Cardiac progenitor cells differentiate into multiple cell types that make up the functional heart: cardiomyocytes (CMs), smooth muscle cells (SMCs), endothelial cells (EDCs) and fibroblasts. These lineage decisions can be modelled by differentiation of embryonic stem cells (ESCs), but it is not fully clear how closely these in vitro systems reflect in vivo developmental progression, or how much variability there is within the progenitor population – either in culture or in the embryo. On p. 846, Sean Wu and co-workers use single-cell quantitative PCR and lineage-tracing assays on embryonic and adult mouse cardiac cells, as well as mouse ESCs differentiated down the cardiac lineage, to define a gene expression signature for each of the various cell types. Amongst the wealth of data generated, a number of key findings emerge. Firstly, the authors find that ESC-derived CMs closely resemble embryonic and neonatal endogenous CMs, but adult CMs diverge. Secondly, embryonic and ESC-derived cardiac progenitors show different potential: both generate CMs, but embryonic cells can differentiate to EDCs while ESC-derived progenitors produce SMCs. These data demonstrate the power of the single-cell profiling approach and provide valuable insights into lineage choices during cardiac development.
Getting to the heart of heart cell identity
Getting to the heart of heart cell identity. Development 1 March 2015; 142 (5): e0504. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. August featured the Nichols lab at the University of Edinburgh, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.