Chemokines are a group of small, secreted molecules that signal through G protein-coupled receptors to promote cell survival and proliferation and to provide directional guidance to migrating cells. CXCL12 is one of the most evolutionary conserved chemokines and signals through the chemokine receptor CXCR4 to guide cell migration during embryogenesis, immune cell trafficking and cancer metastasis. Here and in the accompanying poster, we provide an overview of chemokine signaling, focusing on CXCL12, and we highlight some of the different chemokine-dependent strategies used to guide migrating cells.

Chemokines, or chemotactic cytokines, were initially discovered for their role in attracting immune cells to sites of inflammation (Oppenheim et al., 1991). However, subsequent studies have shown that chemokine signaling also guides the migration of neurons, neural crest cells and germ cells during embryonic development, regulates the patterning and remodeling of the vascular system, and attracts cancer cells to distant sites during metastasis (Lewellis and Knaut, 2012; Mayor and Theveneau, 2013; Raz, 2003; Bussmann et al., 2011; Cha et al., 2012; Cojoc et al., 2013; Orimo et al., 2005; Petit et al., 2007; Siekmann et al., 2009). To date, more than 50 chemokine ligands and 18 chemokine receptors have been described in human and mouse. Chemokine ligands are classified according to structure; most contain four cysteine residues that form two disulfide bridges, and they are divided into four classes based on the spacing between the first two of these cysteine residues: CC, CXC, CX3C and XC (Bachelerie et al., 2014). Chemokine receptors, which belong to the seven-transmembrane G protein-coupled receptor (GPCR) family, are named according to the class of chemokine ligand to which they bind. For example, the CXCR4 and CXCR7 receptors bind the chemokine CXCL12 (also known as stromal derived factor 1 or SDF1) (Balabanian et al., 2005; Bleul et al., 1996a; Burns et al., 2006), and the CCR7 receptor binds CCL19 and CCL21 (Yoshida et al., 1997, 1998). Most chemokine receptors couple to G proteins (Allen et al., 2007), although a few act independently of G proteins and are instead thought to act as chemokine scavenger receptors or to signal through β-arrestin (Nibbs and Graham, 2013).

Chemokines are specific to vertebrates. Phylogenetic analyses suggest that basal chordates (cephalochordates and tunicates) lack chemokines, but that they are present in jawless fishes and higher vertebrates (Bajoghli, 2013; DeVries et al., 2006). In higher vertebrates, chemokines have expanded in number, such that even closely related species like human and mouse differ in their repertoire of chemokine ligands (Nomiyama et al., 2012). One of the most evolutionarily conserved chemokine signaling axes is the CXCL12/CXCR4/CXCR7 system, which has orthologs in vertebrate species ranging from jawless fishes to humans (DeVries et al., 2006). Here and in the accompanying poster, we use the CXCL12/CXCR4/CXCR7 system to provide an overview of general chemokine signaling strategies during development and in the context of cancer metastasis.

CXCL12 binds to CXCR4 to activate a number of downstream signaling cascades primarily mediated through heterotrimeric G proteins and β-arrestins. G proteins are composed of three subunits: Gα, Gβ and Gγ. Ligand binding leads to the exchange of GDP for GTP in the Gα subunit, resulting in dissociation of the trimer into an active GTP-bound Gα and a Gβγ dimer. Activated G proteins signal through the phosphoinositide-3 kinase (PI3K)/Akt, inositol-1,4,5-trisphosphate (IP3), mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) pathways to converge on growth-promoting pathways or to promote migration through the mobilization of intracellular calcium (Cojoc et al., 2013). In addition to signaling through G proteins, activated receptors recruit β-arrestin, which can lead to G protein-independent activation of Akt and ERK1/2.

The duration of CXCR4 signaling is regulated on two levels. First, receptor-ligand binding leads to the phosphorylation of CXCR4 by PKC and G protein-coupled receptor kinases (GRKs) (Busillo et al., 2010; Mueller et al., 2013). Phosphorylated receptors are rapidly internalized by β-arrestin and ubiquitylated by the E3 ligase AIP4, which targets them for lysosomal degradation (Marchese and Benovic, 2001; Marchese et al., 2003). Thus, CXCL12 signaling reduces CXCR4 receptor levels in CXCR4-expressing tissues (Donà et al., 2013; Sánchez-Alcañiz et al., 2011; Venkiteswaran et al., 2013). Second, regulators of G protein signaling (RGS) proteins enhance the GTPase activity of the Gα subunit, promoting GTP hydrolysis. The resulting GDP-bound Gα re-associates with the Gβγ dimer to return to an inactive state (Cojoc et al., 2013). Both mechanisms lead to the termination of signaling.

In addition to binding to CXCR4, CXCL12 binds to the non-canonical CXCR7 receptor. Depending on the context, CXCL12-CXCR7 binding is thought to result in two different responses: ligand internalization followed by ligand degradation (chemokine clearance), and β-arrestin-mediated G protein-independent signaling. Several observations support a role for CXCR7 in chemokine clearance. For example, CXCR7 does not associate with heterotrimeric G proteins, and ligand binding does not evoke calcium influx (Burns et al., 2006; Hoffmann et al., 2012). In addition, CXCR7 binds CXCL12 with a ten times higher affinity than CXCR4, and the receptor is rapidly recycled back to the plasma membrane upon ligand-induced internalization (Burns et al., 2006). These observations suggest that CXCR7 can act as an efficient chemokine sink because it can successfully compete with CXCR4 for access to the ligand, and a single receptor can undergo multiple rounds of ligand-induced internalization to target CXCL12 for degradation. G-protein-independent signaling through β-arrestins has also been demonstrated in several systems, including in interneurons, where CXCR7 elicits pERK signaling to modulate cell fate (Vogt et al., 2014; Wang et al., 2011).

As CXCR4 and CXCR7 both interact with β-arrestins, the relative levels of these two receptors in a cell can influence whether downstream signaling is preferentially mediated through β-arrestin-linked pathways or through G protein pathways (Coggins et al., 2014; Decaillot et al., 2011; Sierro et al., 2007). Moreover, CXCL12 can bind to CXCR4 as a monomer or as a dimer in vitro. Monomeric CXCL12 induces calcium influx and chemotaxis, whereas dimeric CXCL12 also induces calcium influx but lacks chemotactic activity (Drury et al., 2011; Veldkamp, 2005; Veldkamp et al., 2008). As higher ligand concentrations favor ligand dimerization, this suggests that the concentration of CXCL12 in the extracellular space could regulate which downstream signaling pathways are activated by CXCL12 binding to CXCR4 and CXCR7.

