Hematopoietic stem cells (HSCs) give rise to all cells of the adult blood system, and understanding how these cells first arise during embryogenesis is important for developing regenerative medicine-based strategies for producing HSCs in vitro. Here, David Traver and colleagues demonstrate that Gata2b acts as an early regulator of zebrafish hematopoietic precursors (p. 1050). The zebrafish genome contains two Gata2 orthologues – gata2a and gata2b – and the researchers show that gata2b is expressed in a distinct subpopulation of endothelial cells within the dorsal aorta (DA), which gives rise to HSCs; gata2a in contrast is expressed throughout the DA. This expression of gata2b is Notch-dependent and occurs prior to the expression of runx1, which to date has served as an early marker of zebrafish HSCs. Using lineage tracing, the researchers further show that gata2b-expressing cells give rise to adult HSCs. Finally, knockdown studies indicate that gata2b is required for the formation of functional HSCs. In summary, this study reveals that Gata2b functions as an early marker and regulator of HSCs, prompting further studies into the role of Gata2 during HSC emergence.
Gata2b: an early regulator of HSC emergence
Gata2b: an early regulator of HSC emergence. Development 15 March 2015; 142 (6): e0603. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. September featured the Kerosuo lab at the National Institute of Dental and Craniofacial Research, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.