whether treatment with 5 mg/kg
vemurafenib could prevent further growth impairment from 3 weeks
to 8 weeks of age in dyW−/− mice. As treatment was started at
3 weeks of age, this study examines the ability of vemurafenib to
prevent muscle disease progression after onset. Vemurafenib
treatment starting at 3 weeks of age did not show improvements
in body weight (Fig. 1A), quadriceps weight (Fig. 1B), tibialis
anterior (TA) cross-sectional area (Fig. 1C) and the number of fibers
(Fig. 1E) in dyW−/−mice compared to vehicle control-treated dyW−/−

mice. We verified that treatment with vemurafenib did not change
the percentage of eMHC-positive fibers in the TA (Fig. 1D,F) and
was not able to reduce active caspase 3 levels in the gastrocnemius
(Fig. 1G) of 8-week-old dyW−/− mice. However, we observed that
vemurafenib treatment significantly reduced the percentage of
centrally nucleated fibers (CNFs) (Fig. 1D,H, left graph) and
increased the percentage of muscle fibers with a minimal Feret’s
(MinFeret) diameter of 40-50 μm (Fig. 1D and I, left graph) in the
TA of dyW−/− mice, compared to the percentages measured for
vehicle control-treated mice. We also analyzed the percentage of
CNFs and fiber diameter distribution in the triceps of dyW−/− mice,
and we observed that the treatment with vemurafenib had no effect
in reducing the percentage of CNFs and did not improve fiber
diameter in the triceps of dyW−/− mice compared to those measured
for vehicle control-treated mice (Fig. 1H,I, right graphs). Therefore,
our data show that vemurafenib partially improves muscle
histopathology by decreasing the percentage of CNFs and
increasing the percentage of bigger fibers in the TA but not in the
triceps of dyW−/− mice.

Short-term treatment with vemurafenib reduces fibrosis
and restores TGF-β1 and phosphorylated SMAD3 levels
in dyW−/− mice
Interstitial fibrosis is considered an important feature in LAMA2-
CMD muscles and it has been discussed to be a critical driver of the
pathology (Accorsi et al., 2020; Taniguchi et al., 2006). Considering
the importance of the fibrotic process in LAMA2-CMD pathology,
we evaluated whether vemurafenib could inhibit the TGF-β/
SMAD3 signaling pathway and prevent the progression of fibrosis
(Ismaeel et al., 2019) in the dyW−/− mouse model. We verified that
treatment with vemurafenib effectively reduced the levels of
hydroxyproline, the major component of the collagen protein, in
the quadriceps (Fig. 2A) and restored the levels of TGF-β1 (Fig. 2B)
and phosphorylated SMAD3 (pS423/S425) (Fig. 2C) in the
gastrocnemius of dyW−/− mice compared to those measured for
dyW−/− vehicle-treated animals. These results show that vemurafenib
is effective in preventing the progression of fibrosis and restores the
TGF-β/SMAD3 signaling pathway to wild-type (WT) levels in the
analyzed muscles of dyW−/− mice.

Vemurafenib does not reduce inflammation in dyW−/− mice
Inflammation is a hallmark of early disease progression in LAMA2-
CMDpatients (Pegoraro et al., 1996). Similarly, increased immune cell
infiltration can be detected in dyW−/− mice as early as 1 week of age
(Mehuron et al., 2014). In this context, we evaluated the effects of
vemurafenib on the inflammatory response in dyW−/−mice. Our results
corroborate with literature data demonstrating increased inflammatory
cell infiltration in the dyW−/− skeletal muscle. However, no
improvements in the inflammatory cell infiltration area were
observed in the TA of dyW−/− mice after treatment with vemurafenib
(Fig. 3A,B). We also detected increased levels of pro-inflammatory
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Fig. 1. Effects of vemurafenib on growth and histopathology of hindlimb muscles in the dyW−/− mouse model of LAMA2-CMD at 8 weeks of age.
(A) Body weight measurements of WT, dyW−/− vehicle-treated and dyW−/− vemurafenib-treated mice. (B) Quadriceps muscle weight/body weight (BW) ratio
measurements. (C) Tibialis anterior (TA) cross-sectional area measurements. (D) Representative images showing dystrophin (red), embryonic myosin heavy
chain (eMHC) (green) and nuclei (blue) staining in TA cryosections from WT mice (left), vehicle-treated dyW−/− mice (middle) and vemurafenib-treated dyW−/−

