The collective polarization of cellular structures and behaviors across a tissue plane is a near universal feature of epithelia known as planar cell polarity (PCP). This property is controlled by the core PCP pathway, which is comprised of highly conserved membrane-associated protein complexes that localize asymmetrically at cell junctions. Here we introduce three new mouse models for investigating the localization and dynamics of transmembrane PCP proteins Celsr1, Fz6, and Vangl2. Using the skin epidermis as a model, we characterize and verify the expression, localization and function of endogenously-tagged Celsr1-3xGFP, Fz6-3xGFP and tdTomato-Vangl2 fusion proteins. Live imaging of Fz6-3xGFP in basal epidermal progenitors reveals that the polarity of the tissue is not fixed through time. Rather asymmetry dynamically shifts during cell rearrangements and divisions, while global, average polarity of the tissue is preserved. We show using super-resolution STED imaging that Fz6-3xGFP and tdTomato-Vangl2 can be resolved, enabling us to observe their complex localization along junctions. We further explore PCP fusion protein localization in the trachea and neural tube, and discover new patterns of PCP expression and localization throughout the mouse embryo.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview