Understanding human brain development is of fundamental interest but is also very challenging. Single-cell RNA-sequencing studies in mammals have revealed that brain development is a highly dynamic process with tremendous, previously concealed, cellular heterogeneity. This Spotlight discusses key insights from these studies and their implications for experimental models. We survey published single-cell RNA-sequencing studies of mouse and human brain development, organized by anatomical regions and developmental time points. We highlight remaining gaps in the field, predominantly concerning human brain development. We propose future directions to fill the remaining gaps, and necessary complementary techniques to create an atlas integrated in space and time of human brain development.

Early in development, secreted morphogens define spatial domains within the brain that express distinct transcription factor combinations. These transcription factors, in turn, specify thousands of transcriptionally distinct neural cell types in the adult brain (reviewed by Silbereis et al., 2016). However, this cellular complexity is likely exceeded several-fold by the number of distinct transient cell states that exist during development. Understanding brain development thus requires extraordinarily sensitive and scalable methods.

Single-cell RNA-sequencing (scRNA-seq) has emerged as the predominant technique for discovering the transcriptional cell type composition of complex tissues. Advances in miniaturization and multiplexing have reduced costs and increased throughput, enabling the generation of gene expression profiles of many thousands of cells per experiment (Svensson et al., 2018). Following the first scRNA-seq experiment reported on mouse blastomeres (Tang et al., 2009), the most studied tissue has been the brain, with over 250 publications to date. Here, we review studies of mammalian brain development, focusing on post-gastrulation events. Using a database of scRNA-seq publications (Svensson et al., 2020), catalogs of scRNA-seq datasets [NeMo and the University of California, Santa Cruz (UCSC) Cell browser] and PubMed, we manually identified 89 studies of developing mammalian brain and nervous system that used primary tissues (Table 1). To illustrate the scope of the article, we summarize mouse and human studies by anatomical regions and developmental time points. We found that, in recent years, scRNA-seq has been scaled to whole mouse embryos and brain samples across the full timeline of mouse prenatal brain development (Fig. 1). Together with advanced spatial techniques, a full 3D cellular map of mouse brain development seems within reach. However, owing to limitations of human tissue collection and experimentation, studies on human brain development remain less comprehensive (Fig. 2). We highlight important findings in the field so far and their implications for experimental models. Finally, we discuss remaining gaps in the field and suggest future research directions and technologies necessary to understand human brain development.

Fig. 1.

Illustration of available scRNA-seq datasets of mouse nervous system development. An scRNA-seq database of publications up to October 2021 (Svensson et al., 2020), catalogs of scRNA-seq datasets (NeMo and the UCSC Cell browser) and PubMed were used to identify studies of mammalian nervous system development, using keywords for developing nervous system components (‘autonomic’, ‘brain’, ‘dorsal root ganglia’, ‘embryo’, ‘enteric’, ‘inner ear’, ‘nasal’, ‘neural tube’, ‘olfactory’, ‘peripheral nervous system’, ‘retina’, ‘sensory’, ‘spinal cord’, ‘sympathetic’). Publications were manually inspected and included in Table 1 if they covered post-gastrulation time points. Postnatal data was only included if the inclusion criteria were met, or if the region or cell type of interest develops postnatally. Only publications that generated their own data were included. Our curated list was also sent to V. Svensson (Vesalius Therapeutics, Cambridge, MA, USA). The figure shows scRNA-seq datasets from mouse studies by anatomical regions and developmental time points. Half embryonic days were rounded to the lower integer (e.g. E13.5 is plotted as E13), except for more precisely timed experiments (references 72 and 76 in Table 1). Colors indicate whether all cell types or cell-type-specific isolation and sequencing were performed. If studies sequenced the same region at the same time point, symbols overlap along the y-axis (e.g. whole brain at E14, and cerebellum at P0). A second y-axis (right) indicates which publications the data are derived from per row (see Table 1 for matching numbers). E, embryonic day; Ganglionic em., ganglionic eminence; m, month; NS, nervous system; P, postnatal day; Sub-Pall., subpallium.

Fig. 1.

Illustration of available scRNA-seq datasets of mouse nervous system development. An scRNA-seq database of publications up to October 2021 (Svensson et al., 2020), catalogs of scRNA-seq datasets (NeMo and the UCSC Cell browser) and PubMed were used to identify studies of mammalian nervous system development, using keywords for developing nervous system components (‘autonomic’, ‘brain’, ‘dorsal root ganglia’, ‘embryo’, ‘enteric’, ‘inner ear’, ‘nasal’, ‘neural tube’, ‘olfactory’, ‘peripheral nervous system’, ‘retina’, ‘sensory’, ‘spinal cord’, ‘sympathetic’). Publications were manually inspected and included in Table 1 if they covered post-gastrulation time points. Postnatal data was only included if the inclusion criteria were met, or if the region or cell type of interest develops postnatally. Only publications that generated their own data were included. Our curated list was also sent to V. Svensson (Vesalius Therapeutics, Cambridge, MA, USA). The figure shows scRNA-seq datasets from mouse studies by anatomical regions and developmental time points. Half embryonic days were rounded to the lower integer (e.g. E13.5 is plotted as E13), except for more precisely timed experiments (references 72 and 76 in Table 1). Colors indicate whether all cell types or cell-type-specific isolation and sequencing were performed. If studies sequenced the same region at the same time point, symbols overlap along the y-axis (e.g. whole brain at E14, and cerebellum at P0). A second y-axis (right) indicates which publications the data are derived from per row (see Table 1 for matching numbers). E, embryonic day; Ganglionic em., ganglionic eminence; m, month; NS, nervous system; P, postnatal day; Sub-Pall., subpallium.

Fig. 2.

Illustration of available scRNA-seq datasets of human nervous system development. An scRNA-seq database of publications up to October 2021 (Svensson et al., 2020), catalogs of scRNA-seq datasets (NeMo and the UCSC Cell browser) and PubMed were used to identify studies of mammalian nervous system development, using keywords for developing nervous system components (‘autonomic’, ‘brain’, ‘dorsal root ganglia’, ‘embryo’, ‘enteric’, ‘inner ear’, ‘nasal’, ‘neural tube’, ‘olfactory’, ‘peripheral nervous system’, ‘retina’, ‘sensory’, ‘spinal cord’, ‘sympathetic’). Publications were manually inspected and included in Table 1 if they covered post-gastrulation time points. Postnatal data was only included if the inclusion criteria were met, or if the region or cell type of interest develops postnatally. Only publications that generated their own data were included. Our curated list was also sent to V. Svensson (Vesalius Therapeutics, Cambridge, MA, USA). The figure shows scRNA-seq datasets from human studies by anatomical regions and developmental time points. Half weeks were plotted accordingly, whereas other decimals were rounded to the nearest integer (e.g. 16.5 is plotted in between 16 and 17, and 5.85 at 6). Colors indicate whether all cell types or cell-type-specific isolation and sequencing was performed. If studies sequenced the same region at the same time point, symbols overlap along the y-axis [e.g. two studies sequenced gestational week (GW) 22 hippocampus]. Parallel x-axes are used to show postconceptional week (PCW; solid cell border) and GW (dashed cell border). We defined GW as PCW+2 weeks, but GWs are sometimes ambiguous in the original publications. PCW 4-9 contain extra ticks for Carnegie stages (CS; see Table 1). A second y-axis (right) indicates which publications the data are derived from per row (see Table 1 for matching numbers). Ganglionic em., ganglionic eminence; Sub-Pall., subpallium.

Fig. 2.

Illustration of available scRNA-seq datasets of human nervous system development. An scRNA-seq database of publications up to October 2021 (Svensson et al., 2020), catalogs of scRNA-seq datasets (NeMo and the UCSC Cell browser) and PubMed were used to identify studies of mammalian nervous system development, using keywords for developing nervous system components (‘autonomic’, ‘brain’, ‘dorsal root ganglia’, ‘embryo’, ‘enteric’, ‘inner ear’, ‘nasal’, ‘neural tube’, ‘olfactory’, ‘peripheral nervous system’, ‘retina’, ‘sensory’, ‘spinal cord’, ‘sympathetic’). Publications were manually inspected and included in Table 1 if they covered post-gastrulation time points. Postnatal data was only included if the inclusion criteria were met, or if the region or cell type of interest develops postnatally. Only publications that generated their own data were included. Our curated list was also sent to V. Svensson (Vesalius Therapeutics, Cambridge, MA, USA). The figure shows scRNA-seq datasets from human studies by anatomical regions and developmental time points. Half weeks were plotted accordingly, whereas other decimals were rounded to the nearest integer (e.g. 16.5 is plotted in between 16 and 17, and 5.85 at 6). Colors indicate whether all cell types or cell-type-specific isolation and sequencing was performed. If studies sequenced the same region at the same time point, symbols overlap along the y-axis [e.g. two studies sequenced gestational week (GW) 22 hippocampus]. Parallel x-axes are used to show postconceptional week (PCW; solid cell border) and GW (dashed cell border). We defined GW as PCW+2 weeks, but GWs are sometimes ambiguous in the original publications. PCW 4-9 contain extra ticks for Carnegie stages (CS; see Table 1). A second y-axis (right) indicates which publications the data are derived from per row (see Table 1 for matching numbers). Ganglionic em., ganglionic eminence; Sub-Pall., subpallium.

Table 1.

Publications using scRNA-seq on developing human and mouse nervous system tissues

Publications using scRNA-seq on developing human and mouse nervous system tissues
Publications using scRNA-seq on developing human and mouse nervous system tissues

scRNA-seq studies that include data from multiple regions and time points provide the most complete view of cell-type heterogeneity during mammalian brain development. For example, one atlas comprised almost 300,000 sequenced cells from all major regions of the mouse brain during the entire timespan of prenatal brain development [embryonic day (E)7-E18] (La Manno et al., 2021). Eight main cell classes (Fig. 3) and nearly 800 clusters were identified in total, covering the onset and timeline of gastrulation, the emergence of the neural crest and neural tube, neurogenesis, early gliogenesis, and the branching of the meningeal lineage from the neural crest or mesenchyme. This atlas revealed that, although 87 radial glia subtypes were identified, most neuronal diversity was generated in postmitotic neuroblasts (171 subtypes) and maturing neurons (306 subtypes). The number of cell types identified depends on the protocol used (Mereu et al., 2020), the number of cells and depth sequenced (Svensson et al., 2020), as well as clustering methods (Kiselev et al., 2019). Comprehensive atlases are, therefore, the most accurate resources to compare cell heterogeneity between brain regions and time points. Such datasets are also the most accurate way to identify markers that can distinguish cell types globally across the brain or entire body (Box 1). Below, we explore cellular heterogeneity in the mammalian brain revealed by scRNA-seq and single-cell multi-omics.

Box 1. Improved markers and targets

More precise markers enable the continued investigation of heterogenous cell populations and can improve basic experimental readouts, evolutionary biology and specificity in gene manipulations for model systems. Canonical markers are often not specific enough to distinguish subtypes of major cell classes from each other, or similar cells present in different tissues (e.g. AIF1 is used for both macrophages and microglia, making ontological studies difficult). Canonical markers are especially unhelpful in developmental datasets where progenitors express overlapping genes that only become specific in more differentiated states (e.g. SOX10 is expressed by neural crest and later the oligodendrocyte lineage). By analyzing the single-cell expression of ligand-receptor pairs it is also possible to predict cell-cell interactions (e.g. Dani et al., 2021; Efremova et al., 2020) and target specific cells for drug development.

Fig. 3.

Major classes of cells in the mammalian developing brain. The figure shows the dendrogram of cell types from La Manno et al. (2021), with colored sectors indicating major classes of cell types. Immune cells include macrophages and microglia. Fibroblasts include those that form the meninges. OPC, oligodendryte precursor cell.

Fig. 3.

Major classes of cells in the mammalian developing brain. The figure shows the dendrogram of cell types from La Manno et al. (2021), with colored sectors indicating major classes of cell types. Immune cells include macrophages and microglia. Fibroblasts include those that form the meninges. OPC, oligodendryte precursor cell.

Diversity in neuronal lineages

Progenitor cells

A study of first-trimester human telencephalon found nine clusters of neuroepithelial and radial glial cells. The gradual transition of these cells from early to more mature progenitors was defined by gene expression gradients (Eze et al., 2021). Three major classes of radial glia were identified in humans: ventricular, outer and truncated radial glia, appearing in early-to-late development (Nowakowski et al., 2017). Cell cycle and differentiation genes were mostly responsible for the transcriptional variation seen in outer radial glia (Pollen et al., 2015). Furthermore, regional transcription factors [e.g. HOX genes (hindbrain); PAX7 (midbrain); GBX2 (thalamus); FOXG1 (cerebral cortex)] were expressed as early as Carnegie stage (CS) 13, but cell type-defining genes were mostly conserved across different brain regions (Eze et al., 2021). Combined scRNA-seq and single-cell assay for transposase-accessible chromatin-sequencing (scATAC-seq) data showed that chromatin activity of a set of genes in cycling cells precedes lineage-specific gene expression, suggesting that progenitors entering the cell cycle were primed towards specific lineages (Trevino et al., 2021). RNA-velocity analysis of the early human brain (CS 12-13) indicated examples of radial glia giving rise to neurons, suggestive of direct neurogenesis (Eze et al., 2021). Intermediate progenitor populations appeared at ∼CS 18, implying the beginning of stereotypical (indirect) neuronal differentiation (Eze et al., 2021). However, the expression of TBR2 (also known as EOMES), which is the basis for intermediate progenitor definition, was also found in postmitotic neurons, such as Cajal-Retzius cells (Eze et al., 2021). In addition, a novel mesenchymal progenitor was described that expressed LUM and ALX1, potentially supporting telencephalic development before the radial glial scaffold emerges (Eze et al., 2021). These cells may be the early mesenchymal progenitors destined to form the meninges, as recently described (La Manno et al., 2021).

Excitatory and glutamatergic neurons

In the mouse, forebrain excitatory neurons were a clear transcriptional outgroup distinct from the other neuronal lineages (La Manno et al., 2021), supporting data from adolescent animals (Zeisel et al., 2018). In humans, by mid-gestation there were populations of migrating, differentiating and maturing excitatory neurons (Zhong et al., 2018; Polioudakis et al., 2019). There were also area- and layer-specific pyramidal cell subtypes in the human cortex, which emerged during peak neurogenesis. These results differ from early models of a cortical ‘column’ consisting of similar cell types and lamination patterns irrespective of topographical location in the cortical sheet (Nowakowski et al., 2017; Zhong et al., 2018; Bhaduri et al., 2020). Multi-ome data defined a developmental trajectory for glutamatergic neurons, revealing a continuous progression of transcription factor motif activities associated with neuronal specification and migration (Trevino et al., 2021). Furthermore, a comparison of scRNA-seq and scATAC-seq profiles of human excitatory lineage cells revealed chromatin state signatures of cortical arealization already in intermediate progenitor populations, preceding that of areal transcriptomic signatures in excitatory neurons (Ziffra et al., 2021).

Cortical inhibitory neurons

Mouse and human forebrain inhibitory neurons develop from the ganglionic eminences and migrate tangentially into the neocortex. The precise origins and development of these cells have been the subject of intense study (Lim et al., 2018). Precursors located in the mouse caudal, lateral and medial ganglionic eminences clearly expressed distinct transcription factors that bias their fates upon differentiation (Mayer et al., 2018; Mi et al., 2018), but whether the full set of mature interneuron types is prespecified in the eminences remains unclear. During parvalbumin and somatostatin interneuron development, combined scRNA-seq and scATAC-seq revealed a predominantly shared chromatin architecture of general interneuron identity from E13 to postnatal day (P)2, followed by the expression of specific transcription factors that initiated terminal differentiation and cell type diversification (Allaway et al., 2021). There were also conflicting reports concerning the existence of interneuron progenitors in the human neocortex (Zhong et al., 2018; Polioudakis et al., 2019). Recent findings indicate that most of the diversity of interneuron types is generated in the ganglionic eminences (Shi et al., 2021). However, genetic fate mapping revealed a shared origin for human excitatory and inhibitory cortical neurons (Delgado et al., 2022). Interestingly, the same was not true in mice (Bandler et al., 2022).

Diversity in glia

Astrocytes and oligodendrocytes

A common progenitor for astrocytes and oligodendrocytes, and two additional astrocyte precursor states, were found in humans (Zhong et al., 2018; Polioudakis et al., 2019). In mice, transitional intermediate states in astroglial and oligodendroglial lineages persist in postnatal gliogenesis and were altered in gliomagenesis (Weng et al., 2019). A population of late radial glial cells (glioblasts) was identified, that gradually lost proliferative capacity and switched to gliogenesis (La Manno et al., 2021). Oligodendrocytes were established as a transcriptionally heterogeneous lineage with twelve clusters identified in P21-P60 mice (Marques et al., 2016), whereas three subpopulations of early progenitor, late progenitor (myelinating) and mature oligodendrocytes were identified in humans (Perlman et al., 2020). Overall, oligodendrocytes were consistently found to be much less heterogeneous than neuronal or astrocyte lineages.

Microglia

Microglia have a yolk sac origin (i.e. non-neural) and migrate into the human brain by gestational week (GW) 8 (Zhong et al., 2018). Their development involves three distinct temporal stages in synchrony with the homeostatic needs of the developing brain, and displays heterogeneity from embryonic to adult ages (Matcovitch-Natan et al., 2016; Li et al., 2019; Kracht et al., 2020). Interestingly, human microglia may be more heterogeneous than five other mammals surveyed (macaque, marmoset, sheep, mouse and hamster) (Geirsdottir et al., 2019).

Neurodevelopment is a highly dynamic process with precise spatiotemporal regulation of the transcriptome. To understand the sequence of events during development, and the origin of adult cell types, samples can be collected over time. One such study analyzed various brain regions from embryonic, fetal, adolescent and adult human brains using bulk and scRNA-seq and found a global temporal transcriptomic pattern (Li et al., 2018). This, and the molecular signatures of topographical gene expression and bilaterality in the developing human brain, were previously uncovered using bulk RNA-sequencing alone (Pletikos et al., 2014). During embryonic to mid-fetal stages, there was high transcriptomic variation between brain regions (Li et al., 2018). At late fetal stages, there was a sharp decrease in regional differences but an increase in genes related to neuronal maturation, synaptogenesis and myelination. High intra- and inter-regional variation resumed in childhood-adolescence. Alignment of prenatal and adult data revealed that putative embryonic and fetal excitatory neurons clustered near their adult counterparts, whereas fetal cells in the oligodendrocyte lineage did not, indicating a distinctly different maturation status (Li et al., 2018).

Focusing on a single region over time facilitates detailed sub-anatomical analysis of timing, patterning events and the effects of gene mutations. For example, in mice, it was shown that the neurogenic-to-gliogenic switch occurred between E12 and E16, that nearly all neuronal lineages passed through an early neuroblast state, and that the earliest astrocytes appeared at ∼E15 (La Manno et al., 2021). In mouse hypothalamus development, Nkx2-1 was identified as a potential positive regulator of ventral hypothalamic identity while also suppressing prethalamic identity, which was not predicted by the prosomeric model for forebrain organization (Puelles, 2009; Ferran et al., 2015), highlighting an unexpected developmental connection between the hypothalamus and prethalamus (Kim et al., 2020). Another study generated an atlas of cortical development in Fezf2 mutant mice (Di Bella et al., 2021). Fezf2 is a crucial transcription factor for forebrain development, the absence of which causes a loss of sub-cerebral projection neurons (reviewed by Molyneaux et al., 2007). At E13.5, postmitotic projection neurons were transcriptionally more like projection neurons of later time points. Thus, although Fezf2 was expressed in progenitors, its role in sub-cerebral projection neuron specification was primarily postmitotic (Di Bella et al., 2021). In addition, other specific regions that were studied over time include the mouse developing cerebellum (Carter et al., 2018), dentate gyrus (Hochgerner et al., 2018), as well as the human hippocampus (Zhong et al., 2020) and pituitary (Zhang et al., 2020a) (Table 1).

Computational tools, such as Monocle (Trapnell et al., 2014), URD (Farrell et al., 2018), RNA velocity (La Manno et al., 2018) and scVelo (Bergen et al., 2020), can be used to infer differentiation trajectories, model transcriptional dynamics and predict the direction of differentiation (reviewed by Saelens et al., 2019). This information can guide complementary experiments such as genetic lineage tracing, to prove the predicted lineages and clonal relationships (Wagner and Klein, 2020).

Evolutionary conservation can reveal the function of cell types and can be used to transfer knowledge about these functional properties from model organisms to humans. For example, little is known about the electrophysiological properties of human neurons, but such properties can be inferred from the corresponding mouse or non-human primate cell types. At the same time, non-conserved cell types or states may reveal human-specific traits and disorders. For example, one study comparing human cortical development with mice showed that the human cortex developed more slowly and certain human cell populations were absent in early mouse development (Eze et al., 2021).

A study using bulk and scRNA-seq compared human and macaque brain development and found numerous shared and divergent transcriptomic features. In the hippocampus, striatum and cerebellar cortex, differentially expressed genes were enriched in oligodendrocyte progenitors, medium spiny neurons, external granular layer neurons and microglia, indicating specific cell-type differences between human and macaque. In the prenatal dorsolateral prefrontal cortex, all human cell types had a close homologue in the macaque. However, there was a prolonged neurogenic period in humans with an enrichment for intermediate progenitor cells, suggesting that the duration of neurogenesis may differ between the two species (Zhu et al., 2018). These data highlight that distinct models for early human cortical development are necessary. Drawing correlations with genes known to be implicated in neuropsychiatric diseases, five heterotopic clusters specific to schizophrenia-associated genes were found. Three of them displayed exclusive species differences prenatally. One schizophrenia-associated gene, GRIA1 (an AMPA receptor subunit), was expressed in neocortical areas earlier in humans. Instead, autism spectrum disorder-associated genes (SHANK2 and SHANK3) were expressed earlier in macaque than human neocortex (Zhu et al., 2018). These findings are relevant for in vitro models of neurodevelopment and non-human primate models of neuropsychiatric disease, such as the SHANK3-deficient macaque model (Zhao et al., 2017).

