Cleft palate is a common major birth defect for which currently known causes account for less than 30% of pathology in humans. In this study, we carried out mutagenesis screening in mice to identify new regulators of palatogenesis. Through genetic linkage mapping and whole exome sequencing, we identified a loss-of-function mutation in the Golgb1 gene that co-segregated with cleft palate in a new mutant mouse line. Golgb1 encodes a ubiquitously expressed large coiled-coil protein, known as giantin, that is localized at the Golgi membrane. Using CRISPR/Cas9-mediated genome editing, we generated and analyzed developmental defects in mice carrying additional Golgb1 loss-of-function mutations, which validated a critical requirement for Golgb1 in palate development. Through maxillary explant culture assays, we demonstrate that the Golgb1 mutant embryos have intrinsic defects in palatal shelf elevation. Just prior to the developmental stage of palatal shelf elevation in the wildtype littermates, Golgb1 mutant embryos exhibit increased cell density, reduced hyaluronan accumulation, and impaired protein glycosylation in the palatal mesenchyme. Together, these results demonstrate that, although it is a ubiquitously expressed Golgi-associated protein, Golgb1 has specific functions in protein glycosylation and tissue morphogenesis.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview

Supplementary information