mice (right). Scale bar: 200 µm. (E-I) Quantitative analysis of (E) number of fibers per mm2 of TA muscle, (F) percentage of eMHC-positive fibers in TA
muscle, (G) active caspase 3 levels in the protein extract from gastrocnemius muscle, (H) percentage of fibers with centrally located nuclei (CNFs) in TA (left
graph) and triceps (right graph), and (I) minimal Feret’s (MinFeret) diameter distribution (percentage of the total number of fibers) in TA (left graph) and
triceps (right graph) from WT mice, vehicle-treated dyW−/− mice and vemurafenib-treated dyW−/− mice. One-way ANOVA with uncorrected Fisher’s LSD test
was performed for the data that followed the normal distribution (body weight, muscle weight/body weight, cross-sectional area, fibers/mm2, eMHC-positive
fibers, percentage of CNFs). Two-way ANOVA analysis was performed for MinFeret diameter distribution data (*P<0.05 denoting significance between
vehicle-treated dyW−/− mice and vemurafenib-treated dyW−/− mice). Kruskal–Wallis test was performed for the data that did not follow the normal distribution
(active caspase 3). All data are represented by statistical significance of mean±s.e.m. (n=10 for all groups). ns, not significant; *P<0.05; **P<0.01;
***P<0.001; ****P<0.0001.
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cytokines in the gastrocnemius muscle of 8-week-old dyW−/− mice,
such as IP-10 (or CXCL10) (Fig. 3G), MIP-1α (CCL3) (Fig. 3I), IL-9
(Fig. 3J) and KC (CXCL1) (Fig. 3K), and reduced levels of the anti-
inflammatory cytokine IL-10 (Fig. 3L). Vemurafenib treatment did not
change the levels of these cytokines compared with their levels in
dyW−/− vehicle-treated animals. Interestingly, the treatment with
vemurafenib significantly restored the levels of eotaxin (CCL11)
(Fig. 3C), an eosinophil chemoattractant (Rankin et al., 2000), and
reduced the levels of monokine induced by γ interferon (MIG/
CXCL9) (Fig. 3D), an important chemokine in inflammatory
myopathies expressed by macrophages and T cells (Paparo, 2019).
Luminex analysis showed no differences in the levels of IL-1β
(Fig. 3E), IL-2 (Fig. 3F), IL-6 (Fig. 3H),MCP-1 (CCL2) (Fig. 3M) and
LIF (Fig. 3N) in the three groups analyzed. Our data show that despite
reducing the levels of two important chemokines, vemurafenib was not
efficient in inhibiting inflammation in dyW−/− mice.

Vemurafenib treatment reducedmTORC1 signaling pathway
activation in dyW−/− mice
Several muscle signaling pathways that regulate metabolism,
inflammation and fibrosis have been described to be dysregulated
in LAMA2-CMD patients and animal models, including ERK,
NFκB and STAT3 (Carmignac et al., 2011a; de Oliveira et al., 2014;
Durbeej, 2015; Elbaz et al., 2012, 2015; Nguyen et al., 2019; Nunes
et al., 2017; Taniguchi et al., 2006; Mehuron et al., 2014). As
vemurafenib is a MEK/ERK inhibitor, we first investigated whether
the short-term treatment with vemurafenib would effectively
modulate this pathway by inhibiting ERK phosphorylation. We
verified that 5 mg/kg of vemurafenib did not inhibit ERK activation
in gastrocnemius of 8-week-old dyW−/− mice (Fig. 4A). We next
analyzed the effects of vemurafenib on STAT3 and NFκB
activation, which have been described to be involved with
inflammation, fibrosis, muscle atrophy and muscle wasting, and
upregulated due to laminin-α2 deficiency (Chakraborty et al., 2017;
Guadagnin et al., 2018; Ma et al., 2017; Sartori et al., 2021).
Vemurafenib did not inhibit STAT3 (Fig. 4B) and NFκB p65
(RELA) activation (Fig. 4C) in dyW−/− mice.
As we observed an improvement in myofiber atrophy after

treatment with vemurafenib (Fig. 1D,I), we analyzed the levels of

phosphorylated JNK1/2, a MAPK family member, described to be
involved in myofiber atrophy (Mulder et al., 2020). No difference
was observed in the levels of phosphorylated JNK1/2 (Fig. 4D) in
the groups analyzed.

