Unlike somatic cells, the nucleus of the oocyte and very early embryo contains a morphologically distinct nucleolus called the nucleolus precursor body (NPB). Although this enigmatic structure has been shown to be essential for normal mammalian development, its precise function remains unclear. In this issue, Helena Fulka and Alena Langerova now demonstrate (p. 1694) a crucial role for the NPB in regulating major and minor satellite DNA sequences and chromosome dynamics in the mouse. Absence of the NPB during the first embryonic cell cycle causes a significant reduction in satellite DNA sequences, and the authors also observe extensive chromosome bridging of these sequences during the first embryonic mitosis. The authors further demonstrate that the NPB is unlikely to be involved in ribosomal gene activation and processing as previously believed, since this process can still occur in NPB-depleted early embryos. This study uncovers an interesting and novel role for the NPB in early embryogenesis.
Nucleolus precursor body makeover
- Split-screen
- Views Icon Views
-
Article Versions Icon
Versions
- Version of Record 15 April 2014
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Nucleolus precursor body makeover. Development 15 April 2014; 141 (8): 1601. doi:
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.