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The Human Cell Atlas: making ‘cell space’ for disease
Chris P. Ponting

ABSTRACT
A single change in DNA, RNA, proteins or cellular images can be
useful as a biomarker of disease onset or progression. With
high-throughput molecular phenotyping of single cells, it is now
conceivable that the molecular changes occurring across thousands,
or tens of thousands, of individual cells could additionally be
considered as a disease biomarker. Transition to a disease state
would then be reflected by the shifts in cell numbers and locations
across a multidimensional space that is defined by the molecular
content of cells. Realising this ambition requires a robust formulation of
such a multidimensional ‘cell space’. This is one of the goals of the
recently launched Human Cell Atlas project. A second goal is to
populate this ‘cell space’ with all cell types in the human body. Here,
I consider thepotential of theHumanCell Atlas project for improvingour
description and understanding of the cell-type specificity of disease.
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Introduction
Can we attribute a disease to a cell type? If so, then what molecular
features of a cell type best predict a disease state? Could we pinpoint
the origin of a disease both to a particular cell type and to a defined
developmental time point? Answers to these questions will help to
deliver on the promise of new therapies, specifically those that target
disease onset or progression, by taking advantage of the distinctive
features of cell types.
An obstacle that needs to be surmounted before this promise is

realised is our incomplete knowledge of how to define and
distinguish cell types. It is this knowledge gap that the Human
Cell Atlas (Regev et al., 2017) intends to fill by defining all human
cell types according to the molecules that they typically contain.
This Atlas, and the information it contains, would then allow
researchers to infer a cell type’s abundance, physiological states,
developmental trajectories and spatiotemporal locations.
The first draft of the Atlas is expected to profile 30- to 100-million

cells and their matching tissues. These will be obtained from rapid
autopsy or organ donors from deceased, ethnically diverse, adults
(20 to 55 years old) of both sexes. In its first draft, information on
most cells will be generated by 3′-tag RNA sequencing, which
surveys the number of transcripts in each cell’s transcriptome.
Each tissue’s cells will be sampled sufficiently to identify all except
the most rare (<1%) of cell types. The consortium has pledged to
allow unrestricted access to all the data generated, where consent

agreements allow, and as soon as possible. To be fully realised, the
lofty ambition of the Human Cell Atlas will need to successfully
address a number of technical and analytical challenges (Box 1).
Here, I assume that these all come to pass in the near future.

The ‘cell space’
One expected outcome of the Human Cell Atlas project is the
development of a multidimensional representation, a ‘cell space’
(Trapnell, 2015; Wagner et al., 2016; Clevers et al., 2017), of the
molecular similarities and differences among all known types of
human cells (Fig. 1). The proximity of cells within this space
implies that they are drawn from a population of similar type and
state (Box 1). This population need neither to have arisen from a
single developmental lineage, nor to have been spatially collocated
within the original donor. This cell space would provide a reference
against which other cells would be annotated with respect to type or
state, simply by virtue of their collocation. Cells that project into
unoccupied space could potentially represent novel cell types,
although their novelty and distinctive function would require
experimental verification (Box 1).

The untested, motivating hypothesis of the Human Cell Atlas is
that cells from disease samples consistently project into this
space differently to cells from healthy control samples (Fig. 1).
Theoretically, such differences could arise from altered cell
numbers (Fig. 1B) or cellular processes (Fig. 1C) for one or
more cell populations. It is possible that such a space will not
capture all aspects of disease pathophysiology. For example, if an
RNA-based atlas does not perfectly reflect cell-cell interactions,
then an RNA-defined cell space might not be able to identify the
disease states that involve aberrant interactions between cell types
(Fig. 1D).

In its first phase, the Human Cell Atlas project will not analyse
cells from large disease-case-control cohorts (The Human Cell
Atlas Consortium, 2017), so most disease mechanism studies
currently lie out of scope (Rozenblatt-Rosen et al., 2017).
Consequently, we expect its initial importance to stem not from
the unbiased molecular definition of disease, but from the
construction of a reliable multidimensional reference cell space
into which any researcher can project their own single-cell data.
Furthermore, the project should deliver standard experimental and
analytical protocols for generating single-cell datasets and for
projecting them into this common space.