Another study compared adult human, marmoset and mouse motor cortices and found that most cell types were homologous between the three species. Surprisingly, however, most cell-type-specific genes in each species were not conserved in the other species (Bakken et al., 2021). The same was observed in a study comparing interneurons in three primates (human, macaque and marmoset), mice and ferrets (Krienen et al., 2020). Evolutionary comparisons can, therefore, both reveal conserved genes likely to support the core function of each cell type, but also pinpoint divergent genes that have evolved recently in each species to serve species-specific adaptations.

Taken together, this suggests that interspecies differences can result from variations in cell-type diversity and abundance, more so than the transcriptional divergence between cell types. Interestingly, a new classification system based on an evolutionary definition of cell type was proposed (Arendt et al., 2016). The proposal can be tested with new tools, such as SAMap, which maps cell atlas manifolds across species and identifies homologous cell types (Tarashansky et al., 2021). We, therefore, stress the importance of studies on evolutionary conservation.

Understudied neuroanatomical regions

To fully understand brain development, data from all neuroanatomical regions and developmental time points is necessary. Regions of the nervous system and time points that have been studied in mice and humans are shown in Figs 1 and 2, respectively. Here, we clarify the remaining gaps in the field.

In mouse

Whole mouse embryos were sequenced from E6 to E13 using scRNA-seq (Cao et al., 2019; Pijuan-Sala et al., 2019). In the central nervous system, the forebrain, midbrain, hindbrain, cerebellum and retina were sequenced almost throughout prenatal development, and the latter three during the first postnatal week as well. The spinal cord had almost no scRNA-seq data from the second half of prenatal development. The forebrain was studied the most, although with missing time points for subdivisions of the forebrain. Some neuroanatomical regions develop late, which may explain the absence of sequencing data on certain time points (e.g. the cerebellum develops from E10 through to adolescence) (Fig. 1; Table 1).

Peripheral nervous system (PNS) development was not as well covered across development. We found publications for neural crest-derived autonomic and sensory neurons, the enteric nervous system, the inner ear, sciatic nerve and dorsal root ganglia (Fig. 1; Table 1). More studies on dorsal root ganglia were found in adult mice (Usoskin et al., 2015; Li et al., 2016; Wang et al., 2021).

Although the sequencing coverage for mouse neurodevelopment was high, most regions and time points were only sequenced once (and a maximum of four times, e.g. E13-E15 cortex). Of 61 studies, 18 isolated specific cell types for sequencing [e.g. microglia from the whole brain (Hammond et al., 2019) and midbrain dopaminergic neurons (Tiklová et al., 2019)]. Furthermore, other than by inclusion in a larger dataset (La Manno et al., 2021), no study focused on analyzing all cell types in the developing hindbrain, thalamus or pons (Fig. 1; Table 1).

In human

There were roughly half as many publications on human nervous system development compared with mice (Table 1). Several regions have been sequenced at almost all prenatal weeks up until birth: the cortex, pituitary gland and retina, and the spinal cord and cerebellum have also been covered extensively over prenatal time points (Fig. 2). Although it is not a trivial undertaking, data could be integrated across publications to create a full atlas of human cortical development. Comparing this to the atlas of mouse cortical development could yield interesting evolutionary findings and implications for experimental models. Notably, two studies covering wide age ranges and ten (Eze et al., 2021) or six (Zhu et al., 2018) different brain regions, mostly focused their analysis on the cortex, leaving avenues for interesting post hoc analyses.

Not many other regions were sequenced and analyzed in-depth, other than the hippocampus (Zhong et al., 2020) and ventral midbrain (La Manno et al., 2016). Only 5/30 studies isolated one specific cell type for sequencing (Table 1). We found no studies on PNS development in humans. The gaps in human studies are partly due to limitations on tissue acquisition (Box 2). Furthermore, the influence of other tissues on brain development are also important (Box 3).

Box 2. Limitations to human tissue sampling

All prenatal stages of development have been sampled in mouse (Fig. 1). However, in humans there are major age gaps in sample collections due to ethical restrictions on human research and legal limits on abortions. Acquiring tissue from third trimester (28-40 weeks) and half of the second trimester (14-27 weeks) is particularly difficult. These time periods cover many developmental events, such as neuronal migration, gliogenesis, synaptogenesis, synaptic pruning and myelination. Such challenges motivate our proposed investments into advancing in vitro model systems, such as long-term explant culturing and organoids. Furthermore, work on postnatal stages is restricted to post-mortem tissue or rare surgical resections, underlining the importance of integration between single-cell techniques carried out on fresh versus frozen tissues.

Box 3. Other tissues that influence the brain

Other tissues also influence brain development but are rarely integrated with neurodevelopmental models. Only two scRNA-seq studies were found that investigate extra-brain-parenchymal tissue during brain development. One sequenced choroid plexus in E16.5, juvenile and adult mice (Dani et al., 2021), and the other E14.5 meningeal fibroblasts (DeSisto et al., 2020). The former found a previously unknown brain-barrier transition zone in choroid plexus endothelial cells, and that choroid plexus epithelial cells express genes regulating brain development, such as Igf2 (a secreted factor found in cerebrospinal fluid). The latter found differential production of extracellular matrix components and signaling molecules (e.g. Cxcl12, retinoic acid synthesis genes, Wnts and bone morphogenic proteins) by meningeal fibroblasts. Both are crucial to instructing regional brain development. Glia were also captured in the developing skull (Farmer et al., 2021).

The vasculature is also integral to neurodevelopment and health (reviewed by Ross et al., 2020). The cerebrovasculature in adult mice and humans was recently mapped by scRNA-seq (Hupe et al., 2017; Winkler et al., 2022; Garcia et al., 2021 preprint). In humans, a novel fibromyocyte was found and that perivascular fibroblasts produce retinoid acid (Winkler et al., 2022). In mice, pericytes displayed organotypicity in the brain compared with the lung and were molecularly defined, clarifying their roles in normal and pathological conditions, which were ambiguous due to poor cell type definition (Vanlandewijck et al., 2018). The origin and developmental heterogeneity of pericytes is poorly understood, and only one scRNA-seq study on developing endothelial cells was found in mice (Hupe et al., 2017). This highlights the importance, but scarcity, of studies investigating the influence of other cephalic tissues on neurodevelopment.

The growth of scRNA-seq and the vast amount of data produced have raised a few considerations: how many cells and what sequencing depth is optimal to capture all cell types and distinguish them from each other can we define cell type diversity during brain development with similar datasets and methods as the adult brain, considering that rare and transient cell states vary between regions and time points during development; how do we create a common taxonomy of cell types (is a ‘glioblast’ in one study the same as ‘glial progenitor’ in another); can we bridge different sequencing techniques (single nucleus/cell sequencing, fresh/fixed tissue, chemistry A or B, multimodal sequencing assays, etc.)? To answer these questions and more, and to integrate single-cell data, international consortia, such as the Human Cell Atlas, have been formed. Its mission is to map every cell in the human body (a ‘Periodic Table’ of human cells) using single-cell and spatial genomics and computational techniques (Regev et al., 2017; Haniffa et al., 2021; Rozenblatt-Rosen et al., 2021). International consortia, together with integrative and interactive databases, and standardization efforts for data analysis (Luecken and Theis, 2019) are essential to combine findings and shape productive future directions.

In addition, although the most used single-cell method is scRNA-seq, methylation, chromatin accessibility, genetic variation and protein abundance can be measured using related techniques. Single-cell biology has entered a multi-omics age (Perkel, 2021), and key scATAC-seq work during mammalian development is already emerging (Preissl et al., 2018; Domcke et al., 2020; Ziffra et al., 2021). The combination of scRNA-seq and scATAC-seq is particularly powerful for developmental studies because it can simultaneously reveal transcriptional cell states and the gene regulatory elements – enhancers and promoters – that drive those states. Furthermore, cell-type-specific enhancer elements are powerful experimental tools for genetic targeting of cell types and states, such as by using viral vectors in vivo, in explants or in organoids (Mich et al., 2021).

Some important neurodevelopmental questions cannot be addressed by single-cell analyses alone. For example, scRNA-seq can reveal which cells express genes involved in brain patterning, but not their spatial location, as this information is lost upon tissue dissociation. Spatial-omics techniques are, therefore, under tremendous technical development and usage (Rao et al., 2021). For example, sci-Space allows the construction of spatially resolved single-cell atlases, recently mapping whole transcriptomes of 120,000 nuclei in whole E14.5 mouse embryos at single-cell resolution (Srivatsan et al., 2021). Comparing the transcriptome and location of cell types can also elucidate whether the transcriptome of a particular cell type is defined before or after migrating to its terminal niche. Data integration from scRNA-seq and spatial transcriptomics has been reviewed elsewhere (Longo et al., 2021).

One of the main goals in neuroscience is to understand human brain development and the mechanisms underlying neurodevelopmental disorders. A hurdle to achieving this – unlike other model organisms – is the difficulty of acquiring human samples at all developmental stages (Box 2) and the impossibility of in vivo experimentation. To a large extent, rodents and non-human primates serve as models of human biology. However, further development of advanced in vitro systems, such as ex vivo brain explant culturing and organoids, is essential to make progress in the field. As human brain development is slow compared with rodents, focusing on long-term culturing is necessary to investigate inaccessible time points. Single-cell and spatial-omics techniques can be used to verify the extent to which in vitro systems recapitulate normal development (Camp et al., 2015; Velasco et al., 2019; Bhaduri et al., 2020; Fleck et al., 2021), which can subsequently be used for live-tissue experiments, such as lineage tracing, live imaging, gene perturbations and other functional tests. Future integration of long-term time-lapse imaging with single-cell and spatial-omics could directly link cell behavior, lineage trajectories and molecular cell states. We believe data integration across organs is important to place brain development into the context of the whole body, as demonstrated by recent work on organogenesis and diverse fetal tissues (Cao et al., 2019, 2020; Pijuan-Sala et al., 2019; Lohoff et al., 2022). No model system is ideal for the study of all biological questions, but the integrated combination of existing models can eventually lead to a common atlas over space and time, with a coordinate framework of human brain development.

Funding

This work was supported by grants from the Stiftelsen för Strategisk Forskning (SB16-0065), Knut och Alice Wallenbergs Stiftelse (2018.0172 and 2018.0220), Familjen Erling-Perssons Stiftelse (HDCA) and the Horizon 2020 European Union project BRAINTIME to S.L.