CXCL12 guides many migrating cells and tissues, acting as an attractant to recruit or retain migrating cells. Cells migrating singly, such as primordial germ cells (PGCs) (Ara et al., 2003; Doitsidou et al., 2002; Knaut et al., 2003; Molyneaux et al., 2003), lymphocytes (Bleul et al., 1996a,b; Ma et al., 1998; Nagasawa et al., 1996; Zou et al., 1998), gonadotropin-releasing hormone (GnRH) neurons (Schwarting, 2006), endothelial precursor cells (Li et al., 2012), cardiomyocytes during heart regeneration (Itou et al., 2012), interneurons (Li et al., 2008; López-Bendito et al., 2008; Stumm et al., 2003; Tiveron et al., 2006), granule cells in the cerebellum and dentate gyrus (Bagri et al., 2002; Lu et al., 2002; Ma et al., 1998; Reiss et al., 2002; Zhu et al., 2002; Zou et al., 1998) and hematopoietic stem cells (HSCs) (Kawabata et al., 1999; Nie et al., 2008; Peled, 1999; Sugiyama et al., 2006; Tzeng et al., 2011), rely on CXCL12 to reach their target or remain at a distinct location. Similarly, cells migrating in small groups or as tissues, such as trigeminal sensory neurons (Knaut et al., 2005), sprouting blood vessels (Bussmann et al., 2011; Siekmann et al., 2009), the posterior lateral line primordium (pLLP) (David et al., 2002), the endoderm (Mizoguchi et al., 2008; Nair and Schilling, 2008) and some cancer cells, also use CXCL12 for guidance (Müller et al., 2001). Below, we outline several of these examples of CXCL12-mediated cell migration to highlight the conceptually different ways in which organisms employ CXCL12 to guide migrating cells and tissues.

Angiogenesis

Endothelial precursor cells (EPCs, or angioblasts) are migratory cells that form blood vessels. In mice, a subset of EPCs expresses CXCR4 and, in response to CXCL12, migrates towards target tissues, where the EPCs then differentiate and form new blood vessels (Li et al., 2012). This process occurs during embryonic development, in response to ischemia or wound repair in adults and during blood vessel formation in cancer (Li et al., 2012; Moschetta et al., 2014; Schmidt et al., 2007). During mouse development, for example, CXCR4-mediated CXCL12 signaling is required to guide EPCs during the formation of the aorta (Schmidt et al., 2007). In ischemic tissues in adult mice, low oxygen stabilizes the transcription factor hypoxia-inducible factor 1α (HIF-1α), which upregulates CXCL12 expression to recruit EPCs (Petit et al., 2007). Similarly, many cancers induce the expression of CXCL12 in stromal fibroblasts to attract EPCs to form new vessels, which provide oxygen to the growing tumor (Orimo et al., 2005).

Cortical interneuron migration

Cortical interneurons are a population of inhibitory neurons that mediate synaptic inhibition to shape cortical networks and support many brain functions. During mouse embryonic development, they migrate from their birthplace on the ventral side of the forebrain to the cortex and then undergo tangential migration, migrating in parallel to the cortical surface to distribute themselves throughout the cortex before undergoing radial migration to arrange themselves in specific cortical layers (Marín and Rubenstein, 2003). During tangential migration, cortical interneurons express both CXCR4 and CXCR7 (Daniel et al., 2005; Ray et al., 2012; Sánchez-Alcañiz et al., 2011; Stumm et al., 2007) and move towards sources of CXCL12 (Li et al., 2008), and CXCR4 signaling is necessary for this migration (Li et al., 2008; López-Bendito et al., 2008; Stumm et al., 2003; Tiveron et al., 2006).

Primordial germ cell (PGC) migration

PGCs, which give rise to sperm and eggs, are specified early during embryonic development and migrate from their birthplace in the early embryo to the future site of the gonad (Raz, 2003). The dynamic environment of the developing embryo provides a challenge for guiding germ cells because tissues are constantly moving and growing, potentially altering the distribution of guidance cues. In mice and zebrafish, PGCs express the CXCR4 or zf Cxcr4b receptor (zebrafish genes/proteins will be indicated by the prefix zf), respectively, and closely follow dynamically changing sources of CXCL12/zf Cxcl12a (Ara et al., 2003; Doitsidou et al., 2002; Knaut et al., 2003; Molyneaux et al., 2003). During PGC migration in zebrafish, changes in zf cxcl12a promoter activity are mirrored by similar dynamics on the transcript and protein level through microRNA-mediated zf cxcl12a transcript degradation (Staton et al., 2011), which remains controversial (Goudarzi et al., 2013; Staton et al., 2013), and through zf Cxcr7b-mediated zf Cxcl12a protein clearance (Boldajipour et al., 2008).

Trigeminal neuron migration

Trigeminal sensory neurons form the fifth cranial nerve, which relays sensory input from the face. They are born anterior to the midbrain-hindbrain boundary (MHB) as single dispersed cells. In zebrafish, these neurons, which express zf Cxcr4b, migrate in response to zf Cxcl12a and Cxcl12b (collectively referred to as zf Cxcl12) to assemble into a tight ganglion posterior to the MHB (Knaut et al., 2005). Although trigeminal sensory neurons encounter several zf Cxcl12-expressing tissues during their migration, they ignore them and only follow the zf Cxcl12 domain at the ganglion assembly site. This process requires tight control of the distribution of zf Cxcl12a through microRNA-mediated zf cxcl12a transcript degradation and through zf Cxcr7b-mediated zf Cxcl12a protein clearance (Lewellis et al., 2013).

Hematopoietic stem cell (HSC) trafficking

HSCs are adult stem cells that give rise to the entire blood lineage, including immune cells, red blood cells and platelets. They transit between the bone marrow and peripheral blood vessels, although the majority is located in the bone marrow (Bhattacharya et al., 2009; Wright et al., 2001). HSCs in mice and humans express CXCR4. They are attracted to their niche in the bone marrow by CXCL12 that perivascular cells secrete (Ding and Morrison, 2013; Greenbaum et al., 2013). CXCL12 levels in the bone marrow thus correlate with HSC levels; CXCL12 production in perivascular cells is higher during periods of rest – daytime for mice or nighttime for humans – and therefore there are one-fifth as many HSCs in the peripheral blood during periods of rest compared with periods of high activity (Méndez-Ferrer et al., 2008).

