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Drosophila and genome-wide association studies: a review and
resource for the functional dissection of human complex traits
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ABSTRACT
Human genome-wide association studies (GWAS) have successfully
identified thousands of susceptibility loci for common diseases with
complex genetic etiologies. Although the susceptibility variants
identified by GWAS usually have only modest effects on individual
disease risk, they contribute to a substantial burden of trait variation in
the overall population. GWAS also offer valuable clues to disease
mechanisms that have long proven to be elusive. These insights
could lead the way to breakthrough treatments; however, several
challenges hinder progress, making innovative approaches to
accelerate the follow-up of results from GWAS an urgent priority.
Here, we discuss the largely untapped potential of the fruit fly,
Drosophila melanogaster, for functional investigation of findings from
human GWAS. We highlight selected examples where strong
genomic conservation with humans along with the rapid and
powerful genetic tools available for flies have already facilitated fine
mapping of association signals, elucidated gene mechanisms, and
revealed novel disease-relevant biology. We emphasize current
research opportunities in this rapidly advancing field, and present
bioinformatic analyses that systematically explore the applicability of
Drosophila for interrogation of susceptibility signals implicated in
more than 1000 human traits, based on all GWAS completed to date.
Thus, our discussion is targeted at both human geneticists seeking
innovative strategies for experimental validation of findings from
GWAS, as well as the Drosophila research community, by whom
ongoing investigations of the implicated genes will powerfully inform
our understanding of human disease.
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Over the last two decades, human genome-wide association studies
(GWAS) have begun to reveal the genetic risk factors for countless
common disorders with complex genetic etiologies (Hardy and
Singleton, 2009), including most of the major causes of morbidity
and mortality in the developed world. Despite the impressive
success rate for discovering disease susceptibility loci, few, if any,
results from GWAS have yet to be successfully translated for
delivery of new therapies. This is partly explained by challenges

implicit in the experimental design; GWAS provide a list of
implicated genomic loci from which causal genes must first be
identified in order to confidently draw conclusions about biological
mechanisms. Another important barrier stems from insufficient
communication between the human geneticists who lead GWAS
discovery efforts and the researchers best equipped with the tools
that are pivotal for further investigations, including simple animal
models. Here, we focus on the outstanding and largely untapped
potential of the fruit fly, Drosophila melanogaster, for functional
follow-up of human GWAS. We first provide a basic overview of
the methodology behind GWAS, including addressing common
misconceptions and highlighting challenges for identifying causal
genes. Second, we introduce the Drosophila experimental model,
covering some key contributions to biomedical science and the
powerful genetic tools available for follow-up of GWAS. Third, we
present results of cross-species bioinformatic analyses intended as a
resource for both human and fly geneticists who are interested in
working together to elucidate the genetic mechanisms that underlie
complex human traits. Thus, we hope to promote more widespread
experimental follow-up of human GWAS in fly models, and thereby
accelerate insights leading to novel and much needed therapies.

GWAS: promise and challenges
The National Human Genome Research Institute Catalog of
Published GWAS (Welter et al., 2014; http://www.ebi.ac.uk/gwas/)
currently reports 33,004 variant associations with more than 1601
distinct human traits, based on aggregated results from 2224
published GWAS. Each of these human genetic findings is
supported by robust statistical evidence. Compared with
Mendelian disorders, which are caused by highly penetrant,
single-gene mutations, complex genetic diseases are characterized
by (1) common polymorphisms with more modest effect sizes; (2) a
greater role for polygenicity (additive effects resulting frommultiple
risk alleles); (3) genetic heterogeneity, in which disease risk is
influenced by at least partially non-overlapping loci; and (4) a more
prominent contribution of non-genetic factors, including age and
environmental exposures. For decades, such disorders evaded
genetic dissection until the implementation of GWAS, which have
now successfully revealed the presence of risk alleles for
innumerable human traits, including coronary artery disease (Lu
et al., 2012; Schunkert et al., 2011), multiple sclerosis (De Jager
et al., 2009; Sawcer et al., 2011), Alzheimer’s disease (Lambert
et al., 2013; Naj et al., 2011), and schizophrenia (Ripke et al., 2013;
Shi et al., 2011). In fact, as our understanding of human genetics has
advanced, many of the distinctions between simple and complex
genetic disorders have become less clear-cut. For example, GWAS
have now identified common variant modifiers for rare Mendelian
disorders (Lee et al., 2015), and reciprocally, next-generation
sequencing approaches are beginning to reveal important
contributions of rare risk alleles for common diseases (Goldstein
et al., 2013). Additional examples have highlighted convergence
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between studies of rare and common alleles of the same gene,
including SNCA in Parkinson’s disease (Xu et al., 2015), PCSK9 in
dyslipidemia (Teslovich et al., 2010), and TBX6 in congenital
scoliosis (Wu et al., 2015).
In statistical genetics, the association study design simply

compares the frequency of an allelic variant between a case and
control sample (Balding, 2006) (Fig. 1A). Having controlled for
potential confounders between the samples (e.g. ethnic
composition, relatedness, or similar factors that might influence
genetic makeup), a significant difference in variant frequencies
between cases and controls signals the presence of a potential risk or
protective allele. An improved understanding of human genomic
variation coupled with advances in genotyping technology and
statistical methods have enabled association testing on an unbiased,
genome-wide scale. In the resulting GWAS, association tests are
conducted iteratively for variants sampled across the entire genome.
Owing to the block-like structure of correlated genetic variation
within genomes (Frazer et al., 2007), current imputation methods
allow estimation of millions of genotypes from a much smaller
number of directly typed variants. Importantly, given the limitations
imposed by commonly employed genotyping arrays and sample

sizes, most GWAS conducted to date have been powered for
detection of relatively common genomic variants (>1% minor allele
frequency). More recently, however, GWAS are also being
deployed successfully for analysis of exome-wide genotyping or
next-generation sequencing data, highlighting less common or rare
variant alleles in population-based case and control cohorts
(Francioli et al., 2014; Gudbjartsson et al., 2015; Walter et al.,
2015). Besides their application for human genetic investigation,
GWAS have further proven to be a powerful method for discovery of
genomic variants responsible for complex traits in other species,
including Drosophila. Indeed, GWAS in flies have successfully
identified susceptibility loci for sleep (Harbison et al., 2013),
aggression (Shorter et al., 2015), brain size (Zwarts et al., 2015),
courtship patterns (Gaertner et al., 2015), sexual characteristics
(Takahara and Takahashi, 2015), longevity (Ivanov et al., 2015) and
pigmentation (Dembeck et al., 2015), among other phenotypes.

As noted earlier, thousands of susceptibility loci have now been
reported for a large diversity of human traits, including many
diseases without effective treatments. A central justification for
the substantial investment in GWAS has been the potential for
advancement of our understanding of disease mechanisms,
including insights that could promote development of new
therapies. However, the successful discovery of a robust
susceptibility signal via GWAS rarely amounts to definitive
identification of the responsible gene(s), which is essential for
moving from a genetic finding to therapeutic development. Instead,
GWAS typically identify a marker single nucleotide polymorphism
(SNP) that is correlated with an unknown causal genetic variant
(Fig. 1B) (Cantor et al., 2010). Therefore, associated SNPs usually
identify ‘haplotype blocks’ encompassing up to several hundred
kilobases (Wall and Pritchard, 2003) and further fine mapping of
such signals to define the responsible genes and variants has proven
challenging in most cases (Edwards et al., 2013; Ioannidis et al.,
2009). Thus, association peaks from GWAS typically identify a
handful of gene candidates, and additional studies are required to
determine whether one or more of these are likely to be causal.