Aldinger
,
K. A.
,
Thomson
,
Z.
,
Phelps
,
I. G.
,
Haldipur
,
P.
,
Deng
,
M.
,
Timms
,
A. E.
,
Hirano
,
M.
,
Santpere
,
G.
,
Roco
,
C.
,
Rosenberg
,
A. B.
et al. 
(
2021
).
Spatial and cell type transcriptional landscape of human cerebellar development
.
Nat. Neurosci.
24
,
1163
-
1175
.
Allaway
,
K. C.
,
Gabitto
,
M. I.
,
Wapinski
,
O.
,
Saldi
,
G.
,
Wang
,
C. Y.
,
Bandler
,
R. C.
,
Wu
,
S. J.
,
Bonneau
,
R.
and
Fishell
,
G.
(
2021
).
Genetic and epigenetic coordination of cortical interneuron development
.
Nature
597
,
693
-
697
.
Arendt
,
D.
,
Musser
,
J. M.
,
Baker
,
C. V. H.
,
Bergman
,
A.
,
Cepko
,
C.
,
Erwin
,
D. H.
,
Pavlicev
,
M.
,
Schlosser
,
G.
,
Widder
,
S.
,
Laubichler
,
M. D.
et al. 
(
2016
).
The origin and evolution of cell types
.
Nat. Rev. Genet.
17
,
744
-
757
.
Bakken
,
T. E.
,
Jorstad
,
N. L.
,
Hu
,
Q.
,
Lake
,
B. B.
,
Tian
,
W.
,
Kalmbach
,
B. E.
,
Crow
,
M.
,
Hodge
,
R. D.
,
Krienen
,
F. M.
,
Sorensen
,
S. A.
et al. 
(
2021
).
Comparative cellular analysis of motor cortex in human, marmoset and mouse
.
Nature
598
,
111
-
119
.
Bandler
,
R. C.
,
Vitali
,
I.
,
Delgado
,
R. N.
,
Ho
,
M. C.
,
Dvoretskova
,
E.
,
Ibarra Molinas
,
J. S.
,
Frazel
,
P. W.
,
Mohammadkhani
,
M.
,
Machold
,
R.
,
Maedler
,
S.
et al. 
(
2022
).
Single-cell delineation of lineage and genetic identity in the mouse brain
.
Nature
601
,
404
-
409
.
Bergen
,
V.
,
Lange
,
M.
,
Peidli
,
S.
,
Wolf
,
F. A.
and
Theis
,
F. J.
(
2020
).
Generalizing RNA velocity to transient cell states through dynamical modeling
.
Nat. Biotechnol.
38
,
1408
-
1414
.
Bhaduri
,
A.
,
Andrews
,
M. G.
,
Mancia Leon
,
W.
,
Jung
,
D.
,
Shin
,
D.
,
Allen
,
D.
,
Jung
,
D.
,
Schmunk
,
G.
,
Haeussler
,
M.
,
Salma
,
J.
et al. 
(
2020
).
Cell stress in cortical organoids impairs molecular subtype specification
.
Nature
578
,
142
-
148
.
Buenaventura
,
D. F.
,
Corseri
,
A.
and
Emerson
,
M. M.
(
2019
).
Identification of genes with enriched expression in early developing mouse cone photoreceptors
.
Invest. Ophthalmol. Vis. Sci.
60
,
2787
-
2799
.
Burns
,
J. C.
,
Kelly
,
M. C.
,
Hoa
,
M.
,
Morell
,
R. J.
and
Kelley
,
M. W.
(
2015
).
Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear
.
Nat. Commun.
6
,
8557
.
Camp
,
J. G.
,
Badsha
,
F.
,
Florio
,
M.
,
Kanton
,
S.
,
Gerber
,
T.
,
Wilsch-Bräuninger
,
M.
,
Lewitus
,
E.
,
Sykes
,
A.
,
Hevers
,
W.
,
Lancaster
,
M.
et al. 
(
2015
).
Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
.
Proc. Natl. Acad. Sci. USA
112
,
15672
-
15677
.
Cao
,
J.
,
Spielmann
,
M.
,
Qiu
,
X.
,
Huang
,
X.
,
Ibrahim
,
D. M.
,
Hill
,
A. J.
,
Zhang
,
F.
,
Mundlos
,
S.
,
Christiansen
,
L.
,
Steemers
,
F. J.
et al. 
(
2019
).
The single-cell transcriptional landscape of mammalian organogenesis
.
Nature
566
,
496
-
502
.
Cao
,
J.
,
O'Day
,
D. R.
,
Pliner
,
H. A.
,
Kingsley
,
P. D.
,
Deng
,
M.
,
Daza
,
R. M.
,
Zager
,
M. A.
,
Aldinger
,
K. A.
,
Blecher-Gonen
,
R.
,
Zhang
,
F.
et al. 
(
2020
).
A human cell atlas of fetal gene expression
.
Science
370
,
eaba7721
.
Carter
,
R. A.
,
Bihannic
,
L.
,
Rosencrance
,
C.
,
Hadley
,
J. L.
,
Tong
,
Y.
,
Phoenix
,
T. N.
,
Natarajan
,
S.
,
Easton
,
J.
,
Northcott
,
P. A.
and
Gawad
,
C.
(
2018
).
A single-cell transcriptional atlas of the developing murine cerebellum
.
Curr. Biol.
28
,
2910
-
2920.e2
.
Clark
,
B. S.
,
Stein-O'Brien
,
G. L.
,
Shiau
,
F.
,
Cannon
,
G. H.
,
Davis-Marcisak
,
E.
,
Sherman
,
T.
,
Santiago
,
C. P.
,
Hoang
,
T. V.
,
Rajaii
,
F.
,
James-Esposito
,
R. E.
et al. 
(
2019
).
Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification
.
Neuron
102
,
1111
-
1126.e5
.
Couturier
,
C. P.
,
Ayyadhury
,
S.
,
Le
,
P. U.
,
Nadaf
,
J.
,
Monlong
,
J.
,
Riva
,
G.
,
Allache
,
R.
,
Baig
,
S.
,
Yan
,
X.
,
Bourgey
,
M.
et al. 
(
2020
).
Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy
.
Nat. Commun.
11
,
3406
.
Dani
,
N.
,
Herbst
,
R. H.
,
McCabe
,
C.
,
Green
,
G. S.
,
Kaiser
,
K.
,
Head
,
J. P.
,
Cui
,
J.
,
Shipley
,
F. B.
,
Jang
,
A.
,
Dionne
,
D.
et al. 
(
2021
).
A cellular and spatial map of the choroid plexus across brain ventricles and ages
.
Cell
184
,
3056
-
3074.e21
.
Darmanis
,
S.
,
Sloan
,
S. A.
,
Zhang
,
Y.
,
Enge
,
M.
,
Caneda
,
C.
,
Shuer
,
L. M.
,
Hayden Gephart
,
M. G.
,
Barres
,
B. A.
and
Quake
,
S. R.
(
2015
).
A survey of human brain transcriptome diversity at the single cell level
.
Proc. Natl. Acad. Sci. USA
112
,
7285
-
7290
.
Delgado
,
R. N.
,
Allen
,
D. E.
,
Keefe
,
M. G.
,
Mancia Leon
,
W. R.
,
Ziffra
,
R. S.
,
Crouch
,
E. E.
,
Alvarez-Buylla
,
A.
and
Nowakowski
,
T. J.
(
2022
).
Individual human cortical progenitors can produce excitatory and inhibitory neurons
.
Nature
601
,
397
-
403
.
Delile
,
J.
,
Rayon
,
T.
,
Melchionda
,
M.
,
Edwards
,
A.
,
Briscoe
,
J.
and
Sagner
,
A.
(
2019
).
Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord
.
Development
146
,
dev173807
.
DeSisto
,
J.
,
O'Rourke
,
R.
,
Jones
,
H. E.
,
Pawlikowski
,
B.
,
Malek
,
A. D.
,
Bonney
,
S.
,
Guimiot
,
F.
,
Jones
,
K. L.
and
Siegenthaler
,
J. A.
(
2020
).
Single-cell transcriptomic analyses of the developing meninges reveal meningeal fibroblast diversity and function
.
Dev. Cell
54
,
43
-
59.e4
.
Di Bella
,
D. J.
,
Habibi
,
E.
,
Stickels
,
R. R.
,
Scalia
,
G.
,
Brown
,
J.
,
Yadollahpour
,
P.
,
Yang
,
S. M.
,
Abbate
,
C.
,
Biancalani
,
T.
,
Macosko
,
E. Z.
et al. 
(
2021
).
Molecular logic of cellular diversification in the mouse cerebral cortex
.
Nature
595
,
554
-
559
.
Dickel
,
D. E.
,
Ypsilanti
,
A. R.
,
Pla
,
R.
,
Zhu
,
Y.
,
Barozzi
,
I.
,
Mannion
,
B. J.
,
Khin
,
Y. S.
,
Fukuda-Yuzawa
,
Y.
,
Plajzer-Frick
,
I.
,
Pickle
,
C. S.
et al. 
(
2018
).
Ultraconserved Enhancers Are Required for Normal Development
.
Cell
172
,
491
-
499.e15
.
Domcke
,
S.
,
Hill
,
A. J.
,
Daza
,
R. M.
,
Cao
,
J.
,
O'Day
,
D. R.
,
Pliner
,
H. A.
,
Aldinger
,
K. A.
,
Pokholok
,
D.
,
Zhang
,
F.
,
Milbank
,
J. H.
et al. 
(
2020
).
A human cell atlas of fetal chromatin accessibility
.
Science
370
,
eaba7612
.
Durruthy-Durruthy
,
R.
,
Gottlieb
,
A.
,
Hartman
,
B. H.
,
Waldhaus
,
J.
,
Laske
,
R. D.
,
Altman
,
R.
and
Heller
,
S.
(
2014
).
Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution
.
Cell
157
,
964
-
978
.
Efremova
,
M.
,
Vento-Tormo
,
M.
,
Teichmann
,
S. A.
and
Vento-Tormo
,
R.
(
2020
).
CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes
.
Nat. Protoc.
15
,
1484
-
1506
.
Eze
,
U. C.
,
Bhaduri
,
A.
,
Haeussler
,
M.
,
Nowakowski
,
T. J.
and
Kriegstein
,
A. R.
(
2021
).
Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia
.
Nat. Neurosci.
24
,
584
-
594
.
Fabra-Beser
,
J.
,
Alves Medeiros de Araujo
,
J.
,
Marques-Coelho
,
D.
,
Goff
,
L. A.
,
Costa
,
M. R.
,
Müller
,
U.
and
Gil-Sanz
,
C.
(
2021
).
Differential expression levels of Sox9 in early neocortical radial glial cells regulate the decision between stem cell maintenance and differentiation
.
J. Neurosci.
41
,
6969
-
6986
.
Farmer
,
D. T.
,
Mlcochova
,
H.
,
Zhou
,
Y.
,
Koelling
,
N.
,
Wang
,
G.
,
Ashley
,
N.
,
Bugacov
,
H.
,
Chen
,
H.-J.
,
Parvez
,
R.
,
Tseng
,
K.-C.
et al. 
(
2021
).