Posterior lateral line primordium (pLLP) migration

The lateral line system in fish is composed of a collection of neuromasts that detect the direction of water flow. The initial set of neuromasts is deposited by migrating primordia. One such primordium is the zebrafish pLLP, a collective of ∼100 cells that is born behind the ear and migrates along the body to the tip of the tail, periodically depositing neuromasts along its route (Ghysen and Dambly-Chaudière, 2007). Although zf cxcr4b transcripts are enriched in the front of the primordium (Aman and Piotrowski, 2008; David et al., 2002), zf Cxcr4b protein is expressed in all cells in the primordium (Donà et al., 2013; Venkiteswaran et al., 2013). By contrast, zf Cxcr7a and zf Cxcr7b are only expressed in the cells in the rear of the primordium (Valentin et al., 2007; Venkiteswaran et al., 2013). The zf Cxcl12a clearance activity of the two zf Cxcr7 paralogs serves as a local chemokine sink and generates a zf Cxcl12a concentration gradient across the primordium, providing it with directionality and propelling it forward (Donà et al., 2013; Venkiteswaran et al., 2013).

Cancer metastasis

It has long been noted that certain types of cancer cells metastasize to specific sites in the body (Paget, 1889). For example, human breast cancers commonly metastasize to bone marrow, lung, liver and brain (Nguyen et al., 2009). These sites of metastases often naturally express the cognate ligands for the chemokine receptors that are upregulated by the cancer cells. For example, breast cancer cells frequently upregulate CXCR4 and CCR7, and metastasize to organs expressing the respective CXCL12 or CCL19 and CCL21 ligands (Müller et al., 2001). Similar to immune cell trafficking, metastasizing cancer cells are thought to passively circulate in the vasculature until encountering a local chemokine source. Chemokine signaling is also thought to increase the affinity of cancer cells for endothelial cells and promote blood vessel extravasation and tissue invasion.

Providing guidance to migrating cells poses many challenges to the organism. A limited number of cues guide hundreds of cells, and different types of cells with different destinations often migrate at the same time and in close proximity to one another. Moreover, cells often need to navigate over long distances and through dynamic environments. As we discuss below, the organism handles these challenges by tailoring the availability of the guidance cues to specific cell migration events.

Chemokine ligand availability, the availability of CXCL12 in this case, can be regulated on two different levels: production and distribution. Although there is no evidence for regulation of CXCL12 secretion, some CXCL12 expression domains are very dynamic, suggesting tight control of CXCL12 promoter activity and CXCL12 transcript stability. Indeed, CXCL12 transcripts are subject to microRNA-mediated degradation, and this has been shown to expedite transcript clearance from former sites of chemokine expression (Lewellis et al., 2013; Staton et al., 2011). Meanwhile, the distribution of CXCL12 is controlled by CXCL12 binding partners, CXCL12-inactivating proteins and CXCR7 receptor-mediated ligand clearance. Binding partners affect the spread of CXCL12; within a given time frame strong binding restricts CXCL12 to its source tissue such that it can only signal over a short range, whereas weak or no binding allows CXCL12 to diffuse and signal over a longer range. However, little is known about CXCL12 binding partners. In vitro, CXCL12 binds to heparan sulfate proteoglycans (Laguri et al., 2008), suggesting that the distribution of extracellular matrix components could restrict the distribution of CXCL12 in vivo. Moreover, different mouse alternative splice isoforms of CXCL12 have been demonstrated to have different affinities for heparan sulfate, presumably resulting in different diffusion and signaling ranges (Laguri et al., 2007). Inactivating proteins affect the range of CXCL12 signaling by reducing ligand half-life. Several proteases, including matrix metalloprotease 2 (MMP-2), neutrophil elastase and dipeptidylpeptidase 4 (DPP-4 or CD26), have been shown to cleave CXCL12 in vitro (McQuibban et al., 2001; Sun et al., 2008; Valenzuela-Fernández et al., 2002), suggesting that these enzymes could also control the activity of CXCL12 in vivo. Receptor-mediated CXCL12 clearance locally refines chemokine distribution and levels or acts globally to reduce CXCL12 perdurance. For example, CXCR7-mediated CXCL12 clearance is emerging as a mechanism for regulating ligand distribution (Abe et al., 2014; Boldajipour et al., 2008; Donà et al., 2013; Lewellis et al., 2013; Memi et al., 2013; Sánchez-Alcañiz et al., 2011; Venkiteswaran et al., 2013). CXCR7 binds, internalizes and targets CXCL12 for degradation, and this clearance function is used in a number of ways to sculpt the distribution of CXCL12.

Different combinations of the above mechanisms are used to regulate CXCL12-guided cell migration during development. In its simplest form, CXCL12 is expressed by the target tissue and diffuses to form a gradient that attracts cells. This classical mode of chemotaxis might underlie zebrafish olfactory placode assembly and olfactory axon targeting (Miyasaka et al., 2007). A variation of this mechanism is used to guide zebrafish PGCs and trigeminal sensory neurons; these cells closely follow a shifting zf Cxcl12a expression domain that progressively guides them towards their destination (Boldajipour et al., 2008; Lewellis et al., 2013; Staton et al., 2011). MicroRNA-mediated zf cxcl12a transcript clearance and zf Cxcr7b-mediated zf Cxcl12a clearance from past sites of zf cxcl12a expression are thought to ensure that the dynamic changes in zf cxcl12a transcription are mirrored by similar changes at the protein level (Boldajipour et al., 2008; Lewellis et al., 2013; Staton et al., 2011). In this context, the migrating cells remain closely associated with the rapidly shifting zf cxcl12a expression domain such that they rarely encounter other zf Cxcl12 sources that could erroneously guide them to the wrong location.

Although it is also a directed migration event, the guidance of the zebrafish pLLP is conceptually different. This cohort of cells migrates along a stripe of zf Cxcl12a expression (David et al., 2002). The cells in the rear of the primordium express zf Cxcr7 paralogs and clear zf Cxcl12a, generating a local zf Cxcl12a gradient across the collective to provide it with directionality (Donà et al., 2013; Venkiteswaran et al., 2013). Biophysical considerations suggest that a simple source-sink mechanism cannot establish a stable gradient over more than a few hundred microns within a reasonable time frame (Crick, 1970), thus seemingly precluding long-range directed migration. Self-generated attractant gradients sculpted from a uniform stripe of attractant bypass this physical limitation, allowing for long-range directed migration limited only by the length of the attractant stripe. In theory, a singly migrating cell could employ a similar mechanism by sorting CXCR7 to its rear to reinforce an existing gradient or to generate a new gradient across itself. Migrating Dictyostelium cells use this strategy, albeit with a different signaling system, secreting a phosphodiesterase to inactivate the attractant cAMP behind them (Garcia et al., 2009).