Further complicating the picture, it now seems that most GWAS
signals are probably the result of regulatory variation – alleles that
fall within enhancer elements and therefore impact gene expression
– rather than amino acid changes (GTExConsortium, 2015; Nicolae
et al., 2010). Because enhancers often act over very long genomic
distances, a large number of candidate genes might need to be
considered for each associated polymorphism. Nevertheless,
ongoing large consortium projects, such as ENCODE
(EncodeProjectConsortium, 2004) and GTEx (GTExConsortium,
2015), are enhancing our understanding of non-coding genomic
regulatory sequences, allowing improved estimation of the local and
more distant changes in gene expression triggered by common
variants. Other bioinformatic approaches have been developed to
integrate knowledge of genetic pathways with GWAS to test the
association between a pathway and a disorder (Cantor et al., 2010;
Hindorff et al., 2009). Such efforts promise to simplify the
prioritization of candidate genes that could be responsible for
associated variants. However, as discussed further below, even once
a convincing candidate gene is identified, substantial experimental
work is needed to confirm its link to disease susceptibility,
including elucidation of the underlying molecular mechanisms.

A frequent criticism of GWAS is that the effect sizes identified for
most variants are quite modest. For example, among the ∼22
susceptibility loci identified by the largest Alzheimer’s disease
GWAS (Lambert et al., 2013), odds ratio estimates for the
implicated risk alleles range from 1.1-1.4, whereas the epsilon 4
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Fig. 1. GWAS experimental design and interpretation. (A) In humanGWAS,
subjects with a disease or other trait of interest (Cases) are compared with a
cohort of unaffected individuals (Controls). Genome-wide genetic variation is
profiled using genotyping arrays, and the resulting frequencies of single
nucleotide polymorphisms (SNPs) are evaluated between the groups. In the
schematic, a C/T SNP (red) shows a deviation in frequency, with the minor
allele, T, being enriched in Cases. Current GWAS examine millions of discrete
variants in this manner, and are powered to detect modest frequency
differences among cohorts including thousands or tens of thousands of
subjects. (B) A schematic ‘association plot’. Such plots are generated based
on the results of statistical tests for differences in SNP frequencies versus
genomic position, superimposed on the annotated human genome reference.
An association signal typically results in a ‘peak’, resulting from regional
correlation in genetic variation arising from linkage disequilibrium among
SNPs. The SNP showing the strongest association (red) falls within an
intergenic region (sequence between genes). In this schematic, a number of
candidate causal genes (blue) are implicated, based on several competing
considerations. Three genes fall directly under the association peak; however,
the top SNP is within an annotated enhancer element (green), raising the
possibility of longer-range impact on gene expression outside the immediate
region. It is also possible that the causal variant responsible for the regional
association has not been directly assayed; for example, a candidate, rare
exonic variant (purple) is shown.
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allele of the apolipoprotein E gene – discovered by linkage analyses
completed before the GWAS era – is associated with a threefold
increased risk of disease (Corder et al., 1993; Pericak-Vance et al.,
1991). However, there are several caveats to consider for
interpretation of effect sizes of GWAS. First, as the identified
variants are nearly always proxies, they likely yield underestimates
for the effect size of the true, but unknown, causal variant. Second,
although susceptibility variant effect sizes from GWAS can be
underwhelming, their commonality translates to a large contribution
to disease risk on a population level. Additionally, individuals
frequently harbor multiple such alleles, and corresponding
aggregate genetic risk models reveal much stronger combined
effects. Third, findings from GWAS hold enormous promise for
novel mechanistic insights and potential breakthroughs in treatment,
despite the few meaningful advances in clinical risk prediction to
date (Manolio, 2013). Notably, evolutionary selective pressures
might constrain the frequency of variants with strongly damaging or
other functional consequences in human populations, thereby
limiting the observed effect sizes of common genomic variants on
human traits. By contrast, pharmacological manipulation is not
subject to this potential ceiling effect, allowing for more potent
therapeutic outcomes. For example, in GWAS of dyslipidemia,
common polymorphisms in the HMG-CoA reductase gene have
quite modest effects on low-density lipoprotein (LDL) cholesterol
levels (Teslovich et al., 2010), whereas treatment with statins,
designed to inhibit the encoded enzyme, are powerful LDL-
lowering agents taken by millions worldwide for heart disease
prevention.
In sum, GWAS have successfully identified thousands of

common genomic variants responsible for countless human
disease traits. Although such results are supported by robust
statistical evidence and represent an enormous opportunity for novel
biological insights relevant to disease pathophysiology, the majority
of susceptibility loci await functional follow-up, and such work will
be essential to leverage GWAS findings for therapeutic advances.
Having introduced GWAS, we turn next to exploring the potential
for Drosophila to accelerate the urgently needed follow-up studies.

Utilizing Drosophila to understand human GWAS signals
The vast array of resources and tools that recommendDrosophila for
functional genomic investigations, including follow-up of human
GWAS, has been extensively reviewed (Matthews et al., 2005;
Mohr et al., 2014; Ugur et al., 2016; Venken et al., 2011). One
distinct advantage is the immediate availability of several large
collections of reagents for gene manipulation (Fig. 2). In addition to
alleles generated by chemical mutagenesis, transposable element
insertions are available for the majority of fly genes (Fig. 2A),
including homologs of candidate susceptibility genes from GWAS.
Specifically, the Drosophila Gene Disruption Project has generated
transposon insertion alleles for over two thirds of the organism’s
protein-coding genes (Bellen et al., 2011). These strains facilitate
further genomic manipulations, including the generation of deletion
alleles via imprecise excision of transposable elements (Fig. 2A).
Collections of deficiency strains tiling nearly the entire Drosophila
genome provide another valuable resource for reverse genetic
studies (Cook et al., 2012; Ryder et al., 2007). Binary expression
systems (Fig. 2B) in which a transcriptional activator binds to
specific cis-enhancer elements, leading to activation of the adjacent
gene, are enormously flexible, popular and powerful research tools.
GAL4/UAS, which was co-opted from yeast, is the most widely
used binary expression system, and thousands of GAL4 driver lines
available from individual labs and public stock collections allow

expression of desired target genes, typically cDNA transgenes
under control of upstream activating sequence (UAS) sites, in
precise spatial and temporal patterns (Brand and Perrimon, 1993).
Extensive collections of transgenic RNA-interference (RNAi) lines
are also available (Dietzl et al., 2007; Perkins et al., 2015). Under
control of the GAL4-UAS system, these RNAi strains permit tissue-
specific and/or conditional knockdown of up to 88% of all protein-
coding genes (Fig. 2C), facilitating efficient analysis of loss-of-
function phenotypes. Information on these and many other useful
genetic reagents is available through FlyBase, a central, online
annotated resource for Drosophila genetics (http://flybase.org; dos
Santos et al., 2015; Millburn et al., 2016).

Leveraging substantial genomic conservation and powerful
genetic tools outlined above, studies in Drosophila have touched
nearly all branches of human disease biology (Wangler et al., 2015).
This includes insights into mechanisms of congenital renal disease
(Weavers et al., 2009), cardiotoxicity from a high-fat diet (Diop
et al., 2015), sterol absorption in the gut (Voght et al., 2007) and
neuromuscular dysfunction in mucolipidosis (Venkatachalam et al.,
2008). Drosophila models have enabled powerful mechanistic
insights into numerous neurodegenerative disorders (Jaiswal et al.,
2012; Lessing and Bonini, 2009; Shulman et al., 2003) including
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral
sclerosis, Huntington’s disease and spinocerebellar ataxias
(Lessing and Bonini, 2009; Romero et al., 2008; Tsuda et al.,
2008, 2005; Vos et al., 2012). Unbiased genetic screens leveraging
RNAi reagents in the fly have been deployed to identify conserved
regulators of cardiac function (Neely et al., 2010b), pain perception
(Neely et al., 2010a) and adipocyte differentiation (Pospisilik et al.,
2010). Other screens have highlighted Mendelian disease genes
(Yamamoto et al., 2014). For such disorders, Drosophila readily
facilitates confirmation of variant pathogenicity and elucidation of
disease mechanisms (Bellen and Yamamoto, 2015; Shulman,
2015). In the broad scope of investigations using fly models for
functional genomics, follow-up of results from human GWAS is
still comparatively new. Nevertheless, there is enormous potential
for such work, and we highlight below several noteworthy and
pioneering examples.