The developing mouse coronal suture at single-cell resolution
.
Nat. Commun.
12
,
4797
.
Farrell
,
J. A.
,
Wang
,
Y.
,
Riesenfeld
,
S. J.
,
Shekhar
,
K.
,
Regev
,
A.
and
Schier
,
A. F.
(
2018
).
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis
.
Science
360
,
eaar3131
.
Fazel Darbandi
,
S.
,
Robinson Schwartz
,
S. E.
,
Pai
,
E. L.
,
Everitt
,
A.
,
Turner
,
M. L.
,
Cheyette
,
B. N. R.
,
Willsey
,
A. J.
,
State
,
M. W.
,
Sohal
,
V. S.
and
Rubenstein
,
J. L. R.
(
2020
).
Enhancing WNT signaling restores cortical neuronal spine maturation and synaptogenesis in Tbr1 mutants
.
Cell Rep.
31
,
107495
.
Ferran
,
J. L.
,
Puelles
,
L.
and
Rubenstein
,
J. L.
(
2015
).
Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus
.
Front Neuroanat.
9
,
46
.
Fleck
,
J. S.
,
Sanchís-Calleja
,
F.
,
He
,
Z.
,
Santel
,
M.
,
Boyle
,
M. J.
,
Camp
,
J. G.
and
Treutlein
,
B.
(
2021
).
Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases
.
Cell Stem Cell
28
,
1148
-
1159.e8
.
Fu
,
Y.
,
Yang
,
M.
,
Yu
,
H.
,
Wang
,
Y.
,
Wu
,
X.
,
Yong
,
J.
,
Mao
,
Y.
,
Cui
,
Y.
,
Fan
,
X.
and
Wen
,
L.
(
2021
).
Heterogeneity of glial progenitor cells during the neurogenesis-to-gliogenesis switch in the developing human cerebral cortex
.
Cell Rep.
34
,
108788
.
Garcia
,
F. J.
,
Sun
,
N.
,
Lee
,
H.
,
Godlewski
,
B.
,
Galani
,
K.
,
Mantero
,
J.
,
Bennett
,
D. A.
,
Sahin
,
M.
,
Kellis
,
M.
and
Heiman
,
M.
(
2021
).
Single-cell dissection of the human cerebrovasculature in health and disease
.
bioRxiv
.
Geirsdottir
,
L.
,
David
,
E.
,
Keren-Shaul
,
H.
,
Weiner
,
A.
,
Bohlen
,
S. C.
,
Neuber
,
J.
,
Balic
,
A.
,
Giladi
,
A.
,
Sheban
,
F.
,
Dutertre
,
C.-A.
et al. 
(
2019
).
Cross-species single-cell analysis reveals divergence of the primate microglia program
.
Cell
179
,
1609
-
1622.e16
.
Gerber
,
D.
,
Pereira
,
J. A.
,
Gerber
,
J.
,
Tan
,
G.
,
Dimitrieva
,
S.
,
Yángüez
,
E.
and
Suter
,
U.
(
2021
).
Transcriptional profiling of mouse peripheral nerves to the single-cell level to build a sciatic nerve ATlas (SNAT)
.
Elife
10
,
e58591
.
Guo
,
Q.
and
Li
,
J. Y. H.
(
2019
).
Defining developmental diversification of diencephalon neurons through single cell gene expression profiling
.
Development
146
,
dev174284
.
Hammond
,
T. R.
,
Dufort
,
C.
,
Dissing-Olesen
,
L.
,
Giera
,
S.
,
Young
,
A.
,
Wysoker
,
A.
,
Walker
,
A. J.
,
Gergits
,
F.
,
Segel
,
M.
,
Nemesh
,
J.
et al. 
(
2019
).
Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes
.
Immunity
50
,
253
-
271.e6
.
Hanchate
,
N. K.
,
Kondoh
,
K.
,
Lu
,
Z.
,
Kuang
,
D.
,
Ye
,
X.
,
Qiu
,
X.
,
Pachter
,
L.
,
Trapnell
,
C.
and
Buck
,
L. B.
(
2015
).
Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis
.
Science
350
,
1251
-
1255
.
Haniffa
,
M.
,
Taylor
,
D.
,
Linnarsson
,
S.
,
Aronow
,
B. J.
,
Bader
,
G. D.
,
Barker
,
R. A.
,
Camara
,
P. G.
,
Camp
,
J. G.
,
Chédotal
,
A.
,
Copp
,
A.
et al. 
(
2021
).
A roadmap for the human developmental cell Atlas
.
Nature
597
,
196
-
205
.
Hayashi
,
M.
,
Hinckley
,
C. A.
,
Driscoll
,
S. P.
,
Moore
,
N. J.
,
Levine
,
A. J.
,
Hilde
,
K. L.
,
Sharma
,
K.
and
Pfaff
,
S. L.
(
2018
).
Graded arrays of spinal and supraspinal V2a interneuron subtypes underlie forelimb and hindlimb motor control
.
Neuron
97
,
869
-
884.e5
.
Hochgerner
,
H.
,
Zeisel
,
A.
,
Lönnerberg
,
P.
and
Linnarsson
,
S.
(
2018
).
Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing
.
Nat. Neurosci.
21
,
290
-
299
.
Honnell
,
V.
,
Norrie
,
J. L.
,
Patel
,
A. G.
,
Ramirez
,
C.
,
Zhang
,
J.
,
Lai
,
Y.-H.
,
Wan
,
S.
and
Dyer
,
M. A.
(
2022
).
Identification of a modular super-enhancer in murine retinal development
.
Nat. Commun.
13
,
253
.
Hook
,
P. W.
,
McClymont
,
S. A.
,
Cannon
,
G. H.
,
Law
,
W. D.
,
Morton
,
A. J.
,
Goff
,
L. A.
and
McCallion
,
A. S.
(
2018
).
Single-cell RNA-seq of mouse dopaminergic neurons informs candidate gene selection for sporadic parkinson disease
.
Am. J. Hum. Genet.
102
,
427
-
446
.
Hu
,
Y.
,
Wang
,
X.
,
Hu
,
B.
,
Mao
,
Y.
,
Chen
,
Y.
,
Yan
,
L.
,
Yong
,
J.
,
Dong
,
J.
,
Wei
,
Y.
,
Wang
,
W.
et al. 
(
2019
).
Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis
.
PLoS Biol.
17
,
e3000365
.
Huisman
,
C.
,
Cho
,
H.
,
Brock
,
O.
,
Lim
,
S. J.
,
Youn
,
S. M.
,
Park
,
Y.
,
Kim
,
S.
,
Lee
,
S.-K.
,
Delogu
,
A.
and
Lee
,
J. W.
(
2019
).
Single cell transcriptome analysis of developing arcuate nucleus neurons uncovers their key developmental regulators
.
Nat. Commun.
10
,
3696
.
Hupe
,
M.
,
Li
,
M. X.
,
Kneitz
,
S.
,
Davydova
,
D.
,
Yokota
,
C.
,
Kele
,
J.
,
Hot
,
B.
,
Stenman
,
J. M.
and
Gessler
,
M.
(
2017
).
Gene expression profiles of brain endothelial cells during embryonic development at bulk and single-cell levels
.
Sci. Signal.
10
,
eaag2476
.
Ibarra-Soria
,
X.
,
Jawaid
,
W.
,
Pijuan-Sala
,
B.
,
Ladopoulos
,
V.
,
Scialdone
,
A.
,
Jörg
,
D. J.
,
Tyser
,
R. C. V.
,
Calero-Nieto
,
F. J.
,
Mulas
,
C.
,
Nichols
,
J.
et al. 
(
2018
).
Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation
.
Nat. Cell Biol.
20
,
127
-
134
.
Kalish
,
B. T.
,
Cheadle
,
L.
,
Hrvatin
,
S.
,
Nagy
,
M. A.
,
Rivera
,
S.
,
Crow
,
M.
,
Gillis
,
J.
,
Kirchner
,
R.
and
Greenberg
,
M. E.
(
2018
).
Single-cell transcriptomics of the developing lateral geniculate nucleus reveals insights into circuit assembly and refinement
.
Proc. Natl. Acad. Sci. USA
115
,
E1051
-
E1060
.
Kalish
,
B. T.
,
Barkat
,
T. R.
,
Diel
,
E. E.
,
Zhang
,
E. J.
,
Greenberg
,
M. E.
and
Hensch
,
T. K.
(
2020
).
Single-nucleus RNA sequencing of mouse auditory cortex reveals critical period triggers and brakes
.
Proc. Natl. Acad. Sci. USA
117
,
11744
-
11752
.
Kee
,
N.
,
Volakakis
,
N.
,
Kirkeby
,
A.
,
Dahl
,
L.
,
Storvall
,
H.
,
Nolbrant
,
S.
,
Lahti
,
L.
,
Björklund
,
Å. K.
,
Gillberg
,
L.
,
Joodmardi
,
E.
et al. 
(
2017
).
Single-cell analysis reveals a close relationship between differentiating dopamine and subthalamic nucleus neuronal lineages
.
Cell Stem Cell
20
,
29
-
40
.
Kim
,
D. W.
,
Washington
,
P. W.
,
Wang
,
Z. Q.
,
Lin
,
S. H.
,
Sun
,
C.
,
Ismail
,
B. T.
,
Wang
,
H.
,
Jiang
,
L.
and
Blackshaw
,
S.
(
2020
).
The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development
.
Nat. Commun.
11
,
4360
.
Kiselev
,
V. Y.
,
Andrews
,
T. S.
and
Hemberg
,
M.
(
2019
).
Challenges in unsupervised clustering of single-cell RNA-seq data
.
Nat. Rev. Genet.
20
,
273
-
282
.
Klum
,
S.
,
Zaouter
,
C.
,
Alekseenko
,
Z.
,
Björklund
,
Å. K.
,
Hagey
,
D. W.
,
Ericson
,
J.
,
Muhr
,
J.
and
Bergsland
,
M.
(
2018
).
Sequentially acting SOX proteins orchestrate astrocyte- and oligodendrocyte-specific gene expression
.
EMBO Rep.
19
,
e46635
.
Kolla
,
L.
,
Kelly
,
M. C.
,
Mann
,
Z. F.
,
Anaya-Rocha
,
A.
,
Ellis
,
K.
,
Lemons
,
A.
,
Palermo
,
A. T.
,
So
,
K. S.
,
Mays
,
J. C.
,
Orvis
,
J.
et al. 
(
2020
).
Characterization of the development of the mouse cochlear epithelium at the single cell level
.
Nat. Commun.
11
,
2389
.
Kracht
,
L.
,
Borggrewe
,
M.
,
Eskandar
,
S.
,
Brouwer
,
N.
,
Chuva de Sousa Lopes
,
S. M.
,
Laman
,
J. D.
,
Scherjon
,
S. A.
,
Prins
,
J. R.
,
Kooistra
,
S. M.
, and
Eggen
