The phytohormone cytokinin plays diverse roles in plant development, influencing many agriculturally important processes, including growth, nutrient responses and the response to biotic and abiotic stresses. Cytokinin levels in plants are regulated by biosynthesis and inactivation pathways. Cytokinins are perceived by membrane-localized histidine-kinase receptors and are transduced through a His-Asp phosphorelay to activate a family of transcription factors in the nucleus. Here, and in the accompanying poster, we summarize the current understanding of cytokinin metabolism, transport and signaling, and discuss how this phytohormone regulates changes in gene expression to mediate its pleiotropic effects.

Cytokinins were discovered in a search for factors that promote cell proliferation in cultured plant cells in concert with a second phytohormone, auxin. This search resulted in the identification of the synthetic cytokinin kinetin (Miller et al., 1956, 1955), and subsequent studies identified the cytokinin zeatin as an endogenous plant growth regulator (Letham, 1973). Cytokinins have since been linked to numerous aspects of plant growth and development (Argueso et al., 2012; Kieber and Schaller, 2014; Mok and Mok, 1994).

Here, we provide a brief overview of the metabolic pathways that regulate the levels of this group of plant hormones and highlight recent advances in the understanding of cytokinin transport. We then discuss the mechanisms by which cytokinins signal to influence plant development. We focus on studies in Arabidopsis, in which most of the initial discoveries were made.

Naturally occurring cytokinins are adenine derivatives with isoprenoid side chains attached to the N6 position of the adenine ring. Almost all organisms make cytokinins; for example, isopentenyl adenine derivatives are found adjacent to the anticodon loop of a subset of tRNAs in most eukaryotes and bacteria (Persson et al., 1994). However, only in plants and the protist Dictyostelium have cytokinins been definitively shown to act in cellular signaling. In higher plants, the most prevalent cytokinin is zeatin, which can occur in both trans and cis configurations. The trans form, trans-zeatin (tZ), is an active cytokinin in all plant species; in contrast, cis-zeatin (cZ) is active in only a subset, even though it is present ubiquitously in plants and in some, such as rice, is the major form (Gajdošová et al., 2011). The active species of cytokinins are free bases (Hothorn et al., 2011; Lomin et al., 2015), but cytokinins can also exist in inactive forms as ribosides (in which a ribose sugar is attached to the N9 nitrogen of the purine ring) and as ribotides (in which the ribose moiety contains a phosphate group).

The biosynthesis of cytokinins begins with the addition of a prenyl group derived from dimethylallyl diphosphate to the N6 position of ADP/ATP. This is catalyzed by an isopentenyl transferase (IPT) (Sakakibara, 2006), which is encoded by a multigene family in most plants (Kakimoto, 2001; Takei et al., 2001). The resulting iP ribotides can subsequently be converted to tZ-type cytokinins via hydroxylation of the isoprenoid side chain in a process that is carried out by the cytochrome P450 enzymes CYP735A1 and CYP735A2 (Takei et al., 2004b). This hydroxylation of the side chain of iP to form tZ-type cytokinins plays an important role in promoting shoot growth in Arabidopsis (Kiba et al., 2013). In contrast, the biosynthesis of cZ is not well understood, but likely involves tRNA-IPTs catalyzing the N6-prenylation of adenine on tRNA (Kasahara et al., 2004). The free-base, active forms of cytokinins are synthesized from cytokinin ribotides in a single enzymatic step, which is catalyzed by LONELY GUY (LOG) family cytokinin nucleoside 5′-monophosphate phosphoribohydrolases (Kurakawa et al., 2007; Kuroha et al., 2009).

The levels of active cytokinins can also be modulated via conjugation to a sugar, most commonly glucose, or through irreversible cleavage by cytokinin oxidases (CKXs) (Werner et al., 2006). O-glycosylation, which occurs at the oxygen on the side chains of cytokinins, is catalyzed by glucosyltransferases and can be reversed by β-glucosidases (Brzobohaty et al., 1993). In contrast, N-glycosylation, which occurs primarily on the N7 or N9 of the purine ring, is thought to be irreversible. Glucosyl conjugates are inactive in bioassays, and these conjugated cytokinins also fail to bind to histidine kinase (HK) cytokinin receptors (Spichal et al., 2004). CKXs irreversibly cleave both the free-base and riboside forms of cytokinins at the N6-side chains to decrease active cytokinin levels (Werner et al., 2006). Notably, overexpression of CKXs leads to a reduced level of endogenous cytokinin and results in a variety of developmental defects (Werner et al., 2003, 2001). Both tZ and iP are cleaved by CKXs, but dihydrozeatin and the synthetic cytokinins kinetin and 6-benzylaminopurine are resistant to cleavage by CKXs (Galuszka et al., 2007; Zalabák et al., 2014).

The synthesis and degradation of cytokinins are regulated by multiple inputs, including endogenous developmental cues as well as biotic and abiotic factors (Sakakibara, 2005; Werner et al., 2006). For example, the LOG genes are differentially expressed in various tissues during plant development, and this is important for regulating the activity of the shoot apical meristem (Chickarmane et al., 2012; Kuroha et al., 2009). Members of the CKX family in Arabidopsis also exhibit distinct patterns of expression, intracellular locations, enzymatic properties and responses to external factors (Galuszka et al., 2007; Kowalska et al., 2010; Schmülling et al., 2003). Furthermore, the expression of several CKX genes is induced by cytokinin, providing a feedback mechanism to dampen cytokinin function. The levels of available macronutrients, such as nitrate and phosphate, also regulate the expression of CKX as well as IPT genes (Argueso et al., 2009). Using publicly available transcriptomic data, the response of all genes involved in cytokinin signaling and metabolism to various environmental cues has been described (Ramireddy et al., 2014). Furthermore, it has been shown that a variety of organisms that interact with plants, including bacteria, fungi, nematodes and insects, can modulate cytokinin levels in planta, often by supplying cytokinin that they themselves have synthesized (Naseem and Dandekar, 2012; Shigenaga and Argueso, 2016; Siddique et al., 2015).

It was originally thought that cytokinins were synthesized in the roots and then transported to the shoots, but it is now clear that cytokinins are synthesized in numerous cell types in both roots and shoots, and that both local and long-distance transport occurs (Hirose et al., 2008; Kamada-Nobusada and Sakakibara, 2009; Miyawaki et al., 2004). Cytokinins are transported from roots to shoots via the xylem (primarily as tZ-ribosides) and from shoots to roots via the phloem (primarily as iP-type cytokinins) (Hirose et al., 2008; Kudo et al., 2010). Root cytokinin levels rise in response to nitrate, and the transport of this elevated cytokinin could represent a long-distance signal to coordinate shoot and root development (Miyawaki et al., 2004; Takei et al., 2004a). Although tZ-riboside is the primary form of cytokinin transported from root to shoot, the active free-base tZ is also transported, though at much lower levels (Osugi et al., 2017). The translocated tZ plays a role in regulating leaf size, but not meristem activity in the shoot. Interestingly, the relative ratio of tZ/tZ-ribotide in the xylem sap changes in response to nitrate availability, suggesting that plants modulate the ratio of these cytokinin species translocated from the root in order to fine tune shoot growth in response to varying environmental conditions (Osugi et al., 2017). Shoot-to-root transport of cytokinins takes place through symplastic connections in the phloem and regulates vascular patterning and auxin transport in Arabidopsis (Bishopp et al., 2011b), as well as nodulation in legumes (Sasaki et al., 2014).