Regardless of the experimental model selected, GWAS present
unique challenges for functional follow-up investigations, and one
immediate obstacle is how to prioritize specific candidate genes for
further study based on associated variants. Because most SNPs
detected by GWAS are not likely causal variants for disease risk but
rather informative markers, it is often not productive to study their
direct functional consequences. Furthermore, the non-coding
sequences that usually harbor such changes show less
conservation than exonic regions, especially in evolutionarily
distant species. Instead, implicated SNPs must be mapped to the
most promising gene candidates and usually, there are multiple
prospects (Fig. 1B, Fig. 3A). One strategy is to leverage medium- to
high-throughput screening assays in flies to help refine and
prioritize from among several, equally good, candidate genes in
order to identify one (or more) worthy of more detailed study. For
example, Pendse et al. (2013) studied 38 human genomic regions
based on SNPs linked to type 2 diabetes mellitus or related
metabolic traits. A 100 kb genomic window centered around each
associated SNP identified 130 human gene candidates, of which 71
were sufficiently conserved for follow-up in flies. Orthologous
genes were serially targeted using available RNAi transgenic lines
and examined for genetic interactions in a fly model relevant to
diabetes, based on sucrose-induced toxicity. As illustrated in
Fig. 2C, short hairpin RNA sequences homologous to each target
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gene were activated using a ubiquitously expressed tubulin-GAL4
driver line. Using this strategy, 34 human genes were highlighted
based on enhancement or suppression of sucrose-induced lethality,
following knockdown of their respective gene orthologs. The
majority of genomic regions studied had multiple human candidate
genes, and in six cases, a single gene was implicated based on the
screening assay, allowing refinement of the initial list. Interestingly,
in nine other cases, more than one gene in a region showed
independent interactions with sucrose toxicity, potentially
compatible with the contribution of multiple genes to each human
susceptibility signal. Based on more recent GWAS (Bonnefond and
Froguel, 2015), more than 90 susceptibility loci have now been
implicated in type 2 diabetes, increasing the need for further follow-
up studies. Indeed, the vast majority of susceptibility signals
identified by human GWAS to date await further fine-mapping
efforts to prioritize and confirm the responsible genes.
Where one or more well-conserved gene candidates are strongly

implicated, Drosophila is an ideal model system for further
functional elucidation. The prevailing strategy relies on the key
assumption that beyond evolutionary conservation at the sequence
level, homologous genes will have conserved functional
requirements in humans and in Drosophila, leading to similar
traits or phenotypes when subject to genetic manipulation. In a
GWAS for alcohol consumption that included more than 40,000
individuals, the top-associated SNP fell within the intron of the
autism-linked AUTS2 gene, which encodes a neuronal nuclear
protein of uncertain function (Schumann et al., 2011). The
implicated variant was further related to AUTS2 expression levels
in postmortem human brain samples, consistent withAUTS2 being a

candidate causal gene for the association. In order to complement the
largely correlative data with functional evidence, the authors next
turned toDrosophila, which has a single gene ortholog, tay. Ethanol
tolerance was enhanced by inactivation of tay using transposable
element insertional alleles or pan-neuronal knockdown of the gene
by RNAi (Schumann et al., 2011). Specifically, tay loss-of-function
flies were observed to maintain consciousness longer than control
animals when exposed to ethanol vapor. In another study focused on
identifying risk factors for idiopathic azoospermia in a cohort of
more than 9000 men, a similar strategy was employed for follow-up
of a strongly suggestive association signal proximal to the gene
candidate, CDC42BPA. Indeed, knockdown of the fly homolog,
gek, via RNAi transgene expression in the supporting somatic cells
of the fly testis led to impaired sperm maturation and resulting
infertility (Hu et al., 2014). Lastly, in a more targeted Drosophila
follow-up study of a top variant associated with restless legs
syndrome (Stefansson et al., 2007), mutant alleles of a conserved
homolog of the leading candidate gene, BTBD9, were generated via
transposon-mediated excision (Fig. 2A), causing motor restlessness
and sleep fragmentation that was remarkably reminiscent of the
human disorder (Freeman et al., 2012).

Given the success of usingDrosophila tomodel neurodegenerative
disorders, it is not surprising that such systems have been applied to
follow up findings of GWAS in this field. In one early example of this
strategy, we used fly transgenic models to test the hypothesis that
candidate Alzheimer’s disease susceptibility genes modulate
neurodegenerative phenotypes induced by expression of the human
MAPTprotein, responsible for the characteristic neurofibrillary tangle
pathology (Shulman et al., 2011). Specifically,MAPT-induced retinal
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Fig. 2. Strategies for genetic manipulation in Drosophila. (A) Loss-of-function alleles. Large, public Drosophila stock collections and laboratories maintain
many useful strains for evaluating the consequences of gene loss-of-function. Chemical mutagenesis, such as with ethyl methansesulfonate (EMS), frequently
leads to alleles with point mutations (red ‘flash’). Transposable element insertions (green triangle) can also disrupt genes, and further facilitate generation of
deletion alleles via imprecise excision. Comprehensive collections of larger chromosomal deletions (deficiencies) covering the entireDrosophila genome are also
available (not shown). (B) Binary systems for gain-of-function studies. The GAL4-UAS system permits targeted gene activation with precise spatial and temporal
control. Transgenic flies harboring a complementary DNA (cDNA) for the gene of interest, under the control of the yeast upstream activating sequence (UAS), can
be readily generated or existing lines obtained. Thousands of ‘driver lines’ are also available, which express the yeast GAL4 transcriptional activator (purple) in
different tissues and at varying developmental stages. A simple genetic cross brings the two elements together, activating expression of the target genewhen the
GAL4 transcription factor binds to the UAS sequence. (C) Gene knockdown via RNA-interference (RNAi). Transgenic RNAi strains targeting nearly allDrosophila
genes are immediately available. When combined with GAL4 driver lines, expression of the short hairpin (under the control of UAS) is activated, leading to
degradation of the transcript in a tissue-specific manner.
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degeneration causes avisible eye phenotype in flies that ismodified by
knockdown or activation of susceptibility gene homologs. In
subsequent work (Chapuis et al., 2013; Moreau et al., 2014;
Shulman et al., 2014), we and others discovered that fly homologs
of several genes at loci implicated by GWAS, including BIN1,
PICALM, CD2AP, CELF1 and FERMT2, can interact with MAPT
toxicity in vivo, providingmechanistic insight into their potential links
with Alzheimer’s disease risk in humans. Similarly, GWAS in
Parkinson’s disease have recently (Nalls et al., 2014) expanded to∼28
the number of susceptibility loci identified by common genomic
variants, and studies in Drosophila have shown promise for
mechanistic follow-up. Interestingly, results from two recent studies
(Ivatt et al., 2014; MacLeod et al., 2013) highlight connections
between candidate genes identified by GWAS and causes of
Mendelian Parkinson’s disease. Consistent with findings in
neuronal cell cultures, Macleod et al. found that overexpression of
the fly homolog ofRAB7L1 (also known asRAB29), a candidate gene
in the PARK16 susceptibility locus, was capable of rescuing
dopaminergic neuronal loss and reduced survival induced by
LRRK2G2019S, which is associated with autosomal dominant
familial Parkinson’s disease. LRRK2 toxicity was also suppressed
by overexpression of the conserved Drosophila homolog of VPS35,
rare variants that also cause dominantly inherited Parkinson’s disease.
Prior studies in numerous models (including flies) demonstrated that
VPS35 is required for retrograde transport of proteins within the
endosomal-lysosomal pathway (Wang et al., 2014). In the second
study, Ivatt et al. (2014) performed a genome-wide RNAi screen in
Drosophila cells to identify genes required for translocation of the
Parkinson’s disease-associated protein parkin upon mitochondrial
damage. Mutation of the parkin (PARK2) gene is a common cause of
early-onset, autosomal recessive parkinsonism, and studies in
Drosophila have contributed substantially to our understanding of
its putative role in mitochondrial quality control (Haelterman et al.,
2014). Interestingly, the cell-based parkin interaction screen identified