Future studies will likely take advantage of the Human Cell Atlas
project’s experimental and analytical framework. For example,
studies that robustly observe changes in cell populations across case-
control cohorts could define disease status and quantify disease
progression. Metrics for disease progression could be:

(1) the rate of change in the size of a disease-predictive cell
subpopulation; or,

(2) the rate of change of a transcriptomic signature across one or
more cell populations; or,

(3) a vector representing the shift of a cell population in
multidimensional space as the disease progresses.
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Disease status would then be definable by applying a threshold to
the predefined disease progression metric. Conversely, drugs that
significantly reverse these rates of change or this vector would
represent therapeutic candidates.
These are some of the potential future benefits of the Human Cell

Atlas project. Are there more near-term advantages for better
understanding disease? Two recent studies of the mammalian
trachea (Montoro et al., 2018; Plasschaert et al., 2018) exemplify
how single-cell studies are enhancing our understanding of
Mendelian disease. These studies discovered a previously
unknown cell type in which the CFTR (cystic fibrosis
transmembrane conductance regulator) gene, which is mutated in
cystic fibrosis patients, is highly expressed. In this, as in future
examples, the physiological consequences of gene deficiency in
these rare cell types will require further detailed experimentation.
Molecular data at the single-cell resolution are also improving

our understanding of the cellular response to infectious disease
(Stubbington et al., 2017), injury (Arneson et al., 2018) or treatment
(Vogel et al., 2016). For example, antibiotic treatment fails to
substantially alter the transcriptional identities of innate lymphoid
cell populations, yet it perturbs their relative proportions and their

transcript abundance for several hundred genes (Gury-BenAri et al.,
2016). Similar findings have been reported for mouse intestinal
epithelial cells following bacterial or helminth infection (Haber
et al., 2017).

Cancer makes only a minor contribution to the future plans of the
Human Cell Atlas (The Human Cell Atlas Consortium, 2017).
Nevertheless, the Atlas’ initial datasets will be invaluable for
understanding tumour heterogeneity, initiation and progression.
Gene expression profiles of cell types can be used to assess the
contributions of stromal cells to bulk tumour transcriptomes (Puram
et al., 2017) and to infer the cell of origin in pre-cancerous
conditions such as Barrett’s oesophagus (Jiang et al., 2017).

Studies on neurological disease are also gaining substantially
from an improved definition of cell types and states. Autism
spectrum disorders, for example, have been associated with
mutations in a set of genes and, because the expression of these
genes is enriched in foetal and in adult neurons, in particular in
inhibitory neurons, it is proposed that these are the cell types that are
most profoundly dysregulated in these neurodevelopmental
disorders (Wang et al., 2018).

Over the past decade, genomic studies revealed large numbers of
associations between genetic variants and diverse complex traits
and diseases. These DNA variants tend to lie in close chromosomal
proximity to genes and functional elements that are active in the
tissues that are relevant to the trait or disease (Boyle et al., 2017). It
is reasonable to expect, therefore, that the survey of gene activity
provided by the Human Cell Atlas will lead to a more highly
resolved understanding of dysregulation at the cell population level,
rather than at the heterogeneous tissue level. Nevertheless, most of
the heritability of traits and complex diseases can be explained by
variants that only indirectly alter the functions of core disease-
related genes (Boyle et al., 2017). This implies that, even with finely
resolved cell-type data, explaining the molecular mechanisms
underlying complex disease genetics will remain a substantial
challenge. Encouragingly, however, in some instances the
expression of many genes implicated in complex diseases is
restricted to particular disease-relevant cell types. This allows the
candidature of these genes in disease to be further strengthened and
cell processes disrupted in genetic disease to be proposed (Smillie
et al., 2018).

Not all facets of disease biology will be revealed by studies of
human primary cells. Diseases that originate at inaccessible
developmental stages, for example, will not be informed by the
Human Cell Atlas project because the samples are to be drawn
predominantly from adult individuals. To address this shortcoming,
organoids, which, by their nature, model organ development, could
provide some insight. The Human Cell Atlas refers to a Human
Organoid Project within its White Paper (The Human Cell Atlas
Consortium, 2017). Nevertheless, insights from human organoids
are currently restricted by their irreproducibility and by a limited
understanding of the processes that guide their development (Huch
et al., 2017).

For these reasons, model organisms are expected to retain their
central role in elucidating the mechanisms of human disease. To
facilitate comparisons with human cells, there is a need for single-
cell atlases from model organisms, such as those being piloted for
mouse (Han et al., 2018; Tabula Muris Consortium, 2018),
Drosophila (Davie et al., 2018) and the planarian Schmidtea
mediterranea (Fincher et al., 2018; Plass et al., 2018). These cell
atlases would then need to be compared with the Human Cell Atlas.
Comparison would take advantage of orthology relationships and
could project cells of one species into the cell space of the other, or