There is only limited information regarding the mechanisms of cytokinin transport, though potential efflux and influx transporters have been identified (Duran-Medina et al., 2017). As with other phytohormones, ABC transporters are involved in efflux, with ABCG14 mediating cytokinin efflux across the plasma membrane. ABCG14 is expressed primarily in the pericycle and stele of roots and is crucial for loading cytokinin into the xylem sap for transport to the shoot; disruption of ABCG14 results in a 90% reduction in cytokinin levels in the xylem and retardation of shoot growth (Ko et al., 2014; Zhang et al., 2014). Two families of influx carriers have been implicated in cytokinin transport: the PUP family of purine permeases (Bürkle et al., 2003; Gillissen et al., 2000; Zürcher et al., 2016) and the ENT family of nucleoside transporters (Hirose et al., 2005; Sun et al., 2005; Wormit et al., 2004). However, neither are specific for cytokinins; the PUPs can transport purines, such as adenine, in addition to free cytokinins, whereas the ENTs are able to transport nucleosides as well as cytokinin-ribosides. Substrate affinities for these transporters are in the micromolar range, consistent with a general role in purine and nucleoside transport and suggesting that they are able to redistribute cytokinins in bulk with their other more abundant substrates.

Plasma membrane-localized influx carriers might facilitate cytokinin uptake into cells as well as into the phloem for shoot-to-root transport, and, if localized to internal membranes, might act to redistribute cytokinin within the cell. Interestingly, recent studies with PUP14, the most abundant family member, suggest that its influx activity serves to deplete the pool of active cytokinins in the apoplast (Zürcher et al., 2016). However, the relatively low affinity of this transporter for cytokinins (20-40 µM) (Bürkle et al., 2003; Gillissen et al., 2000) compared with the dissociation constant of the HK receptors for cytokinins (1-8 nM) (Lomin et al., 2015, 2011; Romanov et al., 2006) poses a problem for this model. Additional transporters will undoubtedly be discovered as we learn more about the cellular compartmentalization, and hence transport, of the various proteins involved in cytokinin biosynthesis, metabolism and perception.

The cytokinin signal transduction pathway involves a His-Asp phosphorelay similar to that found in bacterial two-component signaling systems, which are the major routes by which bacteria sense and respond to environmental stimuli (Cheung and Hendrickson, 2010; Stock et al., 2000). The two key signaling components in these bacterial systems are a membrane-localized sensor kinase that perceives environmental stimuli, and a response regulator that propagates the signal, often by directly regulating the transcription of target genes. Signal transduction occurs via phosphotransfer between a His residue in the sensor kinase and an Asp residue in the receiver domain of the response regulator. The cytokinin pathway in plants utilizes an extended version of the basic two-component system that typically involves four sequential phosphorylation events alternating between histidine and aspartate residues. This multistep phosphorelay makes use of a ‘hybrid’ HK receptor that contains both histidine kinase and receiver domains, authentic histidine phosphotransferases (AHPs) and separate response regulators (RRs) (Appleby et al., 1996; Schaller et al., 2011). These various cytokinin signaling elements in Arabidopsis, rice and other plants are encoded by gene families with overlapping functions (Du et al., 2007; Kieber and Schaller, 2014; Pareek et al., 2006; Pils and Heyl, 2009).

The HK cytokinin receptors have a conserved cytokinin-binding extracytosolic CHASE (cyclases/histidine kinases-associated sensing extracellular) domain, at least two transmembrane domains, and a cytosolic region containing a histidine kinase domain, a canonical receiver domain, and a diverged receiver domain unlikely to function in phosphotransfer (Higuchi et al., 2004; Inoue et al., 2001; Nishimura et al., 2004). The HK receptors primarily localize to the endoplasmic reticulum (ER) membrane, with the CHASE domain oriented into the ER, suggesting that the site of cytokinin binding in planta is in the lumen of the ER. This is based on the localization of native and tagged receptors as well as biochemical analyses that have determined which membrane fractions harbor high-affinity cytokinin-binding sites (Caesar et al., 2011; Lomin et al., 2011; Wulfetange et al., 2011). A small portion of HK receptors are found on the plasma membrane (Zürcher et al., 2016) although there is currently debate in the field over the degree to which these are involved in mediating the cytokinin response (Duran-Medina et al., 2017).

Cytokinin binding to the CHASE domain results in activation of the cytosolic histidine-kinase domain and autophosphorylation on the conserved His residue, and this is followed by transfer of the phosphate group to a conserved Asp within the receiver domain (Inoue et al., 2001; Suzuki et al., 2001; Ueguchi et al., 2001; Yamada et al., 2001). The phosphate is subsequently transferred to the downstream AHP and type-B RR proteins, forming a positive regulatory circuit in which the cytokinin signal eventually results in a transcriptional change in the nucleus (Hwang and Sheen, 2001). Some HK receptors possess both protein kinase and phosphatase activities (Mähönen et al., 2006b), with the switch between these activities being regulated by cytokinin binding.

The AHPs, which act downstream of HK receptors in cytokinin signaling (Hutchison et al., 2006), mediate transfer of a phosphoryl group from the receiver domain of an activated HK receptor to the receiver domain of an RR in the multistep phosphorelay. The AHPs possess no catalytic activity, but rather act essentially as high-energy phospho-donors for the RR autophosphorylation activity. The AHPs are partially redundant positive regulators of cytokinin signaling (Hutchison et al., 2006), but they also act downstream of other plant HKs, such as CKI1 (Deng et al., 2010; Liu et al., 2017). The AHP proteins have a conserved cysteine residue that is S-nitrosylated by nitric oxide in vitro and in vivo, which inhibits their ability to act as phosphotransfer proteins, reducing both their ability to receive a phosphate from a histidine kinase and to transfer a phosphate to the RRs (Feng et al., 2013). Plants also contain pseudo-histidine phosphotransfer proteins (PHPs), which lack the histidine phosphorylation site (Miyata et al., 1998; Schaller et al., 2008; Suzuki et al., 1998, 2000). These PHPs act as negative regulators of cytokinin signaling and, in Arabidopsis, play roles in protoxylem differentiation (Bishopp et al., 2011a; Mähönen et al., 2006a), leaf phyllotaxy (Besnard et al., 2014), and cell patterning during lateral root initiation (Moreira et al., 2013).

There are two types of RRs involved in cytokinin signaling: type-B RRs and type-A RRs. Type-B RRs, which are activated by phosphorylation of the Asp residue in their receiver domain by AHPs, are essential for the initial transcriptional response to cytokinin (Argyros et al., 2008; Ishida et al., 2008). They are characterized by the presence of a receiver domain and a large C-terminal extension that includes a Myb-like DNA-binding domain. The preferred DNA-binding motifs for type-B RRs have been defined, and these motifs are found upstream of many cytokinin-regulated genes (Hosoda et al., 2002; Raines et al., 2016a; Sakai et al., 2000; Zubo et al., 2017). ChIP-seq (chromatin immunoprecipitation combined with sequencing) approaches have revealed that type-B RRs bind to their target sites in planta in a cytokinin-dependent manner (Zubo et al., 2017), with binding presumably being activated by phosphorylation of the receiver domain in a manner analogous to that of bacterial response regulators. The rate of turnover varies among members of the type-B RR family, and is regulated at least in part by an E3-ubiquitin ligase complex that includes the KISS ME DEADLY (KMD) F-box proteins (Kim et al., 2013, 2012).

Type-A RRs, by contrast, act as negative-feedback regulators of cytokinin signaling. They contain a receiver domain but, unlike type-B RRs, lack a classic output domain for transcriptional regulation. Type-A RRs are transcriptionally induced in response to cytokinin via direct activation by type-B RRs (Brandstatter and Kieber, 1998; D'Agostino et al., 2000; Taniguchi et al., 1998, 2007), and cytokinin also stabilizes many type-A RRs in a phosphorylation-dependent manner (To et al., 2007). Transcript levels of some type-A RRs are also responsive to various other inputs. For example, ARR7 and ARR15 are repressed by auxin in the shoot apical meristem (Leibfried et al., 2005; Wigge et al., 2005), but are induced by auxin in the root apical meristem (Müller and Sheen, 2008). The regulation of type-A RR expression by other signaling pathways might modulate cytokinin sensitivity in various cell types and/or in response to different environmental cues. The mechanism by which type-A RRs negatively regulate cytokinin signaling is not well understood, but likely involves both competition for phosphotransfer from type-B RRs as well as phospho-dependent interactions with target proteins (To et al., 2007).