An alternative use for constitutive CXCL12 expression is to retain cells in a certain location or to trap cells that pass by. For example, CXCL12 acts as a retention signal for external germinal layer cells in the mouse cerebellum, and it is thought that inhibiting CXCR4 signaling allows these cells to escape retention (Lu et al., 2001; Zhu et al., 2002). A possible role for CXCR7 in escaping the retention of CXCL12 has not been reported. However, it has been suggested that downregulation of CXCR7 expression in the cortical plate and in cortical interneurons allows these interneurons to switch from tangential to radial migration by desensitizing them to CXCL12 attraction (Wang et al., 2011).

Opposite to escaping retention, in the case of HSCs and metastasizing cancer cells, local sources of CXCL12 are thought to trap cells that pass by the chemokine-expressing tissue and retain them (Anders et al., 2014; Zlotnik et al., 2011). Additionally, migrating cells can use CXCR7 to adjust their sensitivity to levels of CXCL12 in their surroundings. Tangentially migrating interneurons use this mechanism to maintain CXCL12 at a low enough concentration around them to prevent complete internalization and degradation of CXCR4 and to remain sensitive to the chemokine (Abe et al., 2014; Sánchez-Alcañiz et al., 2011).

Theoretically, this mechanism could also be used to ensure dispersal of migrating cells across a CXCL12-expressing tissue: a local reduction in CXCL12 levels, mediated by CXCR7-expressing migrating cells, will create a local dip in chemokine levels such that cells will move away from one another towards higher CXCL12 concentrations.

Attractant gradients do not need to be generated solely through the diffusion of the attractant from a local source. Graded binding or graded expression of the attractant can also generate an attractant gradient to guide migrating cells. This mechanism seems to be used by migrating dendritic cells, which crawl up an immobilized gradient of CCL21 (Weber et al., 2013), and by GnRH neurons, which seem to follow a graded expression of CXCL12 (Schwarting, 2006). In the latter case, the graded expression of CXCL12 seems to be refined by an opposing graded expression of CXCR7 (Memi et al., 2013).

Finally, CXCL12 signaling can interact with other signaling pathways to guide migration events. For example, during zebrafish olfactory axon targeting, zf Cxcl12a seems to play a permissive rather than instructive role, which has led to the suggestion that it modulates the sensitivity of the axon growth cone to a nearby repulsive cue (Miyasaka et al., 2007).

Over the past decades, it has become clear that chemokines can act as attractants and form gradients to guide a plethora of migrating cells. Organisms solve the problem of guiding hundreds of cells with only a few cues by reusing the same guidance cues for multiple migration events. This requires careful control over the distribution of the guidance cue. More recent studies indicate that the precise control of chemokine production and diffusion can tailor chemokine availability to properly direct migrating cells. However, the mechanisms that control the production and diffusibility of chemokines remain largely unexplored. Moreover, it is not clear how migrating cells tune their chemokine receptors and downstream signaling pathways to the presence of chemokines. Finally, we lack a biophysical description of chemokine diffusion and cellular chemokine perception. Given the important role of chemokine signaling in immune system disorders (Zlotnik and Yoshie, 2012) and cancer (Dorsam and Gutkind, 2007; Zlotnik et al., 2011), and its emerging role in psychiatric disorders such as schizophrenia (Meechan et al., 2012; Toritsuka et al., 2013), an understanding of these issues is crucial. With advances in light microscopy and quantitative measurements, such fundamental questions should become addressable in the future.

We thank D. Nagelberg, G. Venkiteswaran, T. Colak, C. Nicholson, F. Schnorrer and the three anonymous reviewers for critical comments and insightful suggestions. We apologize to authors whose work we were unable to cite as a result of space constraints.

Funding

This work was supported by grants from the National Institutes of Health [NS069839 to H.K. and HD007520 to J.W.]. Deposited in PMC for release after 12 months.

