Coordinated migration of the mesoderm is essential for accurate organization of the body plan during embryogenesis. However, little is known about how mesoderm migration influences posterior neural tube closure in mammals. Here we show that spinal neural tube closure and lateral migration of the caudal paraxial mesoderm depend on Transmembrane protein 132A (TMEM132A), a single-pass type I transmembrane protein, the function of which is not fully understood. Our study in Tmem132a-null mice and cell models demonstrates that TMEM132A regulates several integrins and downstream integrin pathway activation as well as cell migration behaviors. Our data also implicates mesoderm migration in elevation of the caudal neural folds and successful closure of the caudal neural tube. These results suggest a requirement for paraxial mesodermal cell migration during spinal neural tube closure, disruption of which may lead to spinal bifida.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview