Robust growth termination is essential to ensure that organs reach their correct size and grow no further. The precise mechanism of growth termination and the relative contributions of reduced cell proliferation and increased cell differentiation are elusive, and it is not known to what extent these mechanisms may be conserved in different evolutionary contexts. In this issue (p. 1482), Dagmar Iber, Fernando Casares and colleagues combine quantitative three-dimensional measurements with mathematical modelling to investigate growth dynamics in the Drosophila eye disc. The authors show that, much as in other organs and species, the growth rate declines continuously in the eye disc. Moreover, they computationally evaluate how well different candidate growth laws fit with the observed kinetics of organ growth and differentiation, and find that both an exponential and an area-dependent decline in the growth rate fit the data, although the latter offers the most parsimonious explanation. By testing this model prediction in a Drosophila strain with smaller eyes, they confirm experimentally that the area growth rate declines in inverse proportion to the total eye disc area, even when the growth rates and relative areas are very different. The area-dependent growth mechanism proposed by the authors is an alternative model to explain the still unresolved issue of how organs know when to stop, and to stop consistently.
New model for organ growth termination
New model for organ growth termination. Development 1 May 2016; 143 (9): e0903. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. August featured the Nichols lab at the University of Edinburgh, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.