Abe
,
P.
,
Mueller
,
W.
,
Schutz
,
D.
,
MacKay
,
F.
,
Thelen
,
M.
,
Zhang
,
P.
and
Stumm
,
R.
(
2014
).
CXCR7 prevents excessive CXCL12-mediated downregulation of CXCR4 in migrating cortical interneurons
.
Development
141
,
1857
-
1863
.
Allen
,
S. J.
,
Crown
,
S. E.
and
Handel
,
T. M.
(
2007
).
Chemokine: receptor structure, interactions, and antagonism
.
Annu. Rev. Immunol.
25
,
787
-
820
.
Aman
,
A.
and
Piotrowski
,
T.
(
2008
).
Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression
.
Dev. Cell
15
,
749
-
761
.
Anders
,
H.-J.
,
Romagnani
,
P.
and
Mantovani
,
A.
(
2014
).
Pathomechanisms: homeostatic chemokines in health, tissue regeneration, and progressive diseases
.
Trends Mol. Med.
20
,
154
-
165
.
Ara
,
T.
,
Nakamura
,
Y.
,
Egawa
,
T.
,
Sugiyama
,
T.
,
Abe
,
K.
,
Kishimoto
,
T.
,
Matsui
,
Y.
and
Nagasawa
,
T.
(
2003
).
Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1)
.
Proc. Natl. Acad. Sci. USA
100
,
5319
-
5323
.
Bachelerie
,
F.
,
Graham
,
G. J.
,
Locati
,
M.
,
Mantovani
,
A.
,
Murphy
,
P. M.
,
Nibbs
,
R.
,
Rot
,
A.
,
Sozzani
,
S.
and
Thelen
,
M.
(
2014
).
New nomenclature for atypical chemokine receptors
.
Nat. Publishing Group
15
,
207
-
208
.
Bagri
,
A.
,
Gurney
,
T.
,
He
,
X.
,
Zou
,
Y.-R.
,
Littman
,
D. R.
,
Tessier-Lavigne
,
M.
and
Pleasure
,
S. J.
(
2002
).
The chemokine SDF1 regulates migration of dentate granule cells
.
Development
129
,
4249
-
4260
.
Bajoghli
,
B.
(
2013
).
Evolution and function of chemokine receptors in the immune system of lower vertebrates
.
Eur. J. Immunol.
43
,
1686
-
1692
.
Balabanian
,
K.
,
Lagane
,
B.
,
Infantino
,
S.
,
Chow
,
K. Y. C.
,
Harriague
,
J.
,
Moepps
,
B.
,
Arenzana-Seisdedos
,
F.
,
Thelen
,
M.
and
Bachelerie
,
F.
(
2005
).
The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes
.
J. Biol. Chem.
280
,
35760
-
35766
.
Bhattacharya
,
D.
,
Czechowicz
,
A.
,
Ooi
,
A. G. L.
,
Rossi
,
D. J.
,
Bryder
,
D.
and
Weissman
,
I. L.
(
2009
).
Niche recycling through division-independent egress of hematopoietic stem cells
.
J. Exp. Med.
206
,
2837
-
2850
.
Bleul
,
C. C.
,
Farzan
,
M.
,
Choe
,
H.
,
Parolin
,
C.
,
Clark-Lewis
,
I.
,
Sodroski
,
J.
and
Springer
,
T. A.
(
1996a
).
The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry
.
Nature
382
,
829
-
833
.
Bleul
,
C. C.
,
Fuhlbrigge
,
R. C.
,
Casasnovas
,
J. M.
,
Aiuti
,
A.
and
Springer
,
T. A.
(
1996b
).
A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1)
.
J. Exp. Med.
184
,
1101
-
1109
.
Boldajipour
,
B.
,
Mahabaleshwar
,
H.
,
Kardash
,
E.
,
Reichman-Fried
,
M.
,
Blaser
,
H.
,
Minina
,
S.
,
Wilson
,
D.
,
Xu
,
Q.
and
Raz
,
E.
(
2008
).
Control of chemokine-guided cell migration by ligand sequestration
.
Cell
132
,
463
-
473
.
Burns
,
J. M.
,
Summers
,
B. C.
,
Wang
,
Y.
,
Melikian
,
A.
,
Berahovich
,
R.
,
Miao
,
Z.
,
Penfold
,
M. E. T.
,
Sunshine
,
M. J.
,
Littman
,
D. R.
,
Kuo
,
C. J.
, et al. 
(
2006
).
A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development
.
J. Exp. Med.
203
,
2201
-
2213
.
Busillo
,
J. M.
,
Armando
,
S.
,
Sengupta
,
R.
,
Meucci
,
O.
,
Bouvier
,
M.
and
Benovic
,
J. L.
(
2010
).
Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling
.
J. Biol. Chem.
285
,
7805
-
7817
.
Bussmann
,
J.
,
Wolfe
,
S. A.
and
Siekmann
,
A. F.
(
2011
).
Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling
.
Development
138
,
1717
-
1726
.
Cha
,
Y. R.
,
Fujita
,
M.
,
Butler
,
M.
,
Isogai
,
S.
,
Kochhan
,
E.
,
Siekmann
,
A. F.
and
Weinstein
,
B. M.
(
2012
).
Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature
.
Dev. Cell
22
,
824
-
836
.
Coggins
,
N. L.
,
Trakimas
,
D.
,
Chang
,
S. L.
,
Ehrlich
,
A.
,
Ray
,
P.
,
Luker
,
K. E.
,
Linderman
,
J. J.
and
Luker
,
G. D.
(
2014
).
CXCR7 controls competition for recruitment of β-Arrestin 2 in cells expressing both CXCR4 and CXCR7
.
PLoS ONE
9
,
e98328
.
Cojoc
,
M.
,
Peitzsch
,
C.
,
Trautmann
,
F.
,
Polishchuk
,
L.
,
Telegeev
,
G. D.
and
Dubrovska
,
A.
(
2013
).
Emerging targets in cancer management: role of the CXCL12/CXCR4 axis
.
Onco Targets Ther.
6
,
1347
-
1361
.
Crick
,
F.
(
1970
).
Diffusion in embryogenesis
.
Nature
225
,
420
-
422
.
Daniel
,
D.
,
Rossel
,
M.
,
Seki
,
T.
and
König
,
N.
(
2005
).
Stromal cell-derived factor-1 (SDF-1) expression in embryonic mouse cerebral cortex starts in the intermediate zone close to the pallial-subpallial boundary and extends progressively towards the cortical hem
.
Gene Expr. Patterns
5
,
317
-
322
.
David
,
N. B.
,
Sapède
,
D.
,
Saint-Etienne
,
L.
,
Thisse
,
C.
,
Thisse
,
B.
,
Dambly-Chaudière
,
C.
,
Rosa
,
F. M.
and
Ghysen
,
A.
(
2002
).
Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1
.
Proc. Natl. Acad. Sci. USA
99
,
16297
-
16302
.
Decaillot
,
F. M.
,
Kazmi
,
M. A.
,
Lin
,
Y.
,
Ray-Saha
,
S.
,
Sakmar
,
T. P.
and
Sachdev
,
P.
(
2011
).
CXCR7/CXCR4 heterodimer constitutively recruits-arrestin to enhance cell migration
.
J. Biol. Chem.
286
,
32188
-
32197
.
DeVries
,
M. E.
,
Kelvin
,
A. A.