Considering the importance of the serine/threonine kinase mTOR
in metabolism regulation (Bodine et al., 2001; Fingar and Blenis,
2004; Giguer̀e, 2018) and the well-described effects of sustained
activation of the mTORC1 signaling pathway to promote skeletal
muscle atrophy and loss in different pathological processes (Castets
et al., 2013; Chiarini et al., 2019; Tang et al., 2014, 2019), we next
investigated whether the increased myofiber diameter observed after
treatment with vemurafenibwas associatedwith themodulation of the
mTORC1 signaling pathway in our animal model of LAMA2-CMD.
We verified increased levels of phosphorylated mTOR (pS2448)
(Fig. 4E) and phosphorylated p70S6K (RPS6KB1) (pT389), a
downstream target of mTOR (Fig. 4F) in gastrocnemius of 8-week-
old dyW−/− mice, and treatment with vemurafenib reduced the levels
of phosphorylated mTOR (pS2448) (Fig. 4E) and restored the levels
of phosphorylated p70S6K (Fig. 4F) to WT levels. Our results show
that vemurafenib acted to normalize the mTORC1 signaling pathway
in dyW−/− mice.

Ubiquitin-proteasome-related pathways and autophagy are
not modulated by vemurafenib in 8-week-old dyW−/− mice
Sustained activation of mTORC1 has been described to promote
muscle atrophy by increasing the expression of E3 ubiquitin ligases
and impairing autophagy (Castets et al., 2013). To verify whether
the ubiquitin-proteasome system and autophagy are impaired and/or
being modulated by vemurafenib in dyW−/− mice at 8 weeks of age,
we quantified the protein levels of two important ubiquitin-
proteasome-related components, atrogin1 (FBXO32) and MuRF1
(TRIM63) (Khalil, 2018), and two proteins involved in autophagy,
beclin-1 and p62 (SQSTM1) (Glick et al., 2010). We did not
observe significant differences in the protein levels of atrogin1
(Fig. 5A), MuRF1 (Fig. 5B) and beclin-1 (Fig. 5C) in 8-week-old
WT, dyW−/− vehicle-treated and dyW−/− vemurafenib-treated mice.
However, we detected increased levels of p62 (Fig. 5D) in dyW−/−

vehicle-treated mice compared to WT mice, suggesting that
autophagy might be impaired in dyW−/− mice at 8 weeks of age.

Fig. 2. Vemurafenib reduces fibrosis and restores the TGF-β/SMAD3 signaling pathway in dyW−/− mice. Quantification of (A) hydroxyproline content in
quadriceps muscle normalized by the muscle weight, (B) TGF-β1 levels and (C) percentage of SMAD3 (pS423/S425) in protein extracts of gastrocnemius
muscle from WT mice, vehicle-treated dyW−/− mice and vemurafenib-treated dyW−/− mice. One-way ANOVA with uncorrected Fisher’s LSD test represented
by statistical significance of mean±s.e.m. (n=10 for all groups). ns, not significant; *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.
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Fig. 3. See next page for legend.
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Treatment with vemurafenib was not effective at reducing p62 in
dyW−/− mice. Our results suggest that the ubiquitin-proteasome
system and autophagy are not modulated by vemurafenib in dyW−/−

mice at 8 weeks of age.

Skeletal muscle function is not improved after vemurafenib
treatment in dyW−/− mice
To investigate whether the improvements in histopathology and
regulation of the mTORC1 signaling pathway were sufficient to
improve skeletal muscle function in vemurafenib-treated dyW−/−

mice, we performed the ex vivo contractility assay using the extensor
digitorum longus (EDL) muscle. Our data show no significant
improvements in strength in twitch (Fig. 6A), tetanus (Fig. 6B) and
force-frequency measurements (Fig. 6C) in dyW−/− vemurafenib-
treated mice compared to dyW−/− vehicle-treated mice. Our
results indicate that treatment with 5 mg/kg vemurafenib from
3 to 8 weeks of age does not improve muscle strength in dyW−/−

mice.