The treatment of plants with exogenous cytokinin results in substantial changes in gene expression (Bhargava et al., 2013; Brenner and Schmülling, 2015). The basal expression level of many cytokinin-induced genes decreases in cytokinin-insensitive mutants, indicating that they are regulated by endogenous cytokinin in the plant (Argyros et al., 2008). A meta-analysis of multiple microarray experiments performed in Arabidopsis has established a set of genes for which expression levels robustly change following treatment with exogenous cytokinin (Bhargava et al., 2013; Brenner and Schmülling, 2015). The transcriptional response to cytokinin in rice shows significant similarity to that of Arabidopsis, but substantial differences are also evident; in particular, many more genes that exhibit rapid expression changes are found in rice than in Arabidopsis (Raines et al., 2016a). Gene ontology (GO) analyses of type-B RR targets and cytokinin-regulated genes is consistent with the pleiotropic effects of cytokinin, revealing enrichment for hormonal responses, pointing toward the extensive crosstalk that occurs between hormones in the control of growth and development, as well as enrichment for responses to biotic and abiotic stimuli, including light (Bhargava et al., 2013; Zubo et al., 2017). GO analyses also indicate that transcription factors are highly enriched, supporting a model in which type-B RRs act at the top of a transcriptional cascade, with additional transcription factors providing specificity to the downstream responses. Among the targets of type-B RRs is the gene encoding the transcription factor WUSCHEL, a key regulator of shoot meristem activity, thereby providing a direct link between cytokinin signaling and the regulation of shoot growth and development (Meng et al., 2017; Wang et al., 2017; Zhang et al., 2017; Zubo et al., 2017).

Although the transcriptional response to cytokinin requires type-B RR function (Argyros et al., 2008; Yokoyama et al., 2007), there are also other transcription factors that appear to act in concert with type-B RRs to modulate gene expression (Argueso et al., 2010; Raines et al., 2016b). For example, type-B RRs interact with the salicylic acid-regulated transcription factor TGA3 to activate gene expression in response to pathogens (Choi et al., 2010). DELLA proteins, which act as hubs to relay environmental information to various transcriptional circuits, also directly interact with type-B RRs and serve as co-activators for gene targets involved in root growth and photomorphogenesis (Marín-de la Rosa et al., 2015). The cytokinin response factors (CRFs), which are a subclade of AP2 transcription factors induced by cytokinin, modulate the expression of a large number of cytokinin-regulated genes (Raines et al., 2016b; Rashotte et al., 2006). It is likely that other transcription factors act with type-B RRs to provide combinatorial control to enable cytokinins to mediate distinct outputs in various cell types and in response to different environmental conditions.

Cytokinins play many roles in plant development, often acting in concert with other hormones, most notably auxin, to regulate cell division and differentiation. Below, we briefly summarize the roles of cytokinin in development, but point the reader to several recent reviews that discuss these functions in more depth (Chandler and Werr, 2015; Kieber and Schaller, 2014; Schaller et al., 2015; Zürcher and Müller, 2016).

One key role of cytokinin is to regulate cell proliferation by influencing cell division and/or differentiation (Schaller et al., 2014). In the shoot, cytokinins promote cell proliferation, including the activity of apical and axillary meristems. Increases in cytokinin levels, in response to reduced expression of a CKX gene, have been linked to increases in grain yield in indica rice varieties (Ashikari et al., 2005), and the disruption of CKX genes in Arabidopsis leads to increased seed yield (Bartrina et al., 2011). Cytokinins also play a role in regulating leaf phyllotaxy (Besnard et al., 2014), gynoecium development (Cucinotta et al., 2016; Marsch-Martínez et al., 2012; Müller et al., 2017; Sehra and Franks, 2015), female gametophyte development (Cheng et al., 2013; Yuan et al., 2016) and vascular cambial development (Immanen et al., 2016; Nieminen et al., 2008). In contrast to their role in promoting growth of the shoot, cytokinins inhibit root growth, in part by promoting cell differentiation in the root apical meristem (Dello Ioio et al., 2012; Moubayidin et al., 2010; Werner et al., 2001) and by regulating root branching (Chang et al., 2013, 2015). Cytokinins also regulate root architecture, acting to inhibit lateral root initiation and primary root elongation, and they can modulate root function by regulating the expression of nutrient transport and uptake proteins (Argueso et al., 2009; Werner et al., 2010). Finally, cytokinins act in concert with auxin to regulate vascular development, with cytokinin promoting phloem and auxin xylem development via a pair of mutually inhibitory interactions (Bishopp et al., 2011a; De Rybel et al., 2014; Mähönen et al., 2006a).

We now have a reasonable understanding of the multistep phosphorelay by which cytokinin signals are transduced, starting from membrane-localized HK receptors through to the activation of nuclear-localized type-B RRs. Among the immediate transcriptional targets of the type-B RRs are a set of proteins, the type-A RRs, that act in a negative regulatory feedback loop to dampen the output in response to elevated cytokinin levels. Similarly, cytokinins induce the expression of enzymes (CKXs and glucosyltransferases) that inactivate the signal itself. These negative-feedback pathways indicate that plant cells tightly regulate the output of the cytokinin pathway, which likely reflects its profound effects on plant development and perhaps the common targeting of cytokinin signaling by pathogens. These and other aspects of the pathway provide multiple points of crosstalk with endogenous and environmental signals, reflecting the pleiotropic effects of cytokinin.

Despite the enormous progress made in understanding cytokinin metabolism and signaling, important questions remain. What is the source of cZ in plants? Perhaps, as suggested by early cytokinin researchers, tRNA is a source for this cis isomer. Are functional cytokinin receptors localized to both the ER membrane and the plasma membrane? What imparts specificity to cytokinin signaling to enable distinct outputs in various cell types? This is likely to involve the particular subsets of cytokinin signaling elements found in a cell as well as different contextual inputs that modulate cytokinin-responsive gene expression, including partner transcription factors that regulate type-B RR target selection. What is the precise mechanism, in addition to phospho-competition, by which the type-A RRs negatively regulate cytokinin signaling? Are there other as-yet-unidentified elements that play a role in cytokinin signaling? What is the role of cytokinin in plants beyond the Arabidopsis model? As cytokinin has already been linked to important agricultural traits, including grain yield (Jameson and Song, 2016), nodulation and other biotic interactions (Miri et al., 2016; Naseem et al., 2014; O'Brien and Benkova, 2013), and providing resistance to abiotic stress (Bielach et al., 2017), furthering our understanding of cytokinin function is a promising avenue to enhancement of agricultural productivity to meet the increasing demands of a growing world population.

Funding

Cytokinin research in the authors' laboratories is supported by grants from the National Science Foundation (IOS-1238051 to J.J.K. and G.E.S.; IOS-1456487 to G.E.S.).