multiple mediators of lipogenesis, including SREBF1, a Parkinson’s
disease susceptibility candidate gene identified via GWAS. Thus,
these studies exemplify how investigation inDrosophila can not only
link findings from GWAS to informative, disease-relevant biology,
but can additionally reveal connections between simple Mendelian
and more complex genetic forms of disease.

Despite the opportunities for advancing our mechanistic
understanding of many common human diseases with complex
genetic etiologies, Drosophila certainly has its limitations for
follow-up of GWAS. As discussed above, the majority of
susceptibility signals identified by GWAS likely point to
regulatory variants. However, compared with protein-coding
sequences, cross-species evolutionary conservation of genomic
regulatory sequence is less well defined, especially between humans
and flies. Thus, it is rarely feasible to directly examine the functional
consequences of presumed regulatory variants. Instead, Drosophila
is more appropriate for gene-centric strategies that investigate
consequences of directed experimental manipulation of genes on
relevant phenotypes. The potential application of this approach
depends on gene conservation. Even where conservation of genes is
strong, a related question is whether encoded proteins will subserve
conserved functions in such evolutionary distant species. Thus, as
considered systematically below, in order to understand the
potential applicability of Drosophila for follow-up of human
susceptibility loci, we need to understand not only the conservation
of candidate susceptibility genes, but whether available evidence
supports conserved functional requirements.

A resource for functional follow-up of GWAS in flies
Conservation of candidate human susceptibility genes in Drosophila
In order to assess the potential of Drosophila for follow-up of
GWAS – and to directly facilitate future studies – we have
undertaken systematic cross-species analyses based on the
comprehensive results reported in the National Human Genome
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Fig. 3 . Identification of GWAS candidate genes and conservation in Drosophila. (A) The Alzheimer’s disease susceptibility locus on chromosome
6 identified by the index SNP, rs9349407 (Naj et al., 2011), is provided as an example to highlight candidate gene selection strategies. For the analyses of gene
conservation, we defined four nested criteria for candidate genes. ‘Intragenic’ genes are denoted by an exonic or intronic SNP (blue:CD2AP). ‘Nearest neighbors’
additionally include genes immediately proximal and distal to the SNP (orange: TNFRSF21, ADGRF2). Lastly, a genomic window is defined around the index
SNP, extending 125 kb or 250 kb both proximal and distal to define all gene candidates ‘within 250 kb’ or ‘within 500 kb’, respectively (grey: ADGRF4). These
criteria were applied systematically to all 15,825 SNPs within the NHGRI-EBI GWAS catalog (September 2015 data freeze) to define candidate genes; the full
results are detailed in Table S2. (B) Conservation of human susceptibility gene candidates inDrosophila, based on theDrosophila Integrative Ortholog Prediction
Tool (DIOPT, Score ≥2) (Hu et al., 2011). A modest enrichment for conservation was observed for candidate genes defined from intragenic SNPs compared with
the other criteria.
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Research Institute–European Molecular Biology Laboratory-
European Bioinformatics Institute (NHGRI-EBI) GWAS catalog
(http://www.ebi.ac.uk/gwas). Selected findings and examples are
highlighted below, and the full results are available in supplemental
Tables S1-S4. As a starting point, we applied consistent criteria to
define candidate human susceptibility genes based on reported SNP
associations for each trait. The overall approach is illustrated in
Fig. 3A, taking as an example a chromosome 6 SNP, rs9349407,
discovered in a large GWAS of Alzheimer’s disease risk (Naj et al.,
2011). This SNP falls within an intron of the CD2AP gene, which
encodes an actin-binding and SH3 domain adaptor protein, but
additional candidate genes can be defined based on genomic
intervals centered around the index variant, the size of which
determines the number of implicated genes. In our analyses, we
define four nested categories that progressively consider an
increasing number of candidate genes at each implicated locus:
(1) ‘intragenic’, referring to genes in which the associated SNP falls
within an intron or exon (n=0-1 genes/SNP); (2) ‘nearest
neighbors’, including the genes immediately proximal and distal
to the SNP (n=2-3 genes/SNP); (3) ‘within 250 kb’, including all
genes within a genomic window 125 kb proximal and 125 kb distal
to the SNP (n≈0-20 genes/SNP); and (4) ‘within 500 kb’, in which
the genomic window is extended a further 250 kb proximal and
distal to the SNP (n≈0-37 genes/SNP). Therefore in our example
(Fig. 3A), the rs9349407 SNP identifies CD2AP (intragenic),
TNFRSF21 and ADGRF2 (nearest neighbors), and lastly ADGRF4
(within 500 kb). These four levels of criteria were applied to all
15,825 reported SNP associations within the NHGRI-EBI GWAS
catalog (September 2015 data freeze), resulting in between 4009
(intragenic) and 16,544 (within 500 kb) total human candidate
susceptibility genes, which we consider for the analyses described
below. In Table S2, we also make available the comprehensive list
of candidates.
Having defined a candidate gene list, we next asked which loci

are conserved in Drosophila, a key prerequisite for following up a
candidate susceptibility gene from GWAS in flies. We took
advantage of the published Drosophila Integrative Ortholog
Prediction Tool (DIOPT) (Hu et al., 2011), which integrates 10
bioinformatic algorithms, to evaluate putative human-fly ortholog
pairs. We required that at least two distinct algorithms agree (DIOPT
score≥2) for determination of whether a human candidate
susceptibility gene is conserved. Although these rather liberal
criteria are potentially liable to false-positive calls of homology,
they are adequate for our goals to (1) assess potential conservation
among large groups of genes and (2) inform selection of genes for
follow-up experimental validation, which ultimately is essential to
confirm any bioinformatic predictions. Applying these criteria
genome-wide, 11,122 out of 20,950 (53%) protein-coding genes in
the human genome have a fly ortholog. Based on prior work
documenting increased conservation of human genes linked to
Mendelian disorders (Fortini et al., 2000; Hu et al., 2011) we
hypothesized that on average, susceptibility genes for complex
human diseases would also show increased conservation. Indeed,
we discovered a modest enrichment (1.2-fold) of cross-species
conservation for candidate genes mapped to SNPs discovered in
human GWAS. Interestingly, the degree of conservation is strongest
(64%, 2573 of 4009 genes) for intragenic genes, whereas
enrichment is attenuated somewhat when the criteria are
liberalized (58% for genes within 500 kb, 9660 of 16,544 genes)
(Fig. 3B). If genes with roles in disease susceptibility (such as those
implicated by GWAS) are indeed more likely to be evolutionarily
conserved, than this observation might suggest that the genes

harboring intragenic associated variants are more likely to be truly
causal than candidates mapped at greater distances from SNPs; in
other words, cross-species conservation could help to guide fine
mapping of causal genes. For all subsequent analyses, we restricted
our consideration to candidate susceptibility genes identified by
intragenic SNPs.