,
Xu
,
L.
,
Ran
,
L.
,
Robinson
,
J.
and
Kelvin
,
D. J.
(
2006
).
Defining the origins and evolution of the chemokine/chemokine receptor system
.
J. Immunol.
176
,
401
-
415
.
Ding
,
L.
and
Morrison
,
S. J.
(
2013
).
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
.
Nature
495
,
231
-
235
.
Doitsidou
,
M.
,
Reichman-Fried
,
M.
,
Stebler
,
J.
,
Köprunner
,
M.
,
Dörries
,
J.
,
Meyer
,
D.
,
Esguerra
,
C. V.
,
Leung
,
T.
and
Raz
,
E.
(
2002
).
Guidance of primordial germ cell migration by the chemokine SDF-1
.
Cell
111
,
647
-
659
.
Donà
,
E.
,
Barry
,
J. D.
,
Valentin
,
G.
,
Quirin
,
C.
,
Khmelinskii
,
A.
,
Kunze
,
A.
,
Durdu
,
S.
,
Newton
,
L. R.
,
Fernandez-Minan
,
A.
,
Huber
,
W.
, et al. 
(
2013
).
Directional tissue migration through a self-generated chemokine gradient
.
Nature
503
,
285
-
289
.
Dorsam
,
R. T.
and
Gutkind
,
J. S.
(
2007
).
G-protein-coupled receptors and cancer
.
Nat. Rev. Cancer
7
,
79
-
94
.
Drury
,
L. J.
,
Ziarek
,
J. J.
,
Gravel
,
S.
,
Veldkamp
,
C. T.
,
Takekoshi
,
T.
,
Hwang
,
S. T.
,
Heveker
,
N.
,
Volkman
,
B. F.
and
Dwinell
,
M. B.
(
2011
).
Monomeric and dimeric CXCL12 inhibit metastasis through distinct CXCR4 interactions and signaling pathways
.
Proc. Natl. Acad. Sci. USA
108
,
17655
-
17660
.
Garcia
,
G. L.
,
Rericha
,
E. C.
,
Heger
,
C. D.
,
Goldsmith
,
P. K.
and
Parent
,
C. A.
(
2009
).
The group migration of Dictyostelium cells is regulated by extracellular chemoattractant degradation
.
Mol. Biol. Cell
20
,
3295
-
3304
.
Ghysen
,
A.
and
Dambly-Chaudière
,
C.
(
2007
).
The lateral line microcosmos
.
Genes Dev.
21
,
2118
-
2130
.
Goudarzi
,
M.
,
Strate
,
I.
,
Paksa
,
A.
,
Lagendijk
,
A.-K.
,
Bakkers
,
J.
and
Raz
,
E.
(
2013
).
On the robustness of germ cell migration and microRNA-mediated regulation of chemokine signaling
.
Nat. Genet.
45
,
1264
-
1265
.
Greenbaum
,
A.
,
Hsu
,
Y.-M. S.
,
Day
,
R. B.
,
Schuettpelz
,
L. G.
,
Christopher
,
M. J.
,
Borgerding
,
J. N.
,
Nagasawa
,
T.
and
Link
,
D. C.
(
2013
).
CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
.
Nature
495
,
227
-
230
.
Hoffmann
,
F.
,
Müller
,
W.
,
Schütz
,
D.
,
Penfold
,
M. E.
,
Wong
,
Y. H.
,
Schulz
,
S.
and
Stumm
,
R.
(
2012
).
Rapid uptake and degradation of CXCL12 depend on CXCR7 carboxyl-terminal serine/threonine residues
.
J. Biol. Chem.
287
,
28362
-
28377
.
Itou
,
J.
,
Oishi
,
I.
,
Kawakami
,
H.
,
Glass
,
T. J.
,
Richter
,
J.
,
Johnson
,
A.
,
Lund
,
T. C.
and
Kawakami
,
Y.
(
2012
).
Migration of cardiomyocytes is essential for heart regeneration in zebrafish
.
Development
139
,
4133
-
4142
.
Kawabata
,
K.
,
Ujikawa
,
M.
,
Egawa
,
T.
,
Kawamoto
,
H.
,
Tachibana
,
K.
,
Iizasa
,
H.
,
Katsura
,
Y.
,
Kishimoto
,
T.
and
Nagasawa
,
T.
(
1999
).
A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution
.
Proc. Natl. Acad. Sci. USA
96
,
5663
-
5667
.
Knaut
,
H.
,
Werz
,
C.
,
Geisler
,
R.
and
Nüsslein-Volhard
,
C.
;
Tübingen 2000 Screen Consortium
. (
2003
).
A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor
.
Nature
421
,
279
-
282
.
Knaut
,
H.
,
Blader
,
P.
,
Strähle
,
U.
and
Schier
,
A. F.
(
2005
).
Assembly of trigeminal sensory ganglia by chemokine signaling
.
Neuron
47
,
653
-
666
.
Laguri
,
C.
,
Sadir
,
R.
,
Rueda
,
P.
,
Baleux
,
F.
,
Gans
,
P.
,
Arenzana-Seisdedos
,
F.
and
Lortat-Jacob
,
H.
(
2007
).
The novel CXCL12γ isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4
.
PLoS ONE
2
,
e1110
.
Laguri
,
C.
,
Arenzana-Seisdedos
,
F.
and
Lortat-Jacob
,
H.
(
2008
).
Relationships between glycosaminoglycan and receptor binding sites in chemokines—the CXCL12 example
.
Carbohydr. Res.
343
,
2018
-
2023
.
Lewellis
,
S. W.
and
Knaut
,
H.
(
2012
).
Attractive guidance: how the chemokine SDF1/CXCL12 guides different cells to different locations
.
Semin. Cell Dev. Biol.
23
,
333
-
340
.
Lewellis
,
S. W.
,
Nagelberg
,
D.
,
Subedi
,
A.
,
Staton
,
A.
,
LeBlanc
,
M.
,
Giraldez
,
A.
and
Knaut
,
H.
(
2013
).
Precise SDF1-mediated cell guidance is achieved through ligand clearance and microRNA-mediated decay
.
J. Cell Biol.
200
,
337
-
355
.
Li
,
G.
,
Adesnik
,
H.
,
Li
,
J.
,
Long
,
J.
,
Nicoll
,
R. A.
,
Rubenstein
,
J. L. R.
and
Pleasure
,
S. J.
(
2008
).
Regional distribution of cortical interneurons and development of inhibitory tone are regulated by Cxcl12/Cxcr4 signaling
.
J. Neurosci.
28
,
1085
-
1098
.
Li
,
D.-W.
,
Liu
,
Z.-Q.
,
Wei
,
J.
,
Liu
,
Y.
and
Hu
,
L.-S.
(
2012
).
Contribution of endothelial progenitor cells to neovascularization (Review)
.
Int. J. Mol. Med.
30
,
1000
-
1006
.
López-Bendito
,
G.
,
Sánchez-Alcañiz
,
J. A.
,
Pla
,
R.
,
Borrell
,
V.
,
Picó
,
E.
,
Valdeolmillos
,
M.
and
Marín
,
O.
(
2008
).
Chemokine signaling controls intracortical migration and final distribution of GABAergic interneurons
.
J. Neurosci.
28
,
1613
-
1624
.
Lu
,
Q.
,
Sun
,
E. E.
,
Klein
,
R. S.
and
Flanagan
,
J. G.
(
2001
).
Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction
.
Cell
105
,
69
-
79
.
Lu
,