Appleby
,
J. L.
,
Parkinson
,
J. S.
and
Bourret
,
R. B.
(
1996
).
Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled
.
Cell
86
,
845
-
848
.
Argueso
,
C. T.
,
Ferreira
,
F. J.
and
Kieber
,
J. J.
(
2009
).
Environmental perception avenues: the interaction of cytokinin and environmental response pathways
.
Plant Cell Environ.
32
,
1147
-
1160
.
Argueso
,
C. T.
,
Raines
,
T.
and
Kieber
,
J. J.
(
2010
).
Cytokinin signaling and transcriptional networks
.
Curr. Opin. Plant Biol.
13
,
533
-
539
.
Argueso
,
C. T.
,
Ferreira
,
F. J.
,
Hutchison
,
C. E.
,
To
,
J. P. C.
,
Epple
,
P.
,
Mathews
,
D. E.
,
Schaller
,
G. E.
,
Dangl
,
J. L.
and
Kieber
,
J. J.
(
2012
).
Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity
.
PLoS Genet.
8
,
e1002448
.
Argyros
,
R. D.
,
Mathews
,
D. E.
,
Chiang
,
Y.-H.
,
Palmer
,
C. M.
,
Thibault
,
D. M.
,
Etheridge
,
N.
,
Argyros
,
D. A.
,
Mason
,
M. G.
,
Kieber
,
J. J.
and
Schaller
,
G. E.
(
2008
).
Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development
.
Plant Cell
20
,
2102
-
2116
.
Ashikari
,
M.
,
Sakakibara
,
H.
,
Lin
,
S.
,
Yamamoto
,
T.
,
Takashi
,
T.
,
Nishimura
,
A.
,
Angeles
,
E. R.
,
Qian
,
Q.
,
Kitano
,
H.
and
Matsuoka
,
M.
(
2005
).
Cytokinin oxidase regulates rice grain production
.
Science
309
,
741
-
745
.
Bartrina
,
I.
,
Otto
,
E.
,
Strnad
,
M.
,
Werner
,
T.
and
Schmülling
,
T.
(
2011
).
Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana
.
Plant Cell
23
,
69
-
80
.
Besnard
,
F.
,
Refahi
,
Y.
,
Morin
,
V.
,
Marteaux
,
B.
,
Brunoud
,
G.
,
Chambrier
,
P.
,
Rozier
,
F.
,
Mirabet
,
V.
,
Legrand
,
J.
,
Lainé
,
S.
, et al. 
(
2014
).
Cytokinin signalling inhibitory fields provide robustness to phyllotaxis
.
Nature
505
,
417
-
421
.
Bhargava
,
A.
,
Clabaugh
,
I.
,
To
,
J. P.
,
Maxwell
,
B. B.
,
Chiang
,
Y.-H.
,
Schaller
,
G. E.
,
Loraine
,
A.
and
Kieber
,
J. J.
(
2013
).
Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis
.
Plant Physiol.
162
,
272
-
294
.
Bielach
,
A.
,
Hrtyan
,
M.
and
Tognetti
,
V. B.
(
2017
).
Plants under stress: Involvement of auxin and cytokinin
.
Int. J. Mol. Sci.
18
,
1427
.
Bishopp
,
A.
,
Help
,
H.
,
El-Showk
,
S.
,
Weijers
,
D.
,
Scheres
,
B.
,
Friml
,
J.
,
Benková
,
E.
,
Mähönen
,
A.
and
Helariutta
,
Y.
(
2011a
).
A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots
.
Curr. Biol.
21
,
927
-
932
.
Bishopp
,
A.
,
Lehesranta
,
S.
,
Vatén
,
A.
,
Help
,
H.
,
El-Showk
,
S.
,
Scheres
,
B.
,
Helariutta
,
K.
,
Mähönen
,
A. P.
,
Sakakibara
,
H.
and
Helariutta
,
Y.
(
2011b
).
Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem
.
Curr. Biol.
21
,
927
-
932
.
Brandstatter
,
I.
and
Kieber
,
J. J.
(
1998
).
Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis
.
Plant Cell
10
,
1009
-
1020
.
Brenner
,
W. G.
and
Schmülling
,
T.
(
2015
).
Summarizing and exploring data of a decade of cytokinin-related transcriptomics
.
Front. Plant Sci.
6
,
29
.
Brzobohaty
,
B.
,
Moore
,
I.
,
Kristoffersen
,
P.
,
Bako
,
L.
,
Campos
,
N.
,
Schell
,
J.
and
Palme
,
K.
(
1993
).
Release of active cytokinin by a β-glucosidase localized to the maize root meristem
.
Science
262
,
1051
-
1054
.
Bürkle
,
L.
,
Cedzich
,
A.
,
Dopke
,
C.
,
Stransky
,
H.
,
Okumoto
,
S.
,
Gillissen
,
B.
,
Kuhn
,
C.
and
Frommer
,
W. B.
(
2003
).
Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis
.
Plant J.
34
,
13
-
26
.
Caesar
,
K.
,
Thamm
,
A. M. K.
,
Witthöft
,
J.
,
Elgass
,
K.
,
Huppenberger
,
P.
,
Grefen
,
C.
,
Horak
,
J.
and
Harter
,
K.
(
2011
).
Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum
.
J. Exp. Bot.
62
,
5571
-
5580
.
Chandler
,
J. W.
and
Werr
,
W.
(
2015
).
Cytokinin–auxin crosstalk in cell type specification
.
Trends Plant Sci.
20
,
291
-
300
.
Chang
,
L.
,
Ramireddy
,
E.
and
Schmülling
,
T.
(
2013
).
Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes
.
J. Exp. Bot.
64
,
5021
-
5032
.
Chang
,
L.
,
Ramireddy
,
E.
and
Schmülling
,
T.
(
2015
).
Cytokinin as a positional cue regulating lateral root spacing in Arabidopsis
.
J. Exp. Bot.
66
,
4759
-
4768
.
Cheng
,
C.-Y.
,
Mathews
,
D. E.
,
Eric Schaller
,
G.
and
Kieber
,
J. J.
(
2013
).
Cytokinin-dependent specification of the functional megaspore in the Arabidopsis female gametophyte
.
Plant J.
73
,
929
-
940
.
Cheung
,
J.
and
Hendrickson
,
W. A.
(
2010
).
Sensor domains of two-component regulatory systems
.
Curr. Opin. Microbiol.
13
,
116
-
123
.
Chickarmane
,
V. S.
,
Gordon
,
S. P.
,
Tarr
,
P. T.
,
Heisler
,
M. G.
and
Meyerowitz
,
E. M.
(
2012
).
Cytokinin signaling as a positional cue for patterning the apical–basal axis of the growing Arabidopsis shoot meristem
.
Proc. Natl. Acad. Sci. USA
109
,
4002
-
4007
.
Choi
,
J.
,
Huh
,
S. U.
,
Kojima
,
M.
,
Sakakibara
,
H.
,
Paek
,
K.-H.
and
Hwang
,
I.
(
2010
).
The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis
.
Dev. Cell
19
,
284
-
295
.
Cucinotta
,
M.
,
Manrique
,
S.
,
Guazzotti
,
A.
,
Quadrelli
,
N. E.
,
Mendes
,
M. A.
,
Benkova
,
E.
and
Colombo
,
L.
(
2016
).
Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development
.
Development
143
,
4419
-
4424
.
D'Agostino
,
I. B.
,
Deruère
,
J.
and
Kieber
,
J. J.
(
2000
).
Characterization of the response of the Arabidopsis ARR gene family to cytokinin
.
Plant Physiol.
124
,
1706
-
1717
.
Dello Ioio
,
R.
,
Galinha
,
C.
,
Fletcher
,
A. G.
,
Grigg
,
S. P.
,
Molnar
,
A.
,
Willemsen
,
V.
,
Scheres
,
B.
,
Sabatini
,
S.
,
Baulcombe
,
D.
,
Maini
,
P. K.
, et al. 
(
2012
).