DISCUSSION
LAMA2-CMD is a severe form of congenital muscular dystrophy
characterized by hypotonia, progressive muscle weakness and
respiratory insufficiency (Sarkozy et al., 2020). Only palliative care
is available for LAMA2-CMD patients, which aims to reduce disease
symptoms and improve quality of life (Wang et al., 2010). Although
several treatment approaches have been shown to improve muscle
histopathology in mouse models of LAMA2-CMD (Aoki et al.,

Fig. 3. Effects of vemurafenib on inflammatory cell infiltration and
cytokine profile in hindlimbs from dyW−/− mice at 8 weeks of age.
(A) Representative images showing dystrophin (green), CD45-positive cells
(red) and nuclei (blue) staining in TA cryosections from WT mice (left),
vehicle-treated dyW−/− mice (middle) and vemurafenib-treated dyW−/− mice
(right). Scale bar: 200 µm. (B-N) Quantification of (B) percentage of CD45-
positive areas in TA muscle, and the levels of (C) eotaxin, (D) MIG, (E) IL-1β,
(F) IL-2, (G) IP-10, (H) IL-6, (I) MIP-1α, (J) IL-9, (K) KC, (L) IL-10, (M) MCP-1
and (N) LIF in protein extracts of gastrocnemius muscle from WT mice,
vehicle-treated dyW−/− mice and vemurafenib-treated dyW−/− mice. One-way
ANOVA with uncorrected Fisher’s LSD test was performed for the data that
followed the normal distribution (CD45-positive area, MIG, IL-1β, IL-2, IL-6,
MIP-1α, KC, MCP-1 and LIF measurements) and the Kruskal–Wallis test was
performed for the data that did not follow the normal distribution (eotaxin, IP-
10, IL-9 and IL-10 measurements). All data are represented by statistical
significance of mean±s.e.m. Samples presenting cytokine levels below the
Luminex detection limit were removed from the analysis. ns, not significant;
*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. The individual symbols in the
bar graphs represent the individual animals used in each experiment.

Fig. 4. Vemurafenib inhibited mTOR and p70S6K activation in dyW−/− mice. Levels of (A) phosphorylated ERK1/2 (pT202/Y204), (B) phosphorylated STAT3
(pY705), (C) phosphorylated NFκB p65 (pS536), (D) phosphorylated JNK1/2 (pT183/Y185), (E) phosphorylated mTOR (pS2448) and (F) phosphorylated
p70S6K (pT389) in protein extracts of gastrocnemius muscle from WT mice, vehicle-treated dyW−/− mice and vemurafenib-treated dyW−/− mice. One-way ANOVA
with uncorrected Fisher’s LSD test was performed for the data that followed the normal distribution [ERK1/2 (pT202/Y204), mTOR (pS2448) and NFκB p65
(pS536)]. Kruskal–Wallis test was performed for the data that did not follow the normal distribution [STAT3 (pY705), JNK1/2 (pT183/Y185) and p70S6K (pT389)].
All data are represented by statistical significance of mean±s.e.m. (n=10 for all groups). ns, not significant; *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.
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2013; Durbeej, 2015; Hagiwara et al., 2006; Qiao et al., 2005), only
one clinical trial has been performed for this congenital muscular
dystrophy. Santhera Pharmaceuticals completed a phase 1 clinical
trial with omigapil, an anti-apoptotic drug, which was demonstrated
to be safe and well tolerated in children with LAMA2-CMD. Owing
to the short duration of the study, data showing disease-related
improvements are not available (NCT01805024). The lack of
clinical trials reinforces the need for new treatments that could be
fast-tracked for LAMA2-CMD. In this context, our group evaluated

the efficacy of vemurafenib in preventing disease progression
in dyW−/− mice. As an FDA-approved drug, vemurafenib, if
proven to be efficacious, could be fast-tracked for the treatment of
LAMA2-CMD.

Our data showed that vemurafenib improved skeletal muscle
histomorphology by increasing the percentage of muscle fibers with
a MinFeret diameter of 40-50 μm and by reducing the percentage of
CNFs from 25% in dyW−/− vehicle-treated mice to 18% in the TA of
dyW−/− vemurafenib-treated mice. The treatment with vemurafenib

Fig. 5. The E3 ubiquitin ligases atrogin1 and MuRF1
are not upregulated in dyW−/− mice at 8 weeks of age.
Protein levels of (A) atrogin1, (B) MuRF1, (C) beclin-1
and (D) p62 in protein extracts of gastrocnemius muscle
from WT mice, vehicle-treated dyW−/− mice and
vemurafenib-treated dyW−/− mice. One-way ANOVA with
uncorrected Fisher’s LSD test represented by statistical
significance of mean±s.e.m. (n=10 for all groups). ns,
nonsignificant; *P<0.05.