The human GWAS catalog reports findings from studies of a
diverse array of human traits and disease phenotypes, ranging from
risk of autism to economic and political preference. We wondered
whether all such traits are equally translatable for studies in fruit
flies. In order to facilitate comparisons, we categorized each of the
1252 traits based on two separate criteria: (1) target tissue (Table 1)
or (2) disease mechanism (Table 2) (full results in Table S1). For
target tissue, we considered the cell type and/or organ system that is
predominantly impacted by the trait or disease (e.g. heart failure
primarily affects the cardiovascular system). However, diseases that
affect the same organ systems often have widely divergent genetic
mechanisms. Although ischemic stroke, multiple sclerosis, and
Parkinson’s disease similarly affect the central nervous system,
distinct mechanisms are implicated (e.g. vascular, immunological
and/or inflammatory, and neurodegenerative etiologies,
respectively), implying that the underlying genes – and resulting
extent of evolutionary conservation – might differ. The principle of
aggregating traits based on common mechanism has been leveraged
for the discovery of shared genetic risk factors, formally known as
pleiotropy (Solovieff et al., 2013). For example, a GWAS
integrating data on more than 30,000 subjects with autism,
attention deficit-hyperactivity disorder, bipolar disorder, major
depressive disorder and schizophrenia identified 38 candidate genes
(Smoller et al., 2013), of which 27 (73.0%) are conserved in the
Drosophila genome.

We therefore examined whether particular human phenotypes or
categories are more or less amenable to study in Drosophila, again

Table 1. Conservation of GWAS candidate genes by tissue

Target tissue* Genes (n)‡ Conserved (%)§

Pulmonary 275 71
Eye 206 68
Cardiovascular 465 68
Nervous system 1243 68
Dental 114 67
Skeletal 226 66
Endocrine 841 66
All 4009 64
Blood 1222 64
Other 829 64
Urogenital 162 64
Skin 165 61
Gastrointestinal 371 57

*1252 human traits from the NHGRI-EBI GWAS catalog (September 2015 data
freeze) were categorized based on the organ system (target tissue) affected.
Category assignments were initially based on disease terms selected from
Online Mendelian Inheritance in Man (OMIM) or Medical Subject Headings
terms, followed by manual inspection by the authors. Table S1 details the
assignment of all traits.
‡Total number of human susceptibility gene candidates from GWAS based on
intragenic SNPs (falling within exons or introns). The number of unique gene
candidates is listed, aggregated for all traits within each defined category. The
full list of human genes broken down by trait and categories is detailed in
Table S2, along with separate tallies for SNPs and genes.
§Percentage of human susceptibility candidate genes with a conserved fly
homolog, based on the Drosophila Integrative Ortholog Prediction Tool
(DIOPT score≥2) (Hu et al., 2011). Table S2 documents the complete list of
genes, broken down by traits and categories, along with numbers for
conserved human genes, fly homologs, and percentage conservation.
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using conservation of implicated genes fromGWAS as a benchmark
(Tables 1, 2; Table S2). One potential caveat for interpretation of
these analyses is that not all human traits (or trait categories) have
been interrogated with the same intensity. Variation in the number
of studies and sample sizes employed impact the statistical power
for discovery of susceptibility loci. Nevertheless, based on either
target tissues or mechanisms, all human trait categories showed
evidence of increased conservation compared with the genome-
wide average (53%, above). However, as shown in Tables 1 and 2,
we observed substantial variation (range: 57-73%) in the degree of
conservation for implicated genes depending on the specific
category. For example, when compared with the composite set of
all genes nominated by GWAS, several target tissue categories
showed increased conservation (e.g. pulmonary, eye,
cardiovascular, nervous system) whereas others showed reduced
conservation (e.g. blood, urogenital, skin, gastrointestinal).
Interestingly, the alternative classification scheme based on
disease mechanisms generally increased conservation within and
across categories; gastrointestinal disorders remained the lowest
ranked group. As expected, even within categories there can be
significant variation in conservation based on specific traits. For
example, among all nervous system traits with at least 20 gene
candidates identified, Alzheimer’s disease cognitive decline was the
trait with the greatest conservation (80%, 32 out of 40 gene
candidates).
In sum, candidate susceptibility genes nominated by human

GWAS generally show increased conservation in Drosophila when
compared with the average level of conservation observed for all
human genes. In addition, the degree of conservation depends on
the specific trait, and is influenced by both the target tissue and

underlying putative disease mechanisms. Our comprehensive
analytic results (Table S2) will allow human and fly geneticists to
infer the extent to which Drosophila is amenable for follow-up of
specific disease traits and/or categories, and provide an accessible
catalogue of the fly genes that are homologous to human
susceptibility gene candidates identified by published GWAS and
thereby represent a high priority for functional studies.

Expression of homologs of human susceptibility genes
In addition to gene or protein sequence conservation, the tissue-
specificity of expression patterns (or lack thereof ) is highly relevant
when considering investigation of a candidate human disease gene
in an experimental model organism. For example, when confronted
with a novel brain-expressed candidate gene for Parkinson’s
disease, well-conserved in flies, it might be important to ask
whether the gene is consistently expressed in the Drosophila
nervous system. As well as supporting further functional studies in
flies, a positive answer could also increase confidence that the
selected candidate gene is truly causal. In order to address this
systematically, we leveraged publicly available, high-throughput
Drosophila gene expression data (Brown et al., 2014) to determine
the levels and potential tissue-specificity for Drosophila homologs
of candidate susceptibility genes from human GWAS. Similar
analyses can be readily performed using the publicly available
Drosophila Gene Expression Tool (DGET, http://fgr.hms.harvard.
edu/dget). We initially focused on nervous system traits, and found
that 77% of fly homologs for human neurological disorder
susceptibility genes were expressed in the adult fly head.
Furthermore, expression of these genes seemed somewhat more
likely to be detected in the fly head than in the fly digestive system
(69%), or whole animal (72%) (Fig. 4A), consistent with the
hypothesis that homologs of genes associated with human nervous
system disorders, show a relative, albeit modest, tissue specificity in
flies. In addition, the fly homologs of candidate genes expressed in
the human nervous system are somewhat more likely to be
expressed in the adult fly head than are homologs of candidate
genes nominated by other human target tissue categories (Fig. 4B;
full results in Table S3). One potential caveat comes from the
finding that the fly homologs of human candidate susceptibility
genes from GWAS tend to be expressed at higher levels not only in
the fly head, but also across a broad range of other Drosophila
tissues for which data are available (Fig. 4A; Table S3). Indeed,
strongly conserved Drosophila genes, including the homologs of
most candidate susceptibility genes from GWAS, seem to be
expressed more widely and robustly, consistent with conclusions
from our recent work (Y.H., unpublished observation). Given that
most signals in GWAS are believed to represent the impact of
genomic regulatory variants that cause modest transcriptional
changes (GTExConsortium, 2015; Nicolae et al., 2010), it is
intriguing that homologs of these genes are broadly expressed in
Drosophila. Thus, future studies in flies could reveal the existence
of conserved gene regulation and/or dose-sensitive requirements,
consistent with the implicated mechanisms of susceptibility
variants in human disease. Based on our results, however, we
urge caution when drawing conclusions about cross-species
functional conservation based solely on tissue expression
patterns. Before deciding on the potential feasibility of pursuing
follow-up studies in flies, it will be essential to integrate
observations of expression with the results from directed
experimental manipulations that yield more reliable evidence of
conserved functional requirements, particularly within specific
tissue contexts.