A PHABULOSA/cytokinin feedback loop controls root growth in Arabidopsis
.
Curr. Biol.
22
,
1699
-
1704
.
Deng
,
Y.
,
Dong
,
H.
,
Mu
,
J.
,
Ren
,
B.
,
Zheng
,
B.
,
Ji
,
Z.
,
Yang
,
W.-C.
,
Liang
,
Y.
and
Zuo
,
J.
(
2010
).
Arabidopsis histidine kinase CKI1 acts upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to regulate female gametophyte development and vegetative growth
.
Plant Cell
22
,
1232
-
1248
.
De Rybel
,
B.
,
Adibi
,
M.
,
Breda
,
A. S.
,
Wendrich
,
J. R.
,
Smit
,
M. E.
,
Novak
,
O.
,
Yamaguchi
,
N.
,
Yoshida
,
S.
,
Van Isterdael
,
G.
,
Palovaara
,
J.
, et al. 
(
2014
).
Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis
.
Science
345
,
1255215
.
Du
,
L.
,
Jiao
,
F.
,
Chu
,
J.
,
Chen
,
M.
and
Wu
,
P.
(
2007
).
The two-component signal system in rice (Oryza sativa L.): A genome-wide study of cytokinin signal perception and transduction
.
Genomics
89
,
697
-
707
.
Duran-Medina
,
Y.
,
Diaz-Ramirez
,
D.
and
Marsch-Martinez
,
N.
(
2017
).
Cytokinins on the Move
.
Front. Plant Sci.
8
,
146
.
Feng
,
J.
,
Wang
,
C.
,
Chen
,
Q.
,
Chen
,
H.
,
Ren
,
B.
,
Li
,
X.
and
Zuo
,
J.
(
2013
).
S-nitrosylation of phosphotransfer proteins represses cytokinin signaling
.
Nat. Commun.
4
,
1529
.
Gajdošová
,
S.
,
Spíchal
,
L.
,
Kamínek
,
M.
,
Hoyerová
,
K.
,
Novák
,
O.
,
Dobrev
,
P. I.
,
Galuszka
,
P.
,
Klíma
,
P.
,
Gaudinová
,
A.
,
Žižková
,
E.
, et al. 
(
2011
).
Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants
.
J. Exp. Bot.
62
,
2827
-
2840
.
Galuszka
,
P.
,
Popelkova
,
H.
,
Werner
,
T.
,
Frebortova
,
J.
,
Pospisilova
,
H.
,
Mik
,
V.
,
Kollmer
,
I.
,
Schmülling
,
T.
and
Frebort
,
I.
(
2007
).
Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L
.
J. Plant Growth Regul.
26
,
255
-
267
.
Gillissen
,
B.
,
Burkle
,
L.
,
Andre
,
B.
,
Kuhn
,
C.
,
Rentsch
,
D.
,
Brandl
,
B.
and
Frommer
,
W. B.
(
2000
).
A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis
.
Plant Cell
12
,
291
-
300
.
Higuchi
,
M.
,
Pischke
,
M. S.
,
Mahonen
,
A. P.
,
Miyawaki
,
K.
,
Hashimoto
,
Y.
,
Seki
,
M.
,
Kobayashi
,
M.
,
Shinozaki
,
K.
,
Kato
,
T.
,
Tabata
,
S.
, et al. 
(
2004
).
In planta functions of the Arabidopsis cytokinin receptor family
.
Proc. Natl. Acad. Sci. USA
101
,
8821
-
8826
.
Hirose
,
N.
,
Makita
,
N.
,
Yamaya
,
T.
and
Sakakibara
,
H.
(
2005
).
Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport
.
Plant Physiol.
138
,
196
-
206
.
Hirose
,
N.
,
Takei
,
K.
,
Kuroha
,
T.
,
Kamada-Nobusada
,
T.
,
Hayashi
,
H.
and
Sakakibara
,
H.
(
2008
).
Regulation of cytokinin biosynthesis, compartmentalization and translocation
.
J. Exp. Bot.
59
,
75
-
83
.
Hosoda
,
K.
,
Imamura
,
A.
,
Katoh
,
E.
,
Hatta
,
T.
,
Tachiki
,
M.
,
Yamada
,
H.
,
Mizuno
,
T.
and
Yamazaki
,
T.
(
2002
).
Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators
.
Plant Cell
14
,
2015
-
2029
.
Hothorn
,
M.
,
Dabi
,
T.
and
Chory
,
J.
(
2011
).
Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4
.
Nat. Chem. Biol.
7
,
766
-
768
.
Hutchison
,
C. E.
,
Li
,
J.
,
Argueso
,
C.
,
Gonzalez
,
M.
,
Lee
,
E.
,
Lewis
,
M. W.
,
Maxwell
,
B. B.
,
Perdue
,
T. D.
,
Schaller
,
G. E.
,
Alonso
,
J. M.
, et al. 
(
2006
).
The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling
.
Plant Cell
18
,
3073
-
3087
.
Hwang
,
I.
and
Sheen
,
J.
(
2001
).
Two-component circuitry in Arabidopsis cytokinin signal transduction
.
Nature
413
,
383
-
389
.
Immanen
,
J.
,
Nieminen
,
K.
,
Smolander
,
O.-P.
,
Kojima
,
M.
,
Alonso Serra
,
J.
,
Koskinen
,
P.
,
Zhang
,
J.
,
Elo
,
A.
,
Mähönen
,
A. P.
,
Street
,
N.
, et al. 
(
2016
).
Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity
.
Curr. Biol.
26
,
1990
-
1997
.
Inoue
,
T.
,
Higuchi
,
M.
,
Hashimoto
,
Y.
,
Seki
,
M.
,
Kobayashi
,
M.
,
Kato
,
T.
,
Tabata
,
S.
,
Shinozaki
,
K.
and
Kakimoto
,
T.
(
2001
).
Identification of CRE1 as a cytokinin receptor from Arabidopsis
.
Nature
409
,
1060
-
1063
.
Ishida
,
K.
,
Yamashino
,
T.
,
Yokoyama
,
A.
and
Mizuno
,
T.
(
2008
).
Three Type-B Response Regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana
.
Plant Cell Physiol.
49
,
47
-
57
.
Jameson
,
P. E.
and
Song
,
J.
(
2016
).
Cytokinin: a key driver of seed yield
.
J. Exp. Bot.
67
,
593
-
606
.
Kakimoto
,
T.
(
2001
).
Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases
.
Plant Cell Physiol.
42
,
677
-
685
.
Kamada-Nobusada
,
T.
and
Sakakibara
,
H.
(
2009
).
Molecular basis for cytokinin biosynthesis
.
Phytochemistry
70
,
444
-
449
.
Kasahara
,
H.
,
Takei
,
K.
,
Ueda
,
N.
,
Hishiyama
,
S.
,
Yamaya
,
T.
,
Kamiya
,
Y.
,
Yamaguchi
,
S.
and
Sakakibara
,
H.
(
2004
).
Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis
.
J. Biol. Chem.
279
,
14049
-
14054
.
Kiba
,
T.
,
Takei
,
K.
,
Kojima
,
M.
and
Sakakibara
,
H.
(
2013
).
Side-chain modification of cytokinins controls shoot growth in Arabidopsis
.
Dev. Cell
27
,
452
-
461
.
Kieber
,
J. J.
and
Schaller
,
G. E.
(
2014
).
Cytokinins
.
The Arabidopsis Book
12
,
e0168
.
Kim
,
K.
,
Ryu
,
H.
,
Cho
,
Y.-H.
,
Scacchi
,
E.
,
Sabatini
,
S.
and
Hwang
,
I.
(
2012
).
Cytokinin-facilitated proteolysis of ARABIDOPSIS RESPONSE REGULATOR 2 attenuates signaling output in two-component circuitry
.
Plant J.
69
,
934
-
945
.
Kim
,
H. J.
,
Kieber
,
J. J.
and
Schaller
,
G. E.
(
2013
).
The rice F-box protein KISS ME DEADLY2 functions as a negative regulator of cytokinin signalling
.
Plant Signal. Behav.
8
,
e26434
.
Ko
,
D.
,
Kang
,
J.
,
Kiba
,
T.
,
Park
,
J.
,
Kojima
,
M.