M.
,
Grove
,
E. A.
and
Miller
,
R. J.
(
2002
).
Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor
.
Proc. Natl. Acad. Sci. USA
99
,
7090
-
7095
.
Ma
,
Q.
,
Jones
,
D.
,
Borghesani
,
P. R.
,
Segal
,
R. A.
,
Nagasawa
,
T.
,
Kishimoto
,
T.
,
Bronson
,
R. T.
and
Springer
,
T. A.
(
1998
).
Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice
.
Proc. Natl. Acad. Sci. USA
95
,
9448
-
9453
.
Marchese
,
A.
and
Benovic
,
J. L.
(
2001
).
Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting
.
J. Biol. Chem.
276
,
45509
-
45512
.
Marchese
,
A.
,
Raiborg
,
C.
,
Santini
,
F.
,
Keen
,
J. H.
,
Stenmark
,
H.
and
Benovic
,
J. L.
(
2003
).
The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4
.
Dev. Cell
5
,
709
-
722
.
Marín
,
O.
and
Rubenstein
,
J. L. R.
(
2003
).
Cell migration in the forebrain
.
Annu. Rev. Neurosci.
26
,
441
-
483
.
Mayor
,
R.
and
Theveneau
,
E.
(
2013
).
The neural crest
.
Development
140
,
2247
-
2251
.
McQuibban
,
G. A.
,
Butler
,
G. S.
,
Gong
,
J.-H.
,
Bendall
,
L.
,
Power
,
C.
,
Clark-Lewis
,
I.
and
Overall
,
C. M.
(
2001
).
Matrix metalloproteinase activity inactivates the CXC chemokine Stromal Cell-derived Factor-1
.
J. Biol. Chem.
276
,
43503
-
43508
.
Meechan
,
D. W.
,
Tucker
,
E. S.
,
Maynard
,
T. M.
and
LaMantia
,
A.-S.
(
2012
).
Cxcr4 regulation of interneuron migration is disrupted in 22q11.2 deletion syndrome
.
Proc. Natl. Acad. Sci. USA
109
,
18601
-
18606
.
Memi
,
F.
,
Abe
,
P.
,
Cariboni
,
A.
,
MacKay
,
F.
,
Parnavelas
,
J. G.
and
Stumm
,
R.
(
2013
).
CXC Chemokine Receptor 7 (CXCR7) affects the migration of GnRH neurons by regulating CXCL12 availability
.
J. Neurosci.
33
,
17527
-
17537
.
Méndez-Ferrer
,
S.
,
Lucas
,
D.
,
Battista
,
M.
and
Frenette
,
P. S.
(
2008
).
Haematopoietic stem cell release is regulated by circadian oscillations
.
Nature
452
,
442
-
447
.
Miyasaka
,
N.
,
Knaut
,
H.
and
Yoshihara
,
Y.
(
2007
).
Cxcl12/Cxcr4 chemokine signaling is required for placode assembly and sensory axon pathfinding in the zebrafish olfactory system
.
Development
134
,
2459
-
2468
.
Mizoguchi
,
T.
,
Verkade
,
H.
,
Heath
,
J. K.
,
Kuroiwa
,
A.
and
Kikuchi
,
Y.
(
2008
).
Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation
.
Development
135
,
2521
-
2529
.
Molyneaux
,
K. A.
,
Zinszner
,
H.
,
Kunwar
,
P. S.
,
Schaible
,
K.
,
Stebler
,
J.
,
Sunshine
,
M. J.
,
O'Brien
,
W.
,
Raz
,
E.
,
Littman
,
D.
,
Wylie
,
C.
, et al. 
(
2003
).
The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival
.
Development
130
,
4279
-
4286
.
Moschetta
,
M.
,
Mishima
,
Y.
,
Sahin
,
I.
,
Manier
,
S.
,
Glavey
,
S.
,
Vacca
,
A.
,
Roccaro
,
A. M.
and
Ghobrial
,
I. M.
(
2014
).
Role of endothelial progenitor cells in cancer progression
.
Biochim. Biophys. Acta
1846
,
1
-
14
.
Mueller
,
W.
,
Schütz
,
D.
,
Nagel
,
F.
,
Schulz
,
S.
and
Stumm
,
R.
(
2013
).
Hierarchical organization of multi-site phosphorylation at the CXCR4 C terminus
.
PLoS ONE
8
,
e64975
.
Müller
,
A.
,
Homey
,
B.
,
Soto
,
H.
,
Ge
,
N.
,
Catron
,
D.
,
Buchanan
,
M. E.
,
McClanahan
,
T.
,
Murphy
,
E.
,
Yuan
,
W.
,
Wagner
,
S. N.
, et al. 
(
2001
).
Involvement of chemokine receptors in breast cancer metastasis
.
Nature
410
,
50
-
56
.
Nagasawa
,
T.
,
Hirota
,
S.
,
Tachibana
,
K.
,
Takakura
,
N.
,
Nishikawa
,
S.-i.
,
Kitamura
,
Y.
,
Yoshida
,
N.
,
Kikutani
,
H.
and
Kishimoto
,
T.
(
1996
).
Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1
.
Nature
382
,
635
-
638
.
Nair
,
S.
and
Schilling
,
T. F.
(
2008
).
Chemokine signaling controls endodermal migration during zebrafish gastrulation
.
Science
322
,
89
-
92
.
Nguyen
,
D. X.
,
Bos
,
P. D.
and
Massagué
,
J.
(
2009
).
Metastasis: from dissemination to organ-specific colonization
.
Nat. Rev. Cancer
9
,
274
-
284
.
Nibbs
,
R. J. B.
and
Graham
,
G. J.
(
2013
).
Immune regulation by atypical chemokine receptors
.
Nat. Rev. Immunol.
13
,
815
-
829
.
Nie
,
Y.
,
Han
,
Y.-C.
and
Zou
,
Y.-R.
(
2008
).
CXCR4 is required for the quiescence of primitive hematopoietic cells
.
J. Exp. Med.
205
,
777
-
783
.
Nomiyama
,
H.
,
Osada
,
N.
and
Yoshie
,
O.
(
2012
).
Systematic classification of vertebrate chemokines based on conserved synteny and evolutionary history
.
Genes Cells
18
,
1
-
16
.
Oppenheim
,
J. J.
,
Zachariae
,
C. O.
,
Mukaida
,
N.
and
Matsushima
,
K.
(
1991
).
Properties of the novel proinflammatory supergene “intercrine” cytokine family
.
Annu. Rev. Immunol.
9
,
617
-
648
.
Orimo
,
A.
,
Gupta
,
P. B.
,
Sgroi
,
D. C.
,
Arenzana-Seisdedos
,
F.
,
Delaunay
,
T.
,
Naeem
,
R.
,
Carey
,
V. J.
,
Richardson
,
A. L.
and
Weinberg
,
R. A.
(
2005
).
Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion
.
Cell
121
,
335
-
348
.
Paget
,
S.
(
1889
).
The distribution of secondary growths in cancer of the breast
.
Lancet
133
,
571
-
573
.
Peled
,
A.
(
1999
).
Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4
.
Science
283
,
845
-
848
.
Petit
,
I.
,
Jin
,
D.
and
Rafii
,
S.
(
2007
).