,
B. J. L.
(
2020
).
Human fetal microglia acquire homeostatic immune-sensing properties early in development
.
Science
369
,
530
-
537
.
Krienen
,
F. M.
,
Goldman
,
M.
,
Zhang
,
Q.
,
C H Del Rosario
,
R.
,
Florio
,
M.
,
Machold
,
R.
,
Saunders
,
A.
,
Levandowski
,
K.
,
Zaniewski
,
H.
and
Schuman
,
B.
(
2020
).
Innovations present in the primate interneuron repertoire
.
Nature
586
,
262
-
269
.
La Manno
,
G.
,
Gyllborg
,
D.
,
Codeluppi
,
S.
,
Nishimura
,
K.
,
Salto
,
C.
,
Zeisel
,
A.
,
Borm
,
L. E.
,
Stott
,
S. R. W.
,
Toledo
,
E. M.
,
Villaescusa
,
J. C.
et al. 
(
2016
).
Molecular diversity of midbrain development in mouse, human, and stem cells
.
Cell
167
,
566
-
580.e19
.
La Manno
,
G.
,
Soldatov
,
R.
,
Zeisel
,
A.
,
Braun
,
E.
,
Hochgerner
,
H.
,
Petukhov
,
V.
,
Lidschreiber
,
K.
,
Kastriti
,
M. E.
,
Lönnerberg
,
P.
,
Furlan
,
A.
et al. 
(
2018
).
RNA velocity of single cells
.
Nature
560
,
494
-
498
.
La Manno
,
G.
,
Siletti
,
K.
,
Furlan
,
A.
,
Gyllborg
,
D.
,
Vinsland
,
E.
,
Mossi Albiach
,
A.
,
Mattsson Langseth
,
C.
,
Khven
,
I.
,
Lederer
,
A. R.
,
Dratva
,
L. M.
et al. 
(
2021
).
Molecular architecture of the developing mouse brain
.
Nature
596
,
92
-
96
.
Lasrado
,
R.
,
Boesmans
,
W.
,
Kleinjung
,
J.
,
Pin
,
C.
,
Bell
,
D.
,
Bhaw
,
L.
,
McCallum
,
S.
,
Zong
,
H.
,
Luo
,
L.
,
Clevers
,
H.
et al. 
(
2017
).
Lineage-dependent spatial and functional organization of the mammalian enteric nervous system
.
Science
356
,
722
-
726
.
Lau
,
S. T.
,
Li
,
Z.
,
Pui-Ling Lai
,
F.
,
Nga-Chu Lui
,
K.
,
Li
,
P.
,
Munera
,
J. O.
,
Pan
,
G.
,
Mahe
,
M. M.
,
Hui
,
C.-C.
,
Wells
,
J. M.
et al. 
(
2019
).
Activation of hedgehog signaling promotes development of mouse and human enteric neural crest cells, based on single-cell transcriptome analyses
.
Gastroenterology
157
,
1556
-
1571.e5
.
Li
,
C.-L.
,
Li
,
K.-C.
,
Wu
,
D.
,
Chen
,
Y.
,
Luo
,
H.
,
Zhao
,
J.-R.
,
Wang
,
S.-S.
,
Sun
,
M.-M.
,
Lu
,
Y.-J.
,
Zhong
,
Y.-Q.
et al. 
(
2016
).
Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity
.
Cell Res.
26
,
83
-
102
.
Li
,
M.
,
Santpere
,
G.
,
Imamura Kawasawa
,
Y.
,
Evgrafov
,
O. V.
,
Gulden
,
F. O.
,
Pochareddy
,
S.
,
Sunkin
,
S. M.
,
Li
,
Z.
,
Shin
,
Y.
,
Zhu
,
Y.
et al. 
(
2018
).
Integrative functional genomic analysis of human brain development and neuropsychiatric risks
.
Science
362
,
eaat7615
.
Li
,
Q.
,
Cheng
,
Z.
,
Zhou
,
L.
,
Darmanis
,
S.
,
Neff
,
N. F.
,
Okamoto
,
J.
,
Gulati
,
G.
,
Bennett
,
M. L.
,
Sun
,
L. O.
,
Clarke
,
L. E.
et al. 
(
2019
).
Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing
.
Neuron
101
,
207
-
223.e10
.
Li
,
Z.
,
Tyler
,
W. A.
,
Zeldich
,
E.
,
Santpere Baró
,
G.
,
Okamoto
,
M.
,
Gao
,
T.
,
Li
,
M.
,
Sestan
,
N.
and
Haydar
,
T. F.
(
2020
).
Transcriptional priming as a conserved mechanism of lineage diversification in the developing mouse and human neocortex
.
Sci. Adv.
6
,
eabd2068
.
Lim
,
L.
,
Mi
,
D.
,
Llorca
,
A.
and
Marín
,
O.
(
2018
).
Development and functional diversification of cortical interneurons
.
Neuron
100
,
294
-
313
.
Liu
,
S. J.
,
Nowakowski
,
T. J.
,
Pollen
,
A. A.
,
Lui
,
J. H.
,
Horlbeck
,
M. A.
,
Attenello
,
F. J.
,
He
,
D.
,
Weissman
,
J. S.
,
Kriegstein
,
A. R.
,
Diaz
,
A. A.
et al. 
(
2016
).
Single-cell analysis of long non-coding RNAs in the developing human neocortex
.
Genome Biol.
17
,
67
.
Lo Giudice
,
Q.
,
Leleu
,
M.
,
La Manno
,
G.
and
Fabre
,
P. J.
(
2019
).
Single-cell transcriptional logic of cell-fate specification and axon guidance in early-born retinal neurons
.
Development
146
,
dev178103
.
Lohoff
,
T.
,
Ghazanfar
,
S.
,
Missarova
,
A.
,
Koulena
,
N.
,
Pierson
,
N.
,
Griffiths
,
J. A.
,
Bardot
,
E. S.
,
Eng
,
C.-L.
,
Tyser
,
R. C. V.
,
Argelaguet
,
R.
et al. 
(
2022
).
Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis
.
Nat. Biotechnol.
40
,
74
-
85
.
Longo
,
S. K.
,
Guo
,
M. G.
,
Ji
,
A. L.
and
Khavari
,
P. A.
(
2021
).
Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics
.
Nat. Rev. Genet.
22
,
627
-
644
.
Loo
,
L.
,
Simon
,
J. M.
,
Xing
,
L.
,
McCoy
,
E. S.
,
Niehaus
,
J. K.
,
Guo
,
J.
,
Anton
,
E. S.
and
Zylka
,
M. J.
(
2019
).
Single-cell transcriptomic analysis of mouse neocortical development
.
Nat. Commun.
10
,
134
.
Lu
,
Y.
,
Shiau
,
F.
,
Yi
,
W.
,
Lu
,
S.
,
Wu
,
Q.
,
Pearson
,
J. D.
,
Kallman
,
A.
,
Zhong
,
S.
,
Hoang
,
T.
,
Zuo
,
Z.
et al. 
(
2020
).
Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development
.
Dev. Cell
53
,
473
-
491.e9
.
Luecken
,
M. D.
and
Theis
,
F. J.
(
2019
).
Current best practices in single-cell RNA-seq analysis: a tutorial
.
Mol. Syst. Biol.
15
, e
8746
.
Marques
,
S.
,
Zeisel
,
A.
,
Codeluppi
,
S.
,
van Bruggen
,
D.
,
Mendanha Falcão
,
A.
,
Xiao
,
L.
,
Li
,
H.
,
Häring
,
M.
,
Hochgerner
,
H.
,
Romanov
,
R. A.
et al. 
(
2016
).
Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system
.
Science
352
,
1326
-
1329
.
Masuda
,
T.
,
Sankowski
,
R.
,
Staszewski
,
O.
,
Böttcher
,
C.
,
Amann
,
L.
,
Sagar
,
Nessler
,
S.
,
Kunz
,
P.
, and,
van Loo
,
G.
(
2019
).
Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution
.
Nature
566
,
388
-
392
.
Matcovitch-Natan
,
O.
,
Winter
,
D. R.
,
Giladi
,
A.
,
Vargas Aguilar
,
S.
,
Spinrad
,
A.
,
Sarrazin
,
S.
,
Ben-Yehuda
,
H.
,
David
,
E.
,
Zelada González
,
F.
,
Perrin
,
P.
,  et al.  (
2016
).
Microglia development follows a stepwise program to regulate brain homeostasis
.
Science
353
,
aad8670
.
Mayer
,
C.
,
Hafemeister
,
C.
,
Bandler
,
R. C.
,
Machold
,
R.
,
Batista Brito
,
R.
,
Jaglin
,
X.
,
Allaway
,
K.
,
Butler
,
A.
,
Fishell
,
G.
and
Satija
,
R.
(
2018
).
Developmental diversification of cortical inhibitory interneurons
.
Nature
555
,
457
-
462
.
Mereu
,
E.
,
Lafzi
,
A.
,
Moutinho
,
C.
,
Ziegenhain
,
C.
,
McCarthy
,
D. J.
,
Álvarez-Varela
,
A.
,
Batlle
,
E.
,
Sagar
,
Grün
,
D.
,
Lau
,
J. K.
et al. 
(
2020
).
Benchmarking single-cell RNA-sequencing protocols for cell atlas projects
.
Nat. Biotechnol.
38
,
747
-
755
.
Mi
,
D.
,
Li
,
Z.
,
Lim
,
L.
,
Li
,
M.
,
Moissidis
,
M.
,
Yang
,
Y.
,
Gao
,
T.
,
Hu
,
T. X.
,
Pratt
,
T.
,
Price
,
D. J.
et al. 
(
2018
).
Early emergence of cortical interneuron diversity in the mouse embryo
.
Science
360
,
81
-
85
.
Mich
,
J. K.
,
Graybuck
,
L. T.
,
Hess
,
E. E.
,
Mahoney
,
J. T.
,
Kojima
,
Y.
,
Ding
,
Y.
,
Somasundaram
,
S.
,
Miller
,
J. A.
,
Kalmbach
,
B. E.
,
Radaelli
,
C.
et al. 
(
2021
).
Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex
.
Cell Rep.
34
,
108754
.
Molyneaux
,
B. J.
,
Arlotta
,
P.
,
Menezes
,
J. R.
and
Macklis
,
J. D.
(
2007
).
Neuronal subtype specification in the cerebral cortex
.
Nat. Rev. Neurosci.
8
,
427
-
437
.
Morarach
,
K.
,
Mikhailova
,
A.
,
Knoflach
,
V.
,
Memic
,
F.
,
Kumar
,
R.
,
Li
,
W.
,
Ernfors
,
P.
and
Marklund
,
U.
(
2021
).
Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing
.
Nat. Neurosci.
24
,
34
-
46
.
Nowakowski
,
T. J.
,
Bhaduri
,
A.
,
Pollen
,
A. A.
,
Alvarado
,
B.
,
Mostajo-Radji
,
M. A.
,
Di Lullo
,
E.
,
Haeussler
,
M.
,
Sandoval-Espinosa
,
C.
,
Liu
,
S. J.
,
Velmeshev
,
D.
et al. 
(
2017
).
Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex
.
Science
358
,
1318
-
1323
.
Peng
,
J.
,
Sheng
,
A. L.
,
Xiao
,
Q.
,
Shen
,
L.
,
Ju
,
X. C.
,
Zhang
,
M.
,
He
,
S. T.
,
Wu
,
C.
and
Luo
,
Z. G.
(
2019
).
Single-cell transcriptomes reveal molecular specializations of neuronal cell types in the developing cerebellum
.
J. Mol. Cell Biol.
11
,
636
-
648
.
Perkel
,
J. M.
(
2021
).
Single-cell analysis enters the multiomics age
.
Nature
595
,
614
-
616
.
Perlman
,
K.
,
Couturier
,
C. P.
,
Yaqubi
,
M.
,
Tanti
,
A.
,
Cui
,
Q. L.
,
Pernin
,
F.
,
Stratton
,
J. A.
,
Ragoussis
,
J.
,
Healy
,
L.
,
Petrecca
,
K.
et al. 
(
2020
).
Developmental trajectory of oligodendrocyte progenitor cells in the human brain revealed by single cell RNA sequencing
.
Glia
68
,
1291
-
1303
.
Pijuan-Sala
,
B.
,
Griffiths
,
J. A.
,
Guibentif
,
C.
,
Hiscock
,
T. W.
,
Jawaid
,
W.
,
Calero-Nieto
,
F. J.
,
Mulas
,
C.
,
Ibarra-Soria
,
X.
,
Tyser
,
R. C. V.
,
Ho
,
D. L. L.
et al. 
(
2019
).
A single-cell molecular map of mouse gastrulation and early organogenesis
.
Nature
566
,
490
-
495
.
Pletikos
,
M.
,
Sousa
,
A. M.
,
Sedmak
,
G.
,
Meyer
,
K. A.
,
Zhu
,
Y.
,
Cheng
,
F.
,
Li
,
M.
,
Kawasawa
,
Y. I.
and
Šestan
,
N.
(
2014
).
Temporal specification and bilaterality of human neocortical topographic gene expression
.
Neuron
81
,
321
-
332
.
Polioudakis
,
D.
,
de la Torre-Ubieta
,
L.
,
Langerman
,
J.
,
Elkins
,
A. G.
,
Shi
,
X.
,
Stein
,
J. L.
,
Vuong
,
C. K.
,
Nichterwitz
,
S.
,
Gevorgian
,
M.
,
Opland
,
C. K.
et al. 
(
2019
).
A single-cell transcriptomic Atlas of human neocortical development during mid-gestation
.
Neuron
103
,
785
-
801.e8
.
Pollen
,
A. A.
,
Nowakowski
,
T. J.
,
Shuga
,
J.
,
Wang
,
X.
,
Leyrat
,
A. A.
,
Lui
,
J. H.
,
Li
,
N.
,
Szpankowski
,
L.
,
Fowler
,
B.
,
Chen
,
P.
et al. 
(
2014
).
Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
.
Nat. Biotechnol.
32
,
1053
-
1058
.
Pollen
,
A. A.
,
Nowakowski
,
T. J.
,
Chen
,
J.
,
Retallack
,
H.
,
Sandoval-Espinosa
,
C.
,
Nicholas
,
C. R.
,
Shuga
,
J.
,
Liu
,
S. J.
,
Oldham
,
M. C.
,
Diaz
,
A.
et al. 
(
2015
).
Molecular identity of human outer radial glia during cortical development
.
Cell
163
,
55
-
67
.
Preissl
,
S.
,
Fang
,
R.
,
Huang
,
H.
,
Zhao
,
Y.
,
Raviram
,
R.
,
Gorkin
,
D. U.
,
Zhang
,
Y.
,
Sos
,
B. C.
,
Afzal
,
V.
,
Dickel
,
D. E.
et al. 
(
2018
).
Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation
.
Nat. Neurosci.
21
,
432
-
439
.
Puelles
,
L.
(
2009
).
Forebrain development: prosomere model
.
Encycl. Neurosci
.
2009
,
315
-
319
.
Rao
,
A.
,
Barkley
,
D.
,
França
,
G. S.
and
Yanai
,
I.
(
2021
).
Exploring tissue architecture using spatial transcriptomics
.
Nature
596
,
211
-
220
.
Regev
,
A.
,
Teichmann
,
S. A.
,
Lander
,
E. S.
,
Amit
,
I.
,
Benoist
,
C.
,
Birney
,
E.
,
Bodenmiller
,
B.
,
Campbell
,
P.
,
Carninci
,
P.
,
Clatworthy
,
M.
et al. 
(
2017
). Science forum: The human cell atlas. eLife
6
,
e27041
.
Romanov
,
R. A.
,
Tretiakov
,
E. O.
,
Kastriti
,
M. E.
,
Zupancic
,
M.
,
Häring
,
M.
,
Korchynska
,
S.
,
Popadin
,
K.
,
Benevento
,
M.
,
Rebernik
,
P.
,
Lallemend
,
F.
et al. 
(
2020
).
Molecular design of hypothalamus development
.
Nature
582
,
246
-
252
.
Rosenberg
,
A. B.
,
Roco
,
C. M.
,
Muscat
,
R. A.
,
Kuchina
,
A.
,
Sample
,
P.
,
Yao
,
Z.
,
Graybuck
,
L. T.
,
Peeler
,
D. J.
,
Mukherjee
,
S.
,
Chen
,
W.
et al. 
(
2018
).
Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding
.
Science
360
,
176
-
182
.
Ross
,
J. M.
,
Kim
,
C.
,
Allen
,
D.
,
Crouch
,
E. E.
,
Narsinh
,
K.
,
Cooke
,
D. L.
,
Abla
,
A. A.
,
Nowakowski
,
T. J.
and
Winkler
,
E. A.
(
2020
).
The expanding cell diversity of the brain vasculature
.
Front. Physiol.
11
,
600767
.
Rozenblatt-Rosen
,
O.
,
Shin
,
J. W.
,
Rood
,
J. E.
,
Hupalowska
,
A.
,
Human Cell Atlas Standards and Technology Working Group, Regev, A., and Heyn, H. (2021). Building a high-quality Human Cell Atlas. Nat. Biotechnol.
39
,
149
-
153
.
Saelens
,
W.
,
Cannoodt
,
R.
,
Todorov
,
H.
and
Saeys
,
Y.
(
2019
).
A comparison of single-cell trajectory inference methods
.
Nat. Biotechnol.
37
,
547
-
554
.
Shi
,
Y.
,
Wang
,
M.
,
Mi
,
D.
,
Lu
,
T.
,
Wang
,
B.
,
Dong
,
H.
,
Zhong
,
S.
,
Chen
,
Y.
,
Sun
,
L.
,
Zhou
,
X.
et al. 
(
2021
).
Mouse and human share conserved transcriptional programs for interneuron development
.
Science
374
,
eabj6641
.
Silbereis
,
J. C.
,
Pochareddy
,
S.
,
Zhu
,
Y.
,
Li
,
M.
and
Sestan
,
N.
(
2016
).
The cellular and molecular landscapes of the developing human central nervous system
.
Neuron
89
,
248
-
268
.
Soldatov
,
R.
,
Kaucka
,
M.
,
Kastriti
,
M. E.
,
Petersen
,
J.
,
Chontorotzea
,
T.
,
Englmaier
,
L.
,
Akkuratova
,
N.
,
Yang
,
Y.
,
Häring
,
M.
,
Dyachuk
,
V.
et al. 
(
2019
).
Spatiotemporal structure of cell fate decisions in murine neural crest
.
Science
364
,
eaas9536
.
Sridhar
,
A.
,
Hoshino
,
A.
,
Finkbeiner
,
C. R.
,
Chitsazan
,
A.
,
Dai
,
L.
,
Haugan
,
A. K.
,
Eschenbacher
,
K. M.
,
Jackson
,
D. L.
,
Trapnell
,
C.
,
Bermingham-McDonogh
,
O.
et al. 
(
2020
).
Single-cell transcriptomic comparison of human fetal retina, hPSC-derived retinal organoids, and long-term retinal cultures
.
Cell Rep.
30
,
1644
-
1659.e4
.
Srivatsan
,
S. R.
,
Regier
,
M. C.
,
Barkan
,
E.
,
Franks
,
J. M.
,
Packer
,
J. S.
,
Grosjean
,
P.
,
Duran
,
M.
,
Saxton
,
S.
,
Ladd
,
J. J.
,
Spielmann
,
M.
et al. 
(
2021
).
Embryo-scale, single-cell spatial transcriptomics
.
Science
373
,
111
-
117
.
Svensson
,
V.
,
Vento-Tormo
,
R.
and
Teichmann
,
S. A.
(
2018
).
Exponential scaling of single-cell RNA-seq in the past decade
.
Nat. Protoc.
13
,
599
-
604
.
Svensson
,
V.
,
da Veiga Beltrame
,
E.
and
Pachter
,
L.
(
2020
).
A curated database reveals trends in single-cell transcriptomics
.
Database
,
2020
,
baaa073
.
Tang
,
F.
,
Barbacioru
,
C.
,
Wang
,
Y.
,
Nordman
,
E.
,
Lee
,
C.
,
Xu
,
N.
,
Wang
,
X.
,
Bodeau
,
J.
,
Tuch
,
B. B.
,
Siddiqui
,
A.
et al. 
(
2009
).
mRNA-Seq whole-transcriptome analysis of a single cell
.
Nat. Methods
6
,
377
-
382
.
Tarashansky
,
A. J.
,
Musser
,
J. M.
,
Khariton
,
M.
,
Li
,
P.
,
Arendt
,
D.
,
Quake
,
S. R.
and
Wang
,
B.
(
2021
).
Mapping single-cell atlases throughout Metazoa unravels cell type evolution
.
Elife
10
,
e66747
.
Tasdemir-Yilmaz
,
O. E.
,
Druckenbrod
,
N. R.
,
Olukoya
,
O. O.
,
Dong
,
W.
,
Yung
,
A. R.
,
Bastille
,
I.
,
Pazyra-Murphy
,
M. F.
,
Sitko
,
A. A.
,
Hale
,
E. B.
,
Vigneau
,
S.
et al. 
(
2021
).
Diversity of developing peripheral glia revealed by single-cell RNA sequencing
.
Dev. Cell
56
,
2516
-
2535.e8
.
Telley
,
L.
,
Agirman
,
G.
,
Prados
,
J.
,
Amberg
,
N.
,
Fièvre
,
S.
,
Oberst
,
P.
,
Bartolini
,
G.
,
Vitali
,
I.
,
Cadilhac
,
C.
,
Hippenmeyer
,
S.
et al. 
(
2019
).
Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex
.
Science
364
,
eaav2522
.
Their
,
M. C.
,
Hommerding
,
O.
,
Panten
,
J.
,
Pinna
,
R.
,
García-González
,
D.
,
Berger
,
T.
,
Wörsdörfer
,
P.
,
Assenov
,
Y.
,
Scognamiglio
,
R.
,
Przybylla
,
A.
et al. 
(
2019
).
Identification of embryonic neural plate border stem cells and their generation by direct reprogramming from adult human blood cells