,
Do
,
J.
,
Kim
,
K. Y.
,
Kwon
,
M.
,
Endler
,
A.
,
Song
,
W.-Y.
, et al. 
(
2014
).
Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin
.
Proc. Natl. Acad. Sci. USA
111
,
7150
-
7155
.
Kowalska
,
M.
,
Galuszka
,
P.
,
Frébortová
,
J.
,
Šebela
,
M.
,
Béres
,
T.
,
Hluska
,
T.
,
Šmehilová
,
M.
,
Bilyeu
,
K. D.
and
Frébort
,
I.
(
2010
).
Vacuolar and cytosolic cytokinin dehydrogenases of Arabidopsis thaliana: heterologous expression, purification and properties
.
Phytochemistry
71
,
1970
-
1978
.
Kudo
,
T.
,
Kiba
,
T.
and
Sakakibara
,
H.
(
2010
).
Metabolism and long-distance translocation of cytokinins
.
J. Integr. Plant Biol.
52
,
53
-
60
.
Kurakawa
,
T.
,
Ueda
,
N.
,
Maekawa
,
M.
,
Kobayashi
,
K.
,
Kojima
,
M.
,
Nagato
,
Y.
,
Sakakibara
,
H.
and
Kyozuka
,
J.
(
2007
).
Direct control of shoot meristem activity by a cytokinin-activating enzyme
.
Nature
445
,
652
-
655
.
Kuroha
,
T.
,
Tokunaga
,
H.
,
Kojima
,
M.
,
Ueda
,
N.
,
Ishida
,
T.
,
Nagawa
,
S.
,
Fukuda
,
H.
,
Sugimoto
,
K.
and
Sakakibara
,
H.
(
2009
).
Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis
.
Plant Cell
21
,
3152
-
3169
.
Leibfried
,
A.
,
To
,
J. P. C.
,
Stehling
,
S.
,
Kehle
,
A.
,
Busch
,
W.
,
Demar
,
M.
,
Kieber
,
J. J.
and
Lohmann
,
J. U.
(
2005
).
WUSCHEL controls meristem size by direct transcriptional regulation of cytokinin inducible response regulators
.
Nature
438
,
1172
-
1175
.
Letham
,
D. S.
(
1973
).
Cytokinins from Zea mays
.
Phytochemistry
12
,
2445
-
2455
.
Liu
,
Z.
,
Yuan
,
L.
,
Song
,
X.
,
Yu
,
X.
and
Sundaresan
,
V.
(
2017
).
AHP2, AHP3, and AHP5 act downstream of CKI1 in Arabidopsis female gametophyte development
.
J. Exp. Bot.
68
,
3365
-
3373
.
Lomin
,
S. N.
,
Yonekura-Sakakibara
,
K.
,
Romanov
,
G. A.
and
Sakakibara
,
H.
(
2011
).
Ligand-binding properties and subcellular localization of maize cytokinin receptors
.
J. Exp. Bot.
62
,
5149
-
5159
.
Lomin
,
S. N.
,
Krivosheev
,
D. M.
,
Steklov
,
M. Y.
,
Arkhipov
,
D. V.
,
Osolodkin
,
D. I.
,
Schmülling
,
T.
and
Romanov
,
G. A.
(
2015
).
Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands
.
J. Exp. Bot.
66
,
1851
-
1863
.
Mähönen
,
A. P.
,
Bishopp
,
A.
,
Higuchi
,
M.
,
Nieminen
,
K. M.
,
Kinoshita
,
K.
,
Tormakangas
,
K.
,
Ikeda
,
Y.
,
Oka
,
A.
,
Kakimoto
,
T.
and
Helariutta
,
Y.
(
2006a
).
Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development
.
Science
311
,
94
-
98
.
Mähönen
,
A. P.
,
Higuchi
,
M.
,
Tormakangas
,
K.
,
Miyawaki
,
K.
,
Pischke
,
M. S.
,
Sussman
,
M. R.
,
Helariutta
,
Y.
and
Kakimoto
,
T.
(
2006b
).
Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis
.
Curr. Biol.
16
,
1116
-
1122
.
Marín-de la Rosa
,
N.
,
Pfeiffer
,
A.
,
Hill
,
K.
,
Locascio
,
A.
,
Bhalerao
,
R. P.
,
Miskolczi
,
P.
,
Grønlund
,
A. L.
,
Wanchoo-Kohli
,
A.
,
Thomas
,
S. G.
,
Bennett
,
M. J.
, et al. 
(
2015
).
Genome wide binding site analysis reveals transcriptional coactivation of cytokinin-responsive genes by DELLA proteins
.
PLoS Genet.
11
,
e1005337
.
Marsch-Martínez
,
N.
,
Ramos-Cruz
,
D.
,
Irepan Reyes-Olalde
,
J.
,
Lozano-Sotomayor
,
P.
,
Zúñiga-Mayo
,
V. M.
and
de Folter
,
S.
(
2012
).
The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning
.
Plant J.
72
,
222
-
234
.
Meng
,
W. J.
,
Cheng
,
Z. J.
,
Sang
,
Y. L.
,
Zhang
,
M. M.
,
Rong
,
X. F.
,
Wang
,
Z. W.
,
Tang
,
Y. Y.
and
Zhang
,
X. S.
(
2017
).
Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL
.
Plant Cell
29
,
1357
-
1372
.
Miller
,
C. O.
,
Skoog
,
F.
,
Von Saltza
,
M. H.
and
Strong
,
F.
(
1955
).
Kinetin, a cell division factor from deoxyribonucleic acid
.
J. Am. Chem. Soc.
77
,
1392
.
Miller
,
C. O.
,
Skoog
,
F.
,
Okomura
,
F. S.
,
von Saltza
,
M. H.
and
Strong
,
F. M.
(
1956
).
Isolation, structure and synthesis of kinetin, a substance promoting cell division
.
J. Am. Chem. Soc.
78
,
1345
-
1350
.
Miri
,
M.
,
Janakirama
,
P.
,
Held
,
M.
,
Ross
,
L.
and
Szczyglowski
,
K.
(
2016
).
Into the root: how cytokinin controls rhizobial infection
.
Trends Plant Sci.
21
,
178
-
186
.
Miyata
,
S.
,
Urao
,
T.
,
Yamaguchi-Shinozaki
,
K.
and
Shinozaki
,
K.
(
1998
).
Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis thaliana
.
FEBS Lett.
437
,
11
-
14
.
Miyawaki
,
K.
,
Matsumoto-Kitano
,
M.
and
Kakimoto
,
T.
(
2004
).
Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate
.
Plant J.
37
,
128
-
138
.
Mok
,
D. W. S.
and
Mok
,
M. C.
(
1994
).
Cytokinins: Chemistry, Activity and Function
.
Boca Raton, FL
:
CRC Press
.
Moreira
,
S.
,
Bishopp
,
A.
,
Carvalho
,
H.
and
Campilho
,
A.
(
2013
).
AHP6 inhibits cytokinin signaling to regulate the orientation of pericycle cell division during lateral root initiation
.
PLoS ONE
8
,
e56370
.
Moubayidin
,
L.
,
Perilli
,
S.
,
Dello Ioio
,
R.
,
Di Mambro
,
R.
,
Costantino
,
P.
and
Sabatini
,
S.
(
2010
).
The rate of cell differentiation controls the Arabidopsis root meristem growth phase
.
Curr. Biol.
20
,
1138
-
1143
.
Müller
,
B.
and
Sheen
,
J.
(
2008
).
Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis
.
Nature
453
,
1094
-
1097
.
Müller
,
C. J.
,
Larsson
,
E.
,
Spíchal
,
L.
and
Sundberg
,
E.
(
2017
).
Cytokinin-auxin crosstalk in the gynoecial primordium ensures correct domain patterning
.
Plant Physiol.
175
,
1144
-
1157
.
Naseem
,
M.
and
Dandekar
,
T.
(
2012
).
The role of auxin-cytokinin antagonism in plant-pathogen interactions
.
PLoS Pathog.
8
,
e1003026
.
Naseem
,
M.
,
Wölfling
,
M.
and
Dandekar
,
T.
(
2014
).