Table 2. Conservation of GWAS candidate genes by mechanism

Disease mechanism* Genes (n)‡ Conserved (%)§

Aging and geriatric 45 73
Other 353 70
Urogenital 66 70
Sleep, cognition, and behavior 659 69
Developmental and congenital
disorders

200 69

Neurological 468 68
Pulmonary 101 67
Endocrinological 809 67
Metabolism 780 66
Pharmacological, toxicological and
environmental

390 66

Cardiovascular 358 65
All 4009 64
Oncogenesis and growth 593 63
Blood 215 62
Immunological, inflammatory and
infectious

1083 61

Gastrointestinal 63 60

*1252 human traits from the NHGRI-EBI GWAS catalog were categorized
based on putative disease mechanisms. Table S1 details the assignment of all
traits.
‡Total number of human susceptibility gene candidates from GWAS based on
intragenic SNPs (falling within exons or introns). The number of unique gene
candidates is listed, aggregated for all traits within each defined category. The
full list of human genes broken down by trait and categories is detailed in
Table S2, along with separate tallies for SNPs and genes.
§Percentage of human susceptibility candidate genes with a conserved fly
homolog, based on the Drosophila Integrative Ortholog Prediction Tool
(DIOPT score≥2) (Hu et al., 2011). Table S2 documents the complete list of
genes, broken down by traits and categories, along with numbers for
conserved human genes, fly homologs, and percentage conservation.
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Cross-species functional comparisons
Documenting candidate susceptibility gene conservation and
expression in relevant tissues might be important foundations for
follow-up of GWAS; however, the ultimate goal is to deploy
powerful genetic models, including flies, for functional dissection.
FlyBase provides an excellent starting point by not only
documenting existing strains for experimental manipulation, but
also making accessible the data on previously reported phenotypes
(dos Santos et al., 2015). Quick lookups can often provide clues to
the evolutionary conservation of functions, including those that are
of potential relevance to human disease traits (Millburn et al., 2016).
To illustrate this, we examined promising results from two selected

GWAS that interrogated risk factors for social communication
impairment in children, a trait related to autism spectrum disorders
(St Pourcain et al., 2014, 2013). Together, these studies identified
seven independent signals, of which five are conserved in
Drosophila. Using FlyBase as a guide, along with targeted
literature mining, we discovered that the reported loss-of-function
phenotypes suggest conserved gene functions that might be relevant
to their associations with the complex human phenotype of social
communication. For example, bru3, the fly ortholog of human
CELF4, encoding an RNA-binding protein and regulator of
transcript splicing and translation, was identified in a Drosophila
genetic screen for gender-specific social responsiveness (Ellis and
Carney, 2011). Another gene, Tmhs, homologous to LHFPL3,
encoding a tetraspan membrane protein, is required for fly auditory
perception (Cosetti et al., 2008; Coop et al., 2008). Lastly, CG4328,
a homolog of LMX1B, encoding a transcription factor, was linked to
sensory neuron dendritic arborization (Parrish et al., 2006). Though
speculative in the absence of further experimental validation, these
published loss-of-function phenotypes in Drosophila suggest that
the homologous human susceptibility genes might subserve similar
functions in the genesis of social communication disorders. Thus,
targeted data mining allows results of human GWAS to be rapidly
linked to relevant model organism phenotypes, informing
mechanistic hypotheses for further testing.

These examples provide potential support for the functional
conservation of genes underlying complex human traits; nonetheless,
it is difficult to generalize based on anecdotal evidence alone. In order
to test the hypothesis more systematically, we again considered all
human candidate susceptibility genes for neurological traits, asking
whether conserved Drosophila homologs are similarly associated
with nervous system phenotypes in flies. For this analysis, we took
advantage of the FlyBase ‘controlled vocabulary (CV)’ terms used
to standardize phenotype reporting (Millburn et al., 2016). Of
the homologs for human neurological susceptibility genes, 33% (306
out of 914) are established to cause neuronal or nervous system
phenotypes inDrosophila, based on 41 FlyBase CV terms, compared
with 25% for all fly genes. Although this represents only a modest
enrichment over the 29% of all GWAS candidate homologs causing
fly neuronal phenotypes, it is potentially consistent with our finding
(Fig. 4A), that such genes are frequently expressed in the Drosophila
nervous system.

Although the neuronal functions of Drosophila genes are more
widely annotated than in humans or mammalian models, one
important caveat is that many genes still remain incompletely
studied. Even for genes with well-characterized loss-of-function
phenotypes, semantic barriers can complicate the precise matching
of fly to human traits, because Drosophila and human geneticists
frequently use widely differing terminologies to describe phenotypes
(Pospisilik et al., 2010). Given the growing recognition of this
challenge, phenotype curation in both humans and model organisms
and associated bioinformatic tools for data integration are likely to
improve in the near future (Deans et al., 2015; Mungall et al., 2010,
2015). Community resources, such as the Monarch Initiative (https://
monarchinitiative.org), promise to facilitate mapping of human to
model organism traits, thereby enhancing the functional follow-up of
implicated susceptibility genes.

In sum, as our systematic understanding of the functional
requirements of all conserved Drosophila genes improves, so will
the analytical power to pinpoint human traits amenable to cross-
species functional dissection. However, this conclusion depends on
the likely flawed assumption that conserved genes and associated
genetic pathways will cause similar loss-of-function phenotypes in
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Fig. 4. Expression of GWAS gene homologs in Drosophila tissues. (A) Fly
homologs of human susceptibility gene candidates (based on intragenic
SNPs) from nervous system disorder GWAS were evaluated for expression in
Drosophila tissues [reads per kilobase of transcript per million (RPKM) ≥2],
including adult head (green), whole fly (gray), gut (blue). Nervous system traits
and candidate genes were aggregated based on the ‘target tissue criteria’, as
defined in the text and Tables S1 and S2. Tissue-specific RNA-seq data
generated by themodEncode consortium was downloaded from FlyBase (ftp://
ftp.flybase.net/releases/current/precomputed_files/genes/
gene_rpkm_report_fb_2015_03.tsv.gz). 77% of fly homologs of nervous
system GWAS candidate genes (solid bars) were expressed in the fly head, a
modest increase from those expressed in thewhole fly (72%) or gut (69%). For
comparison, expression data is also shown for all candidate genes fromGWAS
(stippled bars) and all fly genes (striped bars). In general, fly homologs of
genes identified by GWAS tend to be expressed at higher levels in Drosophila
tissues. Full results for all target tissue and disease mechanism categories for
GWAS across all availableDrosophila tissues are included in TableS3. (B) The
fly homologs of nervous system gene candidates identified by GWAS are more
likely to be expressed in the adult Drosophila head than homologs for most
other target tissue categories.
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distantly related organisms, such as humans andDrosophila. In fact,
many strongly conserved molecular systems, such as signal
transduction pathways or gene coexpression networks, are
‘repurposed’ over evolutionary timescales for heterogeneous
cellular, developmental and organismal functions. For example,
mutations in the human sonic hedgehog gene (SHH) result in
nervous system pattering defects and subsequent developmental
malformations (e.g. holoprosencephaly). By contrast, mutations in
the Drosophila ortholog, hedgehog (hh), disrupt embryonic
segmentation and lead to altered appearance of larval denticle
belts. Nevertheless, studies of this larval phenotype have facilitated
successful identification and mechanistic dissection of hh and
numerous genes encoding highly conserved downstream signaling
components. This and numerous similar examples illustrate that the
mere superficial equivalence of distal phenotypic outcomes is likely
a poor predictor for the potential value of flies in the mechanistic
follow-up of human complex traits; rather, it is the fundamental
conservation and coherence of the more proximal genetic regulatory
networks that are consequential. To put this more simply, many
potentially valuable Drosophila ‘disease models’ might have little
or no resemblance to their cognate human traits. Embracing this
insight, Marcotte and colleagues (McGary et al., 2010;Woods et al.,
2013) deployed an unbiased bioinformatic approach to define
homologous phenotypes, or ‘phenologs’ (http://www.phenologs.
org), between distantly related species, including humans and
several experimental animal models (but unfortunately not
Drosophila). Phenolog assignment was based on overlap between
groups of conserved gene sets that cause similar phenotypes within
each species. For example, this successful strategy led to testable
predictions of new genes involved in human breast cancer and
neural crest defects based on non-obvious homologous phenotypes
in C. elegans (hermaphroditism) and Arabidopsis (gravitropism),
respectively (McGary et al., 2010).
Full implementation of the phenolog strategy in Drosophila is