.
Cell Stem Cell
24
,
166
-
182.e13
.
Tiklová
,
K.
,
Björklund
,
Å. K.
,
Lahti
,
L.
,
Fiorenzano
,
A.
,
Nolbrant
,
S.
,
Gillberg
,
L.
,
Volakakis
,
N.
,
Yokota
,
C.
,
Hilscher
,
M. M.
,
Hauling
,
T.
et al. 
(
2019
).
Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development
.
Nat. Commun.
10
,
581
.
Trapnell
,
C.
,
Cacchiarelli
,
D.
,
Grimsby
,
J.
,
Pokharel
,
P.
,
Li
,
S.
,
Morse
,
M.
,
Lennon
,
N. J.
,
Livak
,
K. J.
,
Mikkelsen
,
T. S.
and
Rinn
,
J. L.
(
2014
).
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
.
Nat. Biotechnol.
32
,
381
-
386
.
Trevino
,
A. E.
,
Müller
,
F.
,
Andersen
,
J.
,
Sundaram
,
L.
,
Kathiria
,
A.
,
Shcherbina
,
A.
,
Farh
,
K.
,
Chang
,
H. Y.
,
Pașca
,
A. M.
,
Kundaje
,
A.
et al. 
(
2021
).
Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution
.
Cell
184
,
5053
-
5069.e23
.
Usoskin
,
D.
,
Furlan
,
A.
,
Islam
,
S.
,
Abdo
,
H.
,
Lönnerberg
,
P.
,
Lou
,
D.
,
Hjerling-Leffler
,
J.
,
Haeggström
,
J.
,
Kharchenko
,
O.
,
Kharchenko
,
P. V.
et al. 
(
2015
).
Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing
.
Nat. Neurosci.
18
,
145
-
153
.
Vanlandewijck
,
M.
,
He
,
L.
,
Mäe
,
M. A.
,
Andrae
,
J.
,
Ando
,
K.
,
Del Gaudio
,
F.
,
Nahar
,
K.
,
Lebouvier
,
T.
,
Laviña
,
B.
,
Gouveia
,
L.
et al. 
(
2018
).
A molecular atlas of cell types and zonation in the brain vasculature
.
Nature
554
,
475
-
480
.
Velasco
,
S.
,
Kedaigle
,
A. J.
,
Simmons
,
S. K.
,
Nash
,
A.
,
Rocha
,
M.
,
Quadrato
,
G.
,
Paulsen
,
B.
,
Nguyen
,
L.
,
Adiconis
,
X.
,
Regev
,
A.
et al. 
(
2019
).
Individual brain organoids reproducibly form cell diversity of the human cerebral cortex
.
Nature
570
,
523
-
527
.
Vladoiu
,
M. C.
,
El-Hamamy
,
I.
,
Donovan
,
L. K.
,
Farooq
,
H.
,
Holgado
,
B. L.
,
Sundaravadanam
,
Y.
,
Ramaswamy
,
V.
,
Hendrikse
,
L. D.
,
Kumar
,
S.
,
Mack
,
S. C.
et al. 
(
2019
).
Childhood cerebellar tumours mirror conserved fetal transcriptional programs
.
Nature
572
,
67
-
73
.
Wagner
,
D. E.
and
Klein
,
A. M.
(
2020
).
Lineage tracing meets single-cell omics: opportunities and challenges
.
Nat. Rev. Genet.
21
,
410
-
427
.
Waldhaus
,
J.
,
Durruthy-Durruthy
,
R.
and
Heller
,
S.
(
2015
).
Quantitative high-resolution cellular map of the organ of corti
.
Cell Rep.
11
,
1385
-
1399
.
Wang
,
K.
,
Wang
,
S.
,
Chen
,
Y.
,
Wu
,
D.
,
Hu
,
X.
,
Lu
,
Y.
,
Wang
,
L.
,
Bao
,
L.
,
Li
,
C.
and
Zhang
,
X.
(
2021
).
Single-cell transcriptomic analysis of somatosensory neurons uncovers temporal development of neuropathic pain
.
Cell Res.
31
,
904
-
918
.
Weng
,
Q.
,
Wang
,
J.
,
Wang
,
J.
,
He
,
D.
,
Cheng
,
Z.
,
Zhang
,
F.
,
Verma
,
R.
,
Xu
,
L.
,
Dong
,
X.
,
Liao
,
Y.
et al. 
(
2019
).
Single-cell transcriptomics uncovers glial progenitor diversity and cell fate determinants during development and gliomagenesis
.
Cell Stem Cell
24
,
707
-
723.e8
.
Winkler
,
E. A.
,
Kim
,
C. N.
,
Ross
,
J. M.
,
Garcia
,
J. H.
,
Gil
,
E.
,
Oh
,
I.
,
Chen
,
L. Q.
,
Wu
,
D.
,
Catapano
,
J. S.
,
Raygor
,
K.
et al. 
(
2022
).
A single-cell atlas of the normal and malformed human brain vasculature
.
Science
375
,
eabi7377
.
Wittmann
,
M. T.
,
Katada
,
S.
,
Sock
,
E.
,
Kirchner
,
P.
,
Ekici
,
A. B.
,
Wegner
,
M.
,
Nakashima
,
K.
,
Lie
,
D. C.
and
Reis
,
A.
(
2021
).
scRNA sequencing uncovers a TCF4-dependent transcription factor network regulating commissure development in mouse
.
Development
148
,
dev196022
.
Wizeman
,
J. W.
,
Guo
,
Q.
,
Wilion
,
E. M.
and
Li
,
J. Y.
(
2019
).
Specification of diverse cell types during early neurogenesis of the mouse cerebellum
.
eLife
8
,
e42388
.
Yamada
,
R.
,
Oguri
,
A.
,
Fujiki
,
K.
,
Shirahige
,
K.
,
Takezoe
,
H.
,
Takahashi
,
N.
and
Kanai
,
Y.
(
2021
).
Single-cell transcriptional analysis reveals developmental stage-dependent changes in retinal progenitors in the murine early optic vesicle
.
Biochem. Biophys. Res. Commun.
543
,
80
-
86
.
Yu
,
Y.
,
Zeng
,
Z.
,
Xie
,
D.
,
Chen
,
R.
,
Sha
,
Y.
,
Huang
,
S.
,
Cai
,
W.
,
Chen
,
W.
,
Li
,
W.
,
Ke
,
R.
et al. 
(
2021
).
Interneuron origin and molecular diversity in the human fetal brain
.
Nat. Neurosci.
24
,
1745
-
1756
.
Yuzwa
,
S. A.
,
Borrett
,
M. J.
,
Innes
,
B. T.
,
Voronova
,
A.
,
Ketela
,
T.
,
Kaplan
,
D. R.
,
Bader
,
G. D.
and
Miller
,
F. D.
(
2017
).
Developmental emergence of adult neural stem cells as revealed by single-cell transcriptional profiling
.
Cell Rep.
21
,
3970
-
3986
.
Zarkada
,
G.
,
Howard
,
J. P.
,
Xiao
,
X.
,
Park
,
H.
,
Bizou
,
M.
,
Leclerc
,
S.
,
Künzel
,
S. E.
,
Boisseau
,
B.
,
Li
,
J.
,
Cagnone
,
G.
et al. 
(
2021
).
Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation
.
Dev. Cell
56
,
2237
-
2251.e6
.
Zeisel
,
A.
,
Hochgerner
,
H.
,
Lönnerberg
,
P.
,
Johnsson
,
A.
,
Memic
,
F.
,
van der Zwan
,
J.
,
Häring
,
M.
,
Braun
,
E.
,
Borm
,
L. E.
,
La Manno
,
G.
et al. 
(
2018
).
Molecular architecture of the mouse nervous system
.
Cell
174
,
999
-
1014.e22
.
Zhang
,
S.
,
Cui
,
Y.
,
Ma
,
X.
,
Yong
,
J.
,
Yan
,
L.
,
Yang
,
M.
,
Ren
,
J.
,
Tang
,
F.
,
Wen
,
L.
,
Qiao
,
J.
et al. 
(
2020a
).
Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development
.
Nat. Commun.
11
,
5275
.
Zhang
,
Y.
,
Liu
,
G.
,
Guo
,
T.
,
Liang
,
X. G.
,
Du
,
H.
,
Yang
,
L.
,
Bhaduri
,
A.
,
Li
,
X.
,
Xu
,
Z.
,
Zhang
,
Z.
et al. 
(
2020b
).
Cortical neural stem cell lineage progression is regulated by extrinsic signaling molecule sonic hedgehog
.
Cell Rep.
30
,
4490
-
4504.e4
.
Zhang
,
Q.
,
Wu
,
X.
,
Fan
,
Y.
,
Jiang
,
P.
,
Zhao
,
Y.
,
Yang
,
Y.
,
Han
,
S.
,
Xu
,
B.
,
Chen
,
B.
,
Han
,
J.
et al. 
(
2021
).
Single-cell analysis reveals dynamic changes of neural cells in developing human spinal cord
.
EMBO Rep.
22
,
e52728
.
Zhao
,
H.
,
Tu
,
Z.
,
Xu
,
H.
,
Yan
,
S.
,
Yan
,
H.
,
Zheng
,
Y.
,
Yang
,
W.
,
Zheng
,
J.
,
Li
,
Z.
,
Tian
,
R.
et al. 
(
2017
).
Altered neurogenesis and disrupted expression of synaptic proteins in prefrontal cortex of SHANK3-deficient non-human primate
.
Cell Res.
27
,
1293
-
1297
.
Zhong
,
S.
,
Zhang
,
S.
,
Fan
,
X.
,
Wu
,
Q.
,
Yan
,
L.
,
Dong
,
J.
,
Zhang
,
H.
,
Li
,
L.
,
Sun
,
L.
,
Pan
,
N.
et al. 
(
2018
).
A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex
.
Nature
555
,
524
-
528
.
Zhong
,
S.
,
Ding
,
W.
,
Sun
,
L.
,
Lu
,
Y.
,
Dong
,
H.
,
Fan
,
X.
,
Liu
,
Z.
,
Chen
,
R.
,
Zhang
,
S.
,
Ma
,
Q.
et al. 
(
2020
).
Decoding the development of the human hippocampus
.
Nature
577
,
531
-
536
.
Zhu
,
Y.
,
Sousa
,
A. M. M.
,
Gao
,
T.
,
Skarica
,
M.
,
Li
,
M.
,
Santpere
,
G.
,
Esteller-Cucala
,
P.
,
Juan
,
D.
,
Ferrández-Peral
,
L.
,
Gulden
,
F. O.
et al. 
(
2018
).
Spatiotemporal transcriptomic divergence across human and macaque brain development
.
Science
362
,
eaat8077
.
Ziffra
,
R. S.
,
Kim
,
C. N.
,
Ross
,
J. M.
,
Wilfert
,
A.
,
Turner
,
T. N.
,
Haeussler
,
M.
,
Casella
,
A. M.
,
Przytycki
,
P. F.
,
Keough
,
K. C.
,
Shin
,
D.
et al. 
(
2021
).
Single-cell epigenomics reveals mechanisms of human cortical development
.
Nature
598
,
205
-
213
.

Competing interests

The authors declare no competing or financial interests.