Cytokinins for immunity beyond growth, galls and green islands
.
Trends Plant Sci.
19
,
481
-
484
.
Nieminen
,
K.
,
Immanen
,
J.
,
Laxell
,
M.
,
Kauppinen
,
L.
,
Tarkowski
,
P.
,
Dolezal
,
K.
,
Tähtiharju
,
S.
,
Elo
,
A.
,
Decourteix
,
M.
,
Ljung
,
K.
, et al. 
(
2008
).
Cytokinin signaling regulates cambial development in poplar
.
Proc. Natl. Acad. Sci. USA
105
,
20032
-
20037
.
Nishimura
,
C.
,
Ohashi
,
Y.
,
Sato
,
S.
,
Kato
,
T.
,
Tabata
,
S.
and
Ueguchi
,
C.
(
2004
).
Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis
.
Plant Cell
16
,
1365
-
1377
.
O'Brien
,
J.
and
Benkova
,
E.
(
2013
).
Cytokinin cross-talking during biotic and abiotic stress responses
.
Front. Plant Sci.
4
,
451
.
Osugi
,
A.
,
Kojima
,
M.
,
Takebayashi
,
Y.
,
Ueda
,
N.
,
Kiba
,
T.
and
Sakakibara
,
H.
(
2017
).
Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots
.
Nat. Plants
3
,
17112
.
Pareek
,
A.
,
Singh
,
A.
,
Kumar
,
M.
,
Kushwaha
,
H. R.
,
Lynn
,
A. M.
and
Singla-Pareek
,
S. L.
(
2006
).
Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis
.
Plant Physiol.
142
,
380
-
397
.
Persson
,
B. C.
,
Esberg
,
B.
,
Ólafsson
,
Ó.
and
Björk
,
G. R.
(
1994
).
Synthesis and function of isopentenyl adenosine derivatives in tRNA
.
Biochimie
76
,
1152
-
1160
.
Pils
,
B.
and
Heyl
,
A.
(
2009
).
Unraveling the evolution of cytokinin signaling
.
Plant Physiol.
151
,
782
-
791
.
Raines
,
T.
,
Blakley
,
I. C.
,
Tsai
,
Y.-C.
,
Worthen
,
J. M.
,
Franco-Zorrilla
,
J. M.
,
Solano
,
R.
,
Schaller
,
G. E.
,
Loraine
,
A. E.
and
Kieber
,
J. J.
(
2016a
).
Characterization of the cytokinin-responsive transcriptome in rice
.
BMC Plant Biol.
16
,
260
.
Raines
,
T.
,
Shanks
,
C.
,
Cheng
,
C.-Y.
,
McPherson
,
D.
,
Argueso
,
C. T.
,
Kim
,
H. J.
,
Franco-Zorrilla
,
J. M.
,
López-Vidriero
,
I.
,
Solano
,
R.
,
Vaňková
,
R.
, et al. 
(
2016b
).
The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis
.
Plant J.
85
,
134
-
147
.
Ramireddy
,
E.
,
Chang
,
L.
and
Schmülling
,
T.
(
2014
).
Cytokinin as a mediator for regulating root system architecture in response to environmental cues
.
Plant Signal Behav.
9
,
e27771
.
Rashotte
,
A. M.
,
Mason
,
M. G.
,
Hutchison
,
C. E.
,
Ferreira
,
F. J.
,
Schaller
,
G. E.
and
Kieber
,
J. J.
(
2006
).
A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway
.
Proc. Natl. Acad. Sci. USA
103
,
11081
-
11085
.
Romanov
,
G. A.
,
Lomin
,
S. N.
and
Schmülling
,
T.
(
2006
).
Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay
.
J. Exp. Bot.
57
,
4051
-
4058
.
Sakai
,
H.
,
Aoyama
,
T.
and
Oka
,
A.
(
2000
).
Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators
.
Plant J.
24
,
703
-
711
.
Sakakibara
,
H.
(
2005
).
Cytokinin biosynthesis and regulation
.
Vitam. Horm.
72
,
271
-
287
.
Sakakibara
,
H.
(
2006
).
Cytokinins: activity, biosynthesis, and translocation
.
Annu. Rev. Plant Biol.
57
,
431
-
449
.
Sasaki
,
T.
,
Suzaki
,
T.
,
Soyano
,
T.
,
Kojima
,
M.
,
Sakakibara
,
H.
and
Kawaguchi
,
M.
(
2014
).
Shoot-derived cytokinins systemically regulate root nodulation
.
Nat. Commun.
5
,
4983
.
Schaller
,
G. E.
,
Kieber
,
J. J.
and
Shiu
,
S.-H.
(
2008
).
Two-component signaling elements and histidyl-aspartyl phosphorelays
.
The Arabidopsis Book
6
,
e0112
.
Schaller
,
G. E.
,
Shiu
,
S.-H.
and
Armitage
,
J. P.
(
2011
).
Two-component systems and their co-option for eukaryotic signal transduction
.
Curr. Biol.
21
,
R320
-
R330
.
Schaller
,
G. E.
,
Street
,
I. H.
and
Kieber
,
J. J.
(
2014
).
Cytokinin and the cell cycle
.
Curr. Opin. Plant Biol.
21C
,
7
-
15
.
Schaller
,
G. E.
,
Bishopp
,
A.
and
Kieber
,
J. J.
(
2015
).
The yin-yang of hormones: cytokinin and auxin interactions in plant development
.
Plant Cell
27
,
44
-
63
.
Schmülling
,
T.
,
Werner
,
T.
,
Riefler
,
M.
,
Krupková
,
E.
and
Manns
,
I. B. Y.
(
2003
).
Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species
.
J. Plant Res.
116
,
241
-
252
.
Sehra
,
B.
and
Franks
,
R. G.
(
2015
).
Auxin and cytokinin act during gynoecial patterning and the development of ovules from the meristematic medial domain
.
Wiley Interdiscip. Rev. Dev. Biol.
4
,
555
-
571
.
Shigenaga
,
A. M.
and
Argueso
,
C. T.
(
2016
).
No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens
.
Semin. Cell Dev. Biol.
56
,
174
-
189
.
Siddique
,
S.
,
Radakovic
,
Z. S.
,
De La Torre
,
C. M.
,
Chronis
,
D.
,
Novák
,
O.
,
Ramireddy
,
E.
,
Holbein
,
J.
,
Matera
,
C.
,
Hütten
,
M.
,
Gutbrod
,
P.
, et al. 
(
2015
).
A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants
.
Proc. Natl. Acad. Sci. USA
112
,
12669
-
12674
.
Spichal
,
L.
,
Rakova
,
N. Y.
,
Riefler
,
M.
,
Mizuno
,
T.
,
Romanov
,
G. A.
,
Strnad
,
M.
and
Schmülling
,
T.
(
2004
).
Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay
.
Plant Cell Physiol.
45
,
1299
-
1305
.
Stock
,
A. M.
,
Robinson
,
V. L.
and
Goudreau
,
P. N.
(
2000
).
Two-component signal transduction
.
Annu. Rev. Biochem.
69
,
183
-
215
.
Sun
,
J.
,
Hirose
,
N.
,
Wang
,
X.
,
Wen
,
P.
,
Xue
,
L.
,
Sakakibara
,
H.
and
Zuo
,
J.
(
2005
).
Arabidopsis SOI33/AtENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in planta
.
J. Integr. Plant Biol.
47
,
588
-
603
.
Suzuki
,
T.
,
Imamura
,
A.
,
Ueguchi
,
C.
and
Mizuno
,
T.
(
1998
).
Histidine-containing phosphotransfer (HPt) signal transducers Implicated in His-to-Asp phosphorelay in Arabidopsis
.
Plant Cell Physiol.
39
,
1258
-
1268
.
Suzuki
,
T.
,
Zakurai
,
K.
,
Imamura
,
A.
,
Nakamura
,
A.
,
Ueguchi
,
C.
and
