Embryos from females homozygous for a recessive maternal-effect mutation in the gene aura exhibit defects including reduced cortical integrity, defective cortical granule (CG) release upon egg activation, failure to complete cytokinesis, and abnormal cell wound healing. Subcellular analysis shows that the cytokinesis defects observed in aura mutants are associated with aberrant cytoskeletal reorganization during furrow maturation, including abnormal F-actin enrichment and microtubule reorganization. Cortical F-actin prior to furrow formation fails to exhibit a normal transition into F-actin-rich arcs, and drug inhibition is consistent with aura function promoting F-actin polymerization and/or stabilization. In mutants, components of exocytic and endocytic vesicles, such as Vamp2, Clathrin and Dynamin, are sequestered in unreleased CGs, indicating a need for CG recycling in the normal redistribution of these factors. However, the exocytic targeting factor Rab11 is recruited to the furrow plane normally at the tip of bundling microtubules, suggesting an alternate anchoring mechanism independent of membrane recycling. A positional cloning approach indicates that the mutation in aura is associated with a truncation of Mid1 Interacting Protein 1L (Mid1ip1L), previously identified as an interactor of the X-linked Opitz G/BBB syndrome gene Mid1. A Cas9/CRISPR-induced mutant allele in mid1ip1L fails to complement the originally isolated aura maternal-effect mutation, confirming gene assignment. Mid1ip1L protein localizes to cortical F-actin aggregates, consistent with a direct role in cytoskeletal regulation. Our studies indicate that maternally provided aura/mid1ip1L acts during the reorganization of the cytoskeleton at the egg-to-embryo transition and highlight the importance of cytoskeletal dynamics and membrane recycling during this developmental period.
aura/mid1ip1L regulates the cytoskeleton at the zebrafish egg-to-embryo transition
Currently Viewing Accepted Manuscript - Newer Version Available
- Split-screen
- Views Icon Views
- PDF LinkPDF File PDFPDF+SI
-
Article Versions Icon
Versions
- Version of Record 01 May 2016
- Accepted Manuscript 01 January 2016
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Celeste Eno, Bharti Solanki, Francisco Pelegri; aura/mid1ip1L regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development 2016; dev.130591. doi: https://doi.org/10.1242/dev.130591
Download citation file:
Advertisement
Development Journal Meeting 2022: From Stem Cells to Human Development
-JournalMeeting.png?versionId=3737)
Following a virtual meeting in 2020, we are delighted to announce that the fifth iteration of our popular Journal Meeting will be held from 11-14 September 2022 at the historic Wotton House, Surrey. Registration is open now.
Special Issue: The Immune System in Development and Regeneration
(update)-ImmuneSI.png?versionId=3737)
Our latest special issue is now complete. It showcases articles that add to the repertoire of immune cell functions during development, repair and regeneration, and provide insights into the developmental pathways leading to the generation and dispersal of these cells.
Propose a new Workshop
-GSWorkshop.png?versionId=3737)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Preprints in Development
(update)-InPreprints.png?versionId=3737)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context. You can read the first article here.
FocalPlane Network launched
-FocalPlaneNetworkLaunch.png?versionId=3737)
Like the Node Network, the aim of the FocalPlane Network is to facilitate promotion and networking as well as assist those seeking conference speakers, committee members, reviewers or collaborators. We hope that it will help promote diversity in the community. Find out more and join the Network here.