Box 1. Current technical and analytical challenges in
single-cell biology
Efficient isolation
Some cell types are robust and remain viable following tissue digestion,
cell sorting and/or suspension protocols; others are considerably more
fickle and these are at risk of being under-sampled.
Cost
Large-scale single-cell and spatial transcriptomics or proteomics
experiments are not currently routine in most laboratories owing to
their high costs, although combinatorial labelling for sequencing
experiments has recently reduced these considerably (Cao et al., 2017).
Batch effects
Technical differences will exist among experiments performed on
different platforms, at different times and/or in different laboratories,
and these need to be accounted for (Haghverdi et al., 2018).
Cell-type annotation
In general, different cell types are easily discriminated as separate
clusters following the clustering of sparse single-cell transcript or
epigenetic data (Prakadan et al., 2017; Mezger et al., 2018). The
Human Cell Atlas Consortium, however, has not sought to define cell
type. Rather, it believes that a robust definition will eventually emerge
from empirical observation. Assignment to a type implies that a particular
cell shares phenotypic and functional features with other cells of the
same type. However, single-cell data, considered alone, are limited to
only predicting, rather than demonstrating, cellular functionality.
Consequently, independent experimental investigation of cell-type
function is necessary.
Cell-state inference
Cells of a particular type are likely to occupy a continuum of states, owing
to the cell cycle, or differentiation, or spatial location, for example
(Wagner et al., 2016; Clevers et al., 2017). To assign cell state, therefore,
we need to resist being categorical, and instead predict the continuous
trajectories of cell-state change.When it is unclear whether these are cell
states or types, groups of similar cells may best be described as (sub-)
populations. Going beyond measurements of RNA abundance, the rate
by which gene expression of these populations changes can be inferred
from single samples (La Manno et al., 2018).
Multi-omic data integration
Increasingly, several different data types will be measured in the same
single cell, for example RNA abundance versus spatial location or open
chromatin or protein abundance. Maximising the predictive value of such
multi-omic data will be a key future challenge (Packer and Trapnell,
2018).
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project all cell spaces into a common, unifying multidimensional
space. Conceptually, this would allow a specific cell type to be
annotated across multiple species, and enable researchers to rank
cell types by their ‘molecular drift’, specifically the degree by which
each cell type’s molecular features have changed since the species’
last common ancestor. These analyses thus could predict the
degree by which a cell population in one species models the same
population in another, a useful metric when justifying the use
of models.

Conclusions
In framing this discussion, I have avoided a previous description of
the Human Cell Atlas as a periodic table for biology (Regev et al.,
2017). This is because it is likely that we will eventually conceive
of cell states as plastic and part of a continuum in the cell space,
rather than being “the ‘atomic’ units that underlie human life”
(Regev et al., 2017). Also, while the periodic table of chemical
elements is useful in predicting reactions between multiple
elements, we are not likely to use cell atlases to predict the details
of multicellular function in the near future. The Human Cell Atlas is
also different from the Human Genome Project in that it is
determining a highly dynamic, rather than a highly stable, system.
This means that the completion of any cell atlas will be

indeterminate. Rather, the Human Cell Atlas will equip science
with the concepts, experimental data and analytical tools required
to measure disease states at single-molecule, single-cell, tissue,
individual and population levels.

What comes next after the Human Cell Atlas project? By analogy
with how the Human Genome Project was followed by surveys of
large numbers of genomes, it is likely that there will be a systematic
determination of cellular phenotypes across a large number of
individuals, presumably when high-throughput assay costs,
particularly for single-cell DNA or RNA sequencing, fall further.
These cellular phenotypes could also be measured across CRISPR/
Cas9 screens used to disrupt one gene in one cell for all genes and all
cell types. The shift in cell space location for a cell’s genotype
would reflect its contribution to its cell type’s specificity.

Another interesting possibility is a cell-space-association study,
an extension to existing transcriptome-wide association study
approaches (Gusev et al., 2016). The intent of this would be to
observe which cell populations are predicted, from their genotypes,
to shift in cell space coherently in disease cases compared to the
shift in cell space predicted for healthy controls. In such cases, shifts
that were discordant between cases and controls would provide
robust evidence that a cell type causally contributes to complex
disease risk. Such approaches are particularly powerful because

1 2 3
Cell populations
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A  Health

Larger proportion
of one or more
cell populations

B  Disease

Altered cellular
processes in
one or more

cell populations
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Aberrant interactions
between cell populations

D  Disease

Aberrant interactions Altered cellular processes

Key

Fig. 1. Schematic representation of a multidimensional cell space populated by cells from healthy and disease samples. Example healthy (A) and
disease (B-D) samples are shown. Four hypothetical cell populations are shown in different colours. The location of an individual cell (represented by a sphere) in
this space is determined by its molecular (e.g. RNA) content. Cells that lie in proximity in this space are expected to contain a more similar set of molecules and to
be similar in cell state and/or cell type. One of the motivating hypotheses of the Human Cell Atlas is that the locations of cells from healthy samples typically differ
from those of cells from disease samples.
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their sole reliance on genetic variation makes environmental and
other confounding effects irrelevant. Whichever direction this
incipient field takes, the Human Cell Atlas project looks set to
greatly aid future studies of the cellular basis of disease.
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