Fig. 6. Ex vivo contractility analysis of EDL muscle in dyW−/− mice. Normalized force measurements for (A) twitch, (B) tetanus and (C) force frequency.
One-way ANOVA with uncorrected Fisher’s LSD test was performed for the twitch and tetanus data and two-way ANOVA analysis was performed for the
force-frequency data (****P<0.0001 denoting significance between WT and vehicle- or vemurafenib-treated dyW−/− mice). All data are represented by
statistical significance of mean±s.e.m. (n=9 for all groups). ns, not significant; ****P<0.0001.
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did not increase regenerative capacity or reduce apoptosis in skeletal
muscle. Therefore, vemurafenib was not able to prevent the loss of
muscle from the hindlimbs of dyW−/− mice.
We did not observe a correlation between the percentage of

CNFs, the percentage of eMHC-positive fibers and apoptosis in our
animal model after treatment with vemurafenib, suggesting that the
reduction in CNFs in the TA observed is not due to the reduction in
the degeneration-regeneration process. Indeed, the displacement of
nuclei in skeletal muscle fibers is not restricted to the regeneration
process; the central nucleation can also be caused by skeletal muscle
denervation (Carraro and Kern, 2016; Daou et al., 2020). LAMA2-
CMD patients and animal models present with impaired motor
nerve conduction owing to reduced axon diameter and thickness
of the axon myelin sheath, which could cause central nucleation
of myofibers (Nakagawa et al., 2001; Patton, 2000; Previtali
and Zambon, 2020; Quijano-Roy et al., 2004). In dyW−/− mice,
secondary atrophy is observed in the hindlimbs due to paralysis,
which is discussed to be associated with peripheral neuropathy
(Miyagoe-Suzuki et al., 2000). The forelimbs, such as the triceps,
are not affected by paralysis in this animal model of LAMA2-CMD
(Meinen et al., 2012). As we only observed the reduction in the
percentage of CNFs in the TA and not in the triceps of dyW−/− mice
after treatment with vemurafenib, we suggest that the action of
vemurafenib to reduce the percentage of CNFs might be related to
the reduction of the neuropathy associated with the loss of the
laminin-α2 protein in the hindlimbs. Further studies will be required
to evaluate whether the impaired nerve conduction might be
contributing to the nuclei displacement and whether vemurafenib
could be acting to improve LAMA2-CMD neuropathy in the
hindlimbs of dyW−/− mice.
Extracellular matrix remodeling resulting in fibrotic tissue

deposition in skeletal muscles is a hallmark of muscular
dystrophies (Serrano and Muñoz-Cánoves, 2017). In LAMA2-
CMD, fibrotic tissue deposition plays a central role in disease
progression (Accorsi et al., 2020). In this study, we showed that
treatment with vemurafenib significantly reduced fibrosis and
restored the TGF-β/SMAD3 signaling pathway to the basal levels.
We also analyzed the effects of vemurafenib on the inflammatory

response, another important feature of LAMA2-CMD (Pegoraro
et al., 1996). We did not observe an overall improvement in the
inflammatory response after the treatment with vemurafenib. The
reduced levels of the chemoattractants eotaxin and MIG were not
sufficient to decrease the infiltration of immune cells in the muscle
of dyW−/− vemurafenib-treated mice. However, as we focused the
analysis only on the pan-leukocyte marker CD45, we cannot
exclude possible effects of vemurafenib in the differentiation,
activation and recruitment of specific leukocyte subpopulations.
We next evaluated the effects of vemurafenib on signaling

pathways dysregulated in the context of laminin-α2 deficiency.
Vemurafenib was able to restore the mTORC1 signaling pathway but
did not inhibit ERK, NFκB and STAT3 activation in dyW−/− mice. It
is important tomention that this study demonstrates the overactivation
of the mTORC1/p70S6K signaling pathway in the gastrocnemius
muscle of dyW−/− mice. The mTOR signaling pathway is well
described to be involved in protein synthesis, muscle hypertrophy and
growth (Bodine et al., 2001; Schiaffino et al., 2021). However,
sustained activation of mTORC1 can lead to pulmonary fibrosis (Gui
et al., 2015) and drive neuromuscular junction structural alterations,
resulting in myofiber denervation (Ang et al., 2022), muscle atrophy,
loss of muscle mass (Tang et al., 2014, 2019) and late-onset
myopathy by increasing the expression of the E3 ubiquitin ligases
atrogin1 and MuRF1 and impairing autophagy (Castets et al., 2013).