Mizuno
,
T.
(
2000
).
Compilation and characterization of histidine-containing phosphotransmitters implicated in His-to-Asp phosphorelay in plants: AHP signal transducers of Arabidopsis thaliana
.
Biosci. Biotechnol. Biochem.
64
,
2482
-
2485
.
Suzuki
,
T.
,
Miwa
,
K.
,
Ishikawa
,
K.
,
Yamada
,
H.
,
Aiba
,
H.
and
Mizuno
,
T.
(
2001
).
The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins
.
Plant Cell Physiol.
42
,
107
-
113
.
Takei
,
K.
,
Sakakibara
,
H.
and
Sugiyama
,
T.
(
2001
).
Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana
.
J. Biol. Chem.
276
,
26405
-
26410
.
Takei
,
K.
,
Ueda
,
N.
,
Aoki
,
K.
,
Kuromori
,
T.
,
Hirayama
,
T.
,
Shinozaki
,
K.
,
Yamaya
,
T.
and
Sakakibara
,
H.
(
2004a
).
AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis
.
Plant Cell Physiol.
45
,
1053
-
1062
.
Takei
,
K.
,
Yamaya
,
T.
and
Sakakibara
,
H.
(
2004b
).
Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin
.
J. Biol. Chem.
279
,
41866
-
41872
.
Taniguchi
,
M.
,
Kiba
,
T.
,
Sakakibara
,
H.
,
Ueguchi
,
C.
,
Mizuno
,
T.
and
Sugiyama
,
T.
(
1998
).
Expression of Arabidopsis response regulator homologs is induced by cytokinins and nitrate
.
FEBS Lett.
429
,
259
-
262
.
Taniguchi
,
M.
,
Sasaki
,
N.
,
Tsuge
,
T.
,
Aoyama
,
T.
and
Oka
,
A.
(
2007
).
ARR1 directly activates cytokinin response genes that encode proteins with diverse regulatory functions
.
Plant Cell Physiol.
48
,
263
-
277
.
To
,
J. P. C.
,
Deruère
,
J.
,
Maxwell
,
B. B.
,
Morris
,
V. F.
,
Hutchison
,
C. E.
,
Schaller
,
G. E.
and
Kieber
,
J. J.
(
2007
).
Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay
.
Plant Cell
19
,
3901
-
3914
.
Ueguchi
,
C.
,
Sato
,
S.
,
Kato
,
T.
and
Tabata
,
S.
(
2001
).
The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana
.
Plant Cell Physiol.
42
,
751
-
755
.
Wang
,
J.
,
Tian
,
C.
,
Zhang
,
C.
,
Shi
,
B.
,
Cao
,
X.
,
Zhang
,
T.-Q.
,
Zhao
,
Z.
,
Wang
,
J.-W.
and
Jiao
,
Y.
(
2017
).
Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation
.
Plant Cell
29
,
1373
-
1387
.
Werner
,
T.
,
Motyka
,
V.
,
Strnad
,
M.
and
Schmülling
,
T.
(
2001
).
Regulation of plant growth by cytokinin
.
Proc. Natl. Acad. Sci. USA
98
,
10487
-
10492
.
Werner
,
T.
,
Motyka
,
V.
,
Laucou
,
V.
,
Smets
,
R.
,
Van Onckelen
,
H.
and
Schmulling
,
T.
(
2003
).
Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity
.
Plant Cell
15
,
2532
-
2550
.
Werner
,
T.
,
Köllmer
,
I.
,
Bartrina
,
I.
,
Holst
,
K.
and
Schmülling
,
T.
(
2006
).
New insights into the biology of cytokinin degradation
.
Plant Biol. (Stuttg.)
8
,
371
-
381
.
Werner
,
T.
,
Nehnevajova
,
E.
,
Köllmer
,
I.
,
Novák
,
O.
,
Strnad
,
M.
,
Krämer
,
U.
and
Schmülling
,
T.
(
2010
).
Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco
.
Plant Cell
22
,
3905
-
3920
.
Wigge
,
P. A.
,
Kim
,
M. C.
,
Jaeger
,
K. E.
,
Busch
,
W.
,
Schmid
,
M.
,
Lohmann
,
J. U.
and
Weigel
,
D.
(
2005
).
Integration of spatial and temporal information during floral induction in Arabidopsis
.
Science
309
,
1056
-
1059
.
Wormit
,
A.
,
Traub
,
M.
,
Flörchinger
,
M.
,
Neuhaus
,
H. E.
and
Möhlmann
,
T.
(
2004
).
Characterization of three novel members of the Arabidopsis thaliana equilibrative nucleoside transporter (ENT) family
.
Biochem. J.
383
,
19
-
26
.
Wulfetange
,
K.
,
Lomin
,
S. N.
,
Romanov
,
G. A.
,
Stolz
,
A.
,
Heyl
,
A.
and
Schmülling
,
T.
(
2011
).
The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum
.
Plant Physiol.
156
,
1808
-
1818
.
Yamada
,
H.
,
Suzuki
,
T.
,
Terada
,
K.
,
Takei
,
K.
,
Ishikawa
,
K.
,
Miwa
,
K.
,
Yamashino
,
T.
and
Mizuno
,
T.
(
2001
).
The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane
.
Plant Cell Physiol.
41
,
1017
-
1023
.
Yokoyama
,
A.
,
Yamashino
,
T.
,
Amano
,
Y.-I.
,
Tajima
,
Y.
,
Imamura
,
A.
,
Sakakibara
,
H.
and
Mizuno
,
T.
(
2007
).
Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana
.
Plant Cell Physiol.
48
,
84
-
96
.
Yuan
,
L.
,
Liu
,
Z.
,
Song
,
X.
,
Johnson
,
C.
,
Yu
,
X.
and
Sundaresan
,
V.
(
2016
).
The CKI1 histidine kinase specifies the female gametic precursor of the endosperm
.
Dev. Cell
37
,
34
-
46
.
Zalabák
,
D.
,
Galuszka
,
P.
,
Mrízová
,
K.
,
Podlešáková
,
K.
,
Gu
,
R.
and
Frébortová
,
J.
(
2014
).
Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes
.
Plant Physiol. Biochem.
74
,
283
-
293
.
Zhang
,
K.
,
Novak
,
O.
,
Wei
,
Z.
,
Gou
,
M.
,
Zhang
,
X.
,
Yu
,
Y.
,
Yang
,
H.
,
Cai
,
Y.
,
Strnad
,
M.
and
Liu
,
C.-J.
(
2014
).
Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins
.
Nat. Commun.
5
,
3274
.
Zhang
,
T.-Q.
,
Lian
,
H.
,
Zhou
,
C.-M.
,
Xu
,
L.
,
Jiao
,
Y.
and
Wang
,
J.-W.
(
2017
).
A two-step model for de novo activation of WUSCHEL during plant shoot regeneration
.
Plant Cell
29
,
1073
-
1087
.
Zubo
,
Y.
,
Blakley
,
I. C.
,
Yamburenko
,
M.
,
Worthen
,
J. M.
,
Street
,
I.
,
Franco-Zorrilla
,
J. M.
,
Zhang
,
W.
,
Hill
,
K.
,
Raines
,
T.
,
Solano
,
R.
, et al. 
(
2017
).
Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis
.
Proc. Natl. Acad. Sci. USA
114
,
E5995
-
E6004
.
Zürcher
,
E.
and
Müller
,
B.
(
2016
).
Cytokinin synthesis, signaling, and function—advances and new insights
.
Int. Rev. Cell Mol. Biol.
324
,
1
-
38
.
Zürcher
,
E.
,
Liu
,
J.
,
di Donato
,
M.
,
Geisler
,
M.
and
Müller
,
B.
(
2016
).
Plant development regulated by cytokinin sinks
.
Science
353
,
1027
-
1030
.

Competing interests

The authors declare no competing or financial interests.

Supplementary information