outside the scope of this Review; however, we did examine the
proportion of fly homologs of human susceptibility gene candidates
from GWAS that are essential (Table 3; full results in Table S4), i.e.
result in embryonic lethality when genetically disrupted. As a group,
human GWAS identify orthologous fly genes that are strongly
enriched for lethal phenotypes (43% versus 25% for all Drosophila
genes). Interestingly, among disease mechanism categories,
candidate susceptibility genes for human developmental disorders
were even more likely to be required for embryonic viability in flies
(50% lethal phenotypes). More broadly, 66% of all homologs for
human susceptibility gene candidates from GWAS currently have
phenotypic annotations in FlyBase, providing an immediate entry
point for functional study in flies, such as rapid tests of phenotypic
rescue by the human homologs and/or evaluation of genetic
interactions with other candidate susceptibility genes.

Conclusions
Recently, the pre-eminence of GWAS as a tool for susceptibility
locus discovery in human complex genetic disorders is being
supplanted by next-generation sequencing approaches and the
complementary search for rare variant risk alleles. This comes as the
GWAS approach reaches maturity, with many common diseases
having now been interrogated by meta-analyses that involve the
largest feasible sample sizes. Similar to the arrival of GWAS about
10 years ago, this shift is further fueled by the tumbling cost of next-
generation sequencing technology coupled with advances in
statistical and analytical methods. Whereas GWAS usually
implicates tag SNPs and genomic loci encompassing multiple

potential causal genes, sequencing instead promises to pinpoint
specific gene variants with putative functional consequences.
Nevertheless, the large number of implicated variants emerging
from most sequencing studies leads to a related set of challenges as
well as opportunities for experimental follow-up (Shulman, 2015).
While embracing the opportunities for sequencing-based discovery,
it is essential that we not prematurely abandon GWAS, given the
potential of these data to illuminate the yet largely unknown
biological mechanisms underlying common diseases with complex
genetic etiologies. Indeed, as we have emphasized throughout this
Review, although the human genetic work might be winding down,
a significant challenge remains to confirm the responsible genes and
understand the relevant mechanisms, a task well-suited for the
model organism research community.

Although we have focused on the powerful tools and approaches
thatDrosophilamodels can bring to bear on GWAS follow-up, other
experimental systems also have important roles to play. Integrated
studies in both simple (e.g. yeast, nematode, fly) and more complex
(e.g. zebrafish, mouse) animal models can create powerful synergy
for the follow-up of candidates arising from human genetic studies,
highlighting the evolutionary conservation of disease mechanisms.
Notably, recent advances in human induced pluripotent stem cell
(iPSC) methods offer powerful, complementary experimental
systems for functional validation of GWAS findings (Zhu et al.,
2011). Further, the application of high-throughput technologies for
profiling the epigenome, transcriptome, proteome, and/or
metabolome in human tissues, coupled with robust systems biology
approaches, show increasing promise for mechanistic dissection. In
fact, some have argued that such advances could render model
organisms obsolete for the study of complex human traits (Visscher,
2016). In our opinion, such predictions represent a grave misreading

Table 3. Fly homologs of many candidate genes identified by GWAS are
essential

Disease mechanism Genes* Lethal (%)‡

Cardiovascular 252 50
Developmental and/or congenital disorders 139 50
Blood 135 49
Oncogenesis and growth 366 48
Cognition, sleep and behavior 450 48
Urogenital 50 46
Neurological 336 46
Immunological, inflammatory and infectious 651 45
Pharmacological, toxicological and environmental 269 44
Endocrinological 552 44
All 2169 43
Other 259 43
Pulmonary 70 40
Metabolism 526 39
Aging and geriatric 34 38
Gastrointestinal 41 37

*Total number of human susceptibility genes, based on intragenic SNPs from
GWAS, that are conserved in the Drosophila genome (DIOPT score≥2),
aggregated within disease mechanism categories. The full list of human genes
broken down by trait and categories is detailed in Table S2, along with separate
tallies for SNPs and genes.
‡Percentage of conserved human susceptibility genes in which the fly homolog
is associated with a lethal, loss-of-function phenotype, as documented in
FlyBase (dos Santos et al., 2015; Millburn et al., 2016). Comprehensive
phenotype annotations were downloaded at ftp://ftp.flybase.net/releases/
current/precomputed_files/alleles/. Where multiple fly homologs were
identified for a human gene, we considered the single, best ortholog. Partial or
semi-lethal phenotypes were excluded. The results of similar analyses
considering susceptibility genes aggregated based on target tissue categories
are presented in Table S4.
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of the current research landscape. Despite offering the distinct
advantage of a human genomic context for variant validation and
more faithful recapitulation of the species-specific cellular milieu,
iPSC-based approaches nevertheless fall short in several important
areas. The mechanisms underlying complex human traits can rarely
be reduced to single cells but rather play out at the tissue or even
multi-system level, requiring in vivo, organismal models for
mechanistic dissection. Other important factors contributing to
complex traits that are challenging, if not impossible, to
approximate in cell culture include the impact of developmental
biology and aging. Moreover, bioinformatics using large-scale,
comprehensive ’omic data can be extraordinarily powerful for
hypothesis generation. However, results from these analyses are
usually correlative in nature, crucially requiring experimental
validation to establish causation (Chakravarti et al., 2013). All
experimental systems, including bothDrosophila and human subject
investigations, have their limitations. As alluded to earlier, many, but
not all, genes are conserved, and there are certainly many facets of
human disease that are likely not amenable to modeling in
Drosophila. Nevertheless, our analyses demonstrate how a majority
of human susceptibility loci are highly conserved in flies, creating
myriad opportunities for functional follow-up, even where such
genes might be operating in different contexts. Given the remarkable
scope of the challenges currently encountered in functional genomics,
we must leverage all available tools to address these important
problems, and it is incumbent upon all stakeholders to embrace such
efforts, including investigators, funding bodies and publishers.
In sum, understanding the mechanisms of susceptibility for

common and complex genetic diseases is an urgent public health
priority. These disorders – including heart/lung disease, cancer,
stroke, Alzheimer’s disease, diabetes, and many others – account for
the overwhelming population burden of morbidity and mortality in
the developed world. The successful identification of risk loci by
GWAS provides an enormous opportunity for translational research
aimed at discovering completely novel drug targets. As highlighted
here, susceptibility locus discovery is only the first step, with the
crucial challenge remaining to define the relevant mechanisms.
Only then can the therapeutic potential of GWAS findings be fully
unleashed. We hope that this Review makes a compelling case that
Drosophila models offer one important path forward.

This article is part of a subject collection on Spotlight on Drosophila: Translational
Impact. See related articles in this collection at http://dmm.biologists.org/collection/
drosophila-disease-model.
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Wilsch-Bräuninger, M., Ruiz-Gómez, M., Skaer, H. and Denholm, B. (2009).
The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm.Nature
457, 322-326.

Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H., Klemm,
A., Flicek, P., Manolio, T., Hindorff, L. et al. (2014). The NHGRI GWAS Catalog,
a curated resource of SNP-trait associations. Nucleic Acids Res. 42,
D1001-D1006.