Inhibition of mTORC1 by rapamycin improves muscle pathology in
the fukutin-deficient mouse model of dystroglycanopathy (Foltz
et al., 2016) and the mdx mouse model of Duchenne muscular
dystrophy (Eghtesad et al., 2011).

Our results did not show a correlation between the upregulation of
the mTORC1/p70S6K signaling pathway with the atrogin1 and
MuRF1 protein levels detected in gastrocnemius of dyW−/− mice,
suggesting that in our animal model at 8 weeks of age, the
overactivation of the mTORC1/p70S6K pathway does not modulate
the ubiquitin-proteasome system. Interestingly, studies have shown
an increase in global protein ubiquitination and mRNA expression
of atrogin1 and MuRF1 in the dy3k/dy3k mouse model of LAMA2-
CMD (Carmignac et al., 2011a). dy3k/dy3k mice have a complete
deficiency of laminin-α2 (Miyagoe et al., 1997), whereas dyW−/−

mice produce a small amount of truncated laminin-α2 protein
lacking the LN domain (Guo et al., 2003). Therefore, we suggest
that the differences in the ubiquitin-proteasome activation observed
could be related to the different levels of laminin-α2 chain
expression in the two animal models, which results in different
phenotypes, disease progression and lifespan (Gawlik and Durbeej,
2020) and will likely impact laminin-α2-related signaling pathways
in the skeletal muscle. However, we did observe an increase in the
levels of p62, indicating that autophagymight be impaired in dyW−/−

mice. As we did not observe any difference in the levels of beclin-1,
another protein involved in autophagy, further studies to evaluate
other autophagic markers are essential to confirm whether
autophagy is impaired in dyW−/− mice at 8 weeks of age.

Together, our results indicate that vemurafenib partially improves
muscle histopathology by reducing the percentage of CNFs,
increasing the percentage of muscle fibers with bigger diameter in
the TA, reducing fibrosis, and restoring the TGF-β/SMAD3
and mTORC1/p70S6K signaling pathways to WT levels in
hindlimbs of dyW−/− mice. Future studies will be necessary to
understand the correlation of mTORC1 overactivation with the
neuropathy observed in the hindlimbs of the dyW−/−mice, as chronic
activation of mTORC1 could drive neuromuscular junction
structural alterations and myofiber denervation (Ang et al., 2022).

As a pharmacological therapy that modulates intracellular
signaling pathways involved in fibrosis and metabolism,
vemurafenib is not capable of restoring the myomatrix and,
consequently, does not improve muscle strength in dyW−/− mice.
However, vemurafenib was able to partially improve muscle
histopathology and restore the TGF-β/SMAD3 and mTORC1/
p70S6K signaling pathways to WT levels. Therefore, combinatorial
treatment with vemurafenib and therapeutics that restore the
myomatrix and improve other pathological features in LAMA2-
CMD (Erb et al., 2009; Yu et al., 2013; Barraza-Flores et al., 2020;
Rooney, 2012; van Ry et al., 2014) might be a more effective
therapeutic approach for LAMA2-CMD and should be investigated
in future preclinical studies.

MATERIALS AND METHODS
Study design
To evaluate the benefits of vemurafenib as a therapeutic for LAMA2-CMD,
we performed a short-term treatment with 5 mg/kg vemurafenib
(MedChemExpress, HY-12057) in the dyw−/− mouse model of LAMA2-
CMD from 3 to 8 weeks of age. The dyw−/− mouse model is a severe model
of the disease presenting low levels of truncated laminin-α2 chain, which
represents fairly well a group of patients with LAMA2-CMD, and it is
considered a relevant model for LAMA2-CMD preclinical studies. The mice
were treated four times a week in the morning via oral gavage with 5 mg/kg
vemurafenib diluted in 10% DMSO, 40% PEG300 (MedChemExpress,
HY-Y0873), 5% Tween-80 (MedChemExpress, HY-Y1891) and 45%
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saline, as per the manufacturer’s recommendations for in vivo
administration. The vehicle-treated mice were treated with an equal
volume of vehicle solution (10% DMSO, 40% PEG300, 5% Tween-80
and 45% saline). After 5 weeks of treatment, we evaluated skeletal muscle
histology, apoptosis, hydroxyproline content, inflammation, intracellular
signaling pathways and skeletal muscle function. Animals were assigned
randomly to experimental groups and analyses were performed blinded
to treatment allocation. Different doses of vemurafenib were tested and
the most efficient dose (5 mg/kg) to reduce hydroxyproline content
(measurement of fibrosis) was chosen (Fig. S1). Initial analysis to verify
gender effects was made on five males and five females for each group. No
clear differences were observed (Fig. S2) and both genders were used for the
final analysis. The minimal number of animals in each experiment was
determined using power analysis (power=0.8, α=0.05 and r=0.7).

Animals
Heterozygous dyW mice (Kuang et al., 1998) (gift from Eva Engvall via
Paul Martin; The Ohio State University, Columbus, OH, USA) were
crossed to obtain homozygous dyw−/− mutants. The animals were treated
according to the rules and regulations specified in the approved protocol
from the University of Nevada Reno Institutional Animal Care and Use
Committee. At the end of the study, mice were sacrificed by CO2

asphyxiation followed by cervical dislocation under the American
Veterinary Medical Association guidelines for euthanasia. All mice were
maintained in a pathogen-free animal care facility with access to food and
water ad libitum.

Protein extraction
Gastrocnemius protein was extracted in RIPA buffer (50 mM Tris pH 7.4,
1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 2 mM
EDTA, 50 mMNaF) containing protease inhibitor cocktail, sodium fluoride
(NaF) and sodium orthovanadate (Na3VO4) phosphatase inhibitors. Extracts
were centrifuged at 14,000 g at 4°C for 5 min to obtain the supernatant.
Protein quantification was performed using the Pierce BCA protein assay kit
(Thermo Fisher Scientific, 23227) according to the manufacturer’s
recommendations.

Enzyme-linked immunosorbent assay
Enzyme-linked immunosorbent assay (ELISA) kits were used to measure
levels of active caspase 3 (MyBioSource, MBS7210856), TGF-β1 (Abcam,
ab119557), phosphorylated SMAD3 (pS423/S425) (Abcam, 186038),
phosphorylated mTOR (pS2448) (RayBiotech, PEL-mTOR-S2448),
phosphorylated p70S6K (pT389) (Abcam, ab176651), phosphorylated
ERK1/2 (pT202/Y204) (Abcam, ab176640), phosphorylated STAT3
(pY705) (Invitrogen, KHO0481), phosphorylated NFκB p65 (pS536)
(Abcam, ab176647), phosphorylated JNK1/2 (pT183/Y185) (Abcam,
ab176645), atrogin1 (LSBio, LS-F35338), MuRF1 (MyBioSource,
MBS2502946), beclin-1 (LSBio, LS-F35824) and p62 (MyBioSource,
MBS039475) in the gastrocnemius protein homogenate, according to the
manufacturer’s instructions.

Luminex xMAP immunoassay
Luminex xMAP immunoassay was performed in the University of
California, Los Angeles (UCLA) Immune Assessment Core to quantify
cytokine levels in the gastrocnemius protein homogenate. Mouse magnetic
cytokine/chemokine kits were purchased from EMDMillipore and used per
the manufacturer’s instructions. Briefly, 25 μl diluted (1:2) samples were
mixed with 25 μl magnetic beads and allowed to incubate overnight at 4°C
while shaking. After washing the plates twice with wash buffer in a Biotek
ELx405 washer, 25 μl of biotinylated detection antibody was added and the
samples were incubated for 1 h at room temperature. Then, 25 μl
streptavidin-phycoerythrin conjugate was added to the reaction mixture
and incubated for another 30 min at room temperature. Following two
washes, the beads were resuspended in sheath fluid, and fluorescence was
quantified using a Luminex 200TM instrument (Luminex Corporation, TX,
USA). Samples presenting cytokine levels below the Luminex detection
limit were removed from the analysis.