Woods, J. O., Singh-Blom, U. M., Laurent, J. M., McGary, K. L. and Marcotte,
E. M. (2013). Prediction of gene–phenotype associations in humans, mice, and
plants using phenologs. BMC Bioinformatics 14, 203.

Wu, N., Ming, X., Xiao, J., Wu, Z., Chen, X., Shinawi, M., Shen, Y., Yu, G., Liu, J.,
Xie, H. et al. (2015). TBX6 null variants and a common hypomorphic allele in
congenital scoliosis. N. Engl. J. Med. 372, 341-350.

Xu, W., Tan, L. and Yu, J.-T. (2015). Link between the SNCA gene and
parkinsonism. Neurobiol. Aging 36, 1505-1518.

Yamamoto, S., Jaiswal, M., Charng, W.-L., Gambin, T., Karaca, E., Mirzaa, G.,
Wiszniewski, W., Sandoval, H., Haelterman, N. A., Xiong, B. et al. (2014). A
drosophila genetic resource of mutants to study mechanisms underlying human
genetic diseases. Cell 159, 200-214.

Zhu, H., Lensch, M. W., Cahan, P. and Daley, G. Q. (2011). Investigating
monogenic and complex diseases with pluripotent stem cells. Nat. Rev. Genet.
12, 266-275.

Zwarts, L., Vanden Broeck, L., Cappuyns, E., Ayroles, J. F., Magwire, M. M.,
Vulsteke, V., Clements, J., Mackay, T. F. C. and Callaerts, P. (2015). The
genetic basis of natural variation in mushroom body size in Drosophila
melanogaster. Nat. Commun. 6, 10115.

88

SPECIAL ARTICLE Disease Models & Mechanisms (2017) 10, 77-88 doi:10.1242/dmm.027680

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

http://dx.doi.org/10.1016/j.expneurol.2015.03.016
http://dx.doi.org/10.1016/j.expneurol.2015.03.016
http://dx.doi.org/10.1097/01.wco.0000084220.82329.60
http://dx.doi.org/10.1097/01.wco.0000084220.82329.60
http://dx.doi.org/10.1097/01.wco.0000084220.82329.60
http://dx.doi.org/10.1016/j.ajhg.2011.01.006
http://dx.doi.org/10.1016/j.ajhg.2011.01.006
http://dx.doi.org/10.1016/j.ajhg.2011.01.006
http://dx.doi.org/10.1016/j.ajhg.2011.01.006
http://dx.doi.org/10.1093/hmg/ddt478
http://dx.doi.org/10.1093/hmg/ddt478
http://dx.doi.org/10.1093/hmg/ddt478
http://dx.doi.org/10.1093/hmg/ddt478
http://dx.doi.org/10.1016/S0140-6736(12)62129-1
http://dx.doi.org/10.1016/S0140-6736(12)62129-1
http://dx.doi.org/10.1016/S0140-6736(12)62129-1
http://dx.doi.org/10.1038/nrg3461
http://dx.doi.org/10.1038/nrg3461
http://dx.doi.org/10.1038/nrg3461
http://dx.doi.org/10.1186/2040-2392-4-34
http://dx.doi.org/10.1186/2040-2392-4-34
http://dx.doi.org/10.1186/2040-2392-4-34
http://dx.doi.org/10.1186/2040-2392-4-34
http://dx.doi.org/10.1186/2040-2392-5-18
http://dx.doi.org/10.1186/2040-2392-5-18
http://dx.doi.org/10.1186/2040-2392-5-18
http://dx.doi.org/10.1186/2040-2392-5-18
http://dx.doi.org/10.1056/NEJMoa072743
http://dx.doi.org/10.1056/NEJMoa072743
http://dx.doi.org/10.1056/NEJMoa072743
http://dx.doi.org/10.1056/NEJMoa072743
http://dx.doi.org/10.1371/journal.pone.0132846
http://dx.doi.org/10.1371/journal.pone.0132846
http://dx.doi.org/10.1371/journal.pone.0132846
http://dx.doi.org/10.1038/nature09270
http://dx.doi.org/10.1038/nature09270
http://dx.doi.org/10.1038/nature09270
http://dx.doi.org/10.1038/nature09270
http://dx.doi.org/10.1016/j.cell.2005.06.012
http://dx.doi.org/10.1016/j.cell.2005.06.012
http://dx.doi.org/10.1016/j.cell.2005.06.012
http://dx.doi.org/10.1016/j.cell.2005.06.012
http://dx.doi.org/10.1016/j.cell.2008.04.039
http://dx.doi.org/10.1016/j.cell.2008.04.039
http://dx.doi.org/10.1016/j.cell.2008.04.039
http://dx.doi.org/10.1016/j.cell.2008.04.039
http://dx.doi.org/10.1242/dmm.023762
http://dx.doi.org/10.1242/dmm.023762
http://dx.doi.org/10.1016/j.cell.2008.09.041
http://dx.doi.org/10.1016/j.cell.2008.09.041
http://dx.doi.org/10.1016/j.cell.2008.09.041
http://dx.doi.org/10.1016/j.neuron.2011.09.021
http://dx.doi.org/10.1016/j.neuron.2011.09.021
http://dx.doi.org/10.1534/genetics.115.180513
http://dx.doi.org/10.1534/genetics.115.180513
http://dx.doi.org/10.1016/j.cmet.2007.01.011
http://dx.doi.org/10.1016/j.cmet.2007.01.011
http://dx.doi.org/10.1016/j.cmet.2007.01.011
http://dx.doi.org/10.1126/science.1218632
http://dx.doi.org/10.1126/science.1218632
http://dx.doi.org/10.1126/science.1218632
http://dx.doi.org/10.1126/science.1218632
http://dx.doi.org/10.1086/378099
http://dx.doi.org/10.1086/378099
http://dx.doi.org/10.1038/nature14962
http://dx.doi.org/10.1038/nature14962
http://dx.doi.org/10.1038/nature14962
http://dx.doi.org/10.1371/journal.pbio.1001847
http://dx.doi.org/10.1371/journal.pbio.1001847
http://dx.doi.org/10.1371/journal.pbio.1001847
http://dx.doi.org/10.1371/journal.pbio.1001847
http://dx.doi.org/10.1534/genetics.114.171785
http://dx.doi.org/10.1534/genetics.114.171785
http://dx.doi.org/10.1038/nature07526
http://dx.doi.org/10.1038/nature07526
http://dx.doi.org/10.1038/nature07526
http://dx.doi.org/10.1038/nature07526
http://dx.doi.org/10.1093/nar/gkt1229
http://dx.doi.org/10.1093/nar/gkt1229
http://dx.doi.org/10.1093/nar/gkt1229
http://dx.doi.org/10.1093/nar/gkt1229
http://dx.doi.org/10.1186/1471-2105-14-203
http://dx.doi.org/10.1186/1471-2105-14-203
http://dx.doi.org/10.1186/1471-2105-14-203
http://dx.doi.org/10.1056/NEJMoa1406829
http://dx.doi.org/10.1056/NEJMoa1406829
http://dx.doi.org/10.1056/NEJMoa1406829
http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.042
http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.042
http://dx.doi.org/10.1016/j.cell.2014.09.002
http://dx.doi.org/10.1016/j.cell.2014.09.002
http://dx.doi.org/10.1016/j.cell.2014.09.002
http://dx.doi.org/10.1016/j.cell.2014.09.002
http://dx.doi.org/10.1038/nrg2951
http://dx.doi.org/10.1038/nrg2951
http://dx.doi.org/10.1038/nrg2951
http://dx.doi.org/10.1038/ncomms10115
http://dx.doi.org/10.1038/ncomms10115
http://dx.doi.org/10.1038/ncomms10115
http://dx.doi.org/10.1038/ncomms10115