Immunofluorescence
Freshly collected tibialis anterior (TA) and triceps brachii muscles were
rinsed in PBS and placed into a 2:3 (v/v) optimum cutting temperature
compound (Tissue-TEK OCT compound, Sakura Finetek, 4583) to 30%
sucrose/PBS medium inside a cryomold and frozen in liquid nitrogen-
cooled isopentane. Tissues were then cryosectioned at 10 μm thickness
using a Leica CM1950 cryostat. Sections were fixed in cold 4%
paraformaldehyde in PBS for 10 min and incubated overnight with the
following primary antibodies: anti-eMHC [Developmental Studies
Hybridoma Bank (DSHB), F1.652-s; 5 µg/ml], anti-dystrophin [DSHB,
MANDRA1 (7A10); 5 µg/ml], anti-dystrophin (Abcam, ab15277; 4 µg/ml)
and anti-CD45 (Abcam, ab10558; 50 µg/ml). After washing with PBS,
muscle sections were incubated with secondary antibodies conjugated with
Alexa Fluor 488 (Invitrogen, A11001; 2 µg/ml) and Alexa Fluor 546
(Invitrogen, A11035; 2 µg/ml) at room temperature for 45 min and mounted
with Vectashield Antifade Mounting Medium with 4′,6-diamidino-2-
phenylindole (DAPI) (Vector Laboratories, H-1200-10). When staining
with monoclonal mouse antibodies, the Mouse-On-Mouse (MOM) kit
(Vector Laboratories, FMK-2201) was used.

A series of three non-consecutive sections were acquired using the
Keyence digital microscope (Keyence Corporation of America, IL USA)
and the images were analyzed using Image J software (National Institutes of
Health, USA). The measurements of the number of fibers, fiber MinFeret
diameter, CNFs, eMHC-positive fibers and the CD45-positive area were
performed on three stitched whole sections of the TA muscle and averaged
for each animal.

Hydroxyproline assay
Quadricep muscle was minced overnight in 2 ml of 6 M hydrochloric acid at
110°C and the resulting hydrolysate (10 µl) was mixed with 150 µl
isopropanol. Hydroxyproline oxidation was then performed for 10 min at
room temperature with the addition of 72 µl of 1.4% chloramine-T (Sigma-
Aldrich, 402869) in citrate buffer (0.385 M sodium acetate trihydrate,
0.24 M citric acid, 1.2% acetic acid, 0.85 M sodium hydroxide). Ehrlich’s
reagent [1 ml; 7.5g of 4-(dimethylamino) benzaldehyde, 25 ml ethanol,
1688 μl sulfuric acid] was then added and incubated for 30 min at 55°C. The
absorbance measurement was performed at 558 nm, as previously described
(Heydemann et al., 2005).

Ex vivo contractility assay
Extensor digitorum longus (EDL) muscles were dissected from deeply
anesthetized mice with 2.5% isoflurane and mounted between two platinum
electrodes, clamped at one tendon, and attached at the other tendon to a force
transducer placed in an oxygenated bath containing a physiologic salt
solution (PSS buffer, pH 7.6) at 30°C. Experiments were performed using
the isolated muscle test system for mice (Aurora Scientific) as described
previously (https://treat-nmd.org/wp-content/uploads/2016/08/cmd-DMD_
M.1.2.002.pdf; Sperringer and Grange, 2016). Data were analyzed using
DMA software (Aurora Scientific), and the force was normalized by the
EDL muscle weight.

Statistical analysis
All data are expressed as mean±standard error mean (s.e.m.). The means of
all data that followed the normal distribution were analyzed using one-way
ANOVA with uncorrected Fisher’s least significant difference (LSD) test,
and the data that did not follow the normal distribution were analyzed using
the Kruskal–Wallis test. Twitch and tetanus data were analyzed using one-
way ANOVAwith uncorrected Fisher’s LSD test, and force-frequency data
were analyzed using two-way ANOVA. Statistical analyses were performed
using GraphPad Prism 9 software. P-values, n-values and symbols are
described in the figure legends. *P<0.05, **P<0.01, ***P<0.001,
****P<0.0001 were considered statistically significant.
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