The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis
.
Trends Immunol.
28
,
299
-
307
.
Ray
,
P.
,
Lewin
,
S. A.
,
Mihalko
,
L. A.
,
Lesher-Perez
,
S.-C.
,
Takayama
,
S.
,
Luker
,
K. E.
and
Luker
,
G. D.
(
2012
).
Secreted CXCL12 (SDF-1) forms dimers under physiological conditions
.
Biochem. J.
442
,
433
-
442
.
Raz
,
E.
(
2003
).
Primordial germ-cell development: the zebrafish perspective
.
Nat. Rev. Genet.
4
,
690
-
700
.
Reiss
,
K.
,
Mentlein
,
R.
,
Sievers
,
J.
and
Hartmann
,
D.
(
2002
).
Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer
.
Neuroscience
115
,
295
-
305
.
Sánchez-Alcañiz
,
J. A.
,
Haege
,
S.
,
Mueller
,
W.
,
Pla
,
R.
,
Mackay
,
F.
,
Schulz
,
S.
,
López-Bendito
,
G.
,
Stumm
,
R.
and
Marín
,
O.
(
2011
).
Cxcr7 controls neuronal migration by regulating chemokine responsiveness
.
Neuron
69
,
77
-
90
.
Schmidt
,
A.
,
Brixius
,
K.
and
Bloch
,
W.
(
2007
).
Endothelial precursor cell migration during vasculogenesis
.
Circ. Res
101
,
125
-
136
.
Schwarting
,
G. A.
(
2006
).
Stromal cell-derived factor-1 (Chemokine C-X-C Motif Ligand 12) and chemokine C-X-C motif receptor 4 are required for migration of gonadotropin-releasing hormone neurons to the forebrain
.
J. Neurosci.
26
,
6834
-
6840
.
Siekmann
,
A. F.
,
Standley
,
C.
,
Fogarty
,
K. E.
,
Wolfe
,
S. A.
and
Lawson
,
N. D.
(
2009
).
Chemokine signaling guides regional patterning of the first embryonic artery
.
Genes Dev.
23
,
2272
-
2277
.
Sierro
,
F.
,
Biben
,
C.
,
Martínez-Muñoz
,
L.
,
Mellado
,
M.
,
Ransohoff
,
R. M.
,
Li
,
M.
,
Woehl
,
B.
,
Leung
,
H.
,
Groom
,
J.
,
Batten
,
M.
, et al. 
(
2007
).
Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7
.
Proc. Natl. Acad. Sci. USA
104
,
14759
-
14764
.
Staton
,
A. A.
,
Knaut
,
H.
and
Giraldez
,
A. J.
(
2011
).
miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration
.
Nat. Genet.
43
,
204
-
211
.
Staton
,
A. A.
,
Knaut
,
H.
and
Giraldez
,
A. J.
(
2013
).
Reply to: “On the robustness of germ cell migration and microRNA-mediated regulation of chemokine signaling”
.
Nat. Genet.
45
,
1266
-
1267
.
Stumm
,
R. K.
,
Zhou
,
C.
,
Ara
,
T.
,
Lazarini
,
F.
,
Dubois-Dalcq
,
M.
,
Nagasawa
,
T.
,
Höllt
,
V.
and
Schulz
,
S.
(
2003
).
CXCR4 regulates interneuron migration in the developing neocortex
.
J. Neurosci.
23
,
5123
-
5130
.
Stumm
,
R.
,
Kolodziej
,
A.
,
Schulz
,
S.
,
Kohtz
,
J. D.
and
Höllt
,
V.
(
2007
).
Patterns of SDF-1alpha and SDF-1gamma mRNAs, migration pathways, and phenotypes of CXCR4-expressing neurons in the developing rat telencephalon
.
J. Comp. Neurol.
502
,
382
-
399
.
Sugiyama
,
T.
,
Kohara
,
H.
,
Noda
,
M.
and
Nagasawa
,
T.
(
2006
).
Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
.
Immunity
25
,
977
-
988
.
Sun
,
Y.-X.
,
Pedersen
,
E. A.
,
Shiozawa
,
Y.
,
Havens
,
A. M.
,
Jung
,
Y.
,
Wang
,
J.
,
Pienta
,
K. J.
and
Taichman
,
R. S.
(
2008
).
CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12
.
Clin. Exp. Metastasis
25
,
765
-
776
.
Tiveron
,
M.-C.
,
Rossel
,
M.
,
Moepps
,
B.
,
Zhang
,
Y. L.
,
Seidenfaden
,
R.
,
Favor
,
J.
,
König
,
N.
and
Cremer
,
H.
(
2006
).
Molecular interaction between projection neuron precursors and invading interneurons via stromal-derived factor 1 (CXCL12)/CXCR4 signaling in the cortical subventricular zone/intermediate zone
.
J. Neurosci.
26
,
13273
-
13278
.
Toritsuka
,
M.
,
Kimoto
,
S.
,
Muraki
,
K.
,
Landek-Salgado
,
M. A.
,
Yoshida
,
A.
,
Yamamoto
,
N.
,
Horiuchi
,
Y.
,
Hiyama
,
H.
,
Tajinda
,
K.
,
Keni
,
N.
, et al. 
(
2013
).
Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model
.
Proc. Natl. Acad. Sci. USA
110
,
17552
-
17557
.
Tzeng
,
Y.-S.
,
Li
,
H.
,
Kang
,
Y.-L.
,
Chen
,
W.-C.
,
Cheng
,
W.-C.
and
Lai
,
D.-M.
(
2011
).
Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression
.
Blood
117
,
429
-
439
.
Valentin
,
G.
,
Haas
,
P.
and
Gilmour
,
D.
(
2007
).
The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b
.
Curr. Biol.
17
,
1026
-
1031
.
Valenzuela-Fernández
,
A.
,
Planchenault
,
T.
,
Baleux
,
F.
,
Staropoli
,
I.
,
Le-Barillec
,
K.
,
Leduc
,
D.
,
Delaunay
,
T.
,
Lazarini
,
F.
,
Virelizier
,
J.-L.
,
Chignard
,
M.
, et al. 
(
2002
).
Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4
.
J. Biol. Chem.
277
,
15677
-
15689
.
Veldkamp
,
C. T.
(
2005
).
The monomer-dimer equilibrium of stromal cell-derived factor-1 (CXCL 12) is altered by pH, phosphate, sulfate, and heparin
.
Protein Sci.
14
,
1071
-
1081
.
Veldkamp
,
C. T.
,
Seibert
,
C.
,
Peterson
,
F. C.
,
De la Cruz
,
N. B.
,
Haugner
,
J. C.
,
Basnet
,
H.
,
Sakmar
,
T. P.
and
Volkman
,
B. F.
(
2008
).
Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12
.
Sci. Signal.
1
,
ra4
.
Venkiteswaran
,
G.
,
Lewellis
,
S. W.
,
Wang
,
J.
,
Reynolds
,
E.
,
Nicholson
,
C.
and
Knaut
,
H.
(
2013
).
Generation and dynamics of an endogenous, self-generated signaling gradient across a migrating tissue
.
Cell
155
,
674
-
687
.
Vogt
,
D.
,
Hunt
,
R. F.
,
Mandal
,
S.
,
Sandberg
,
M.
,
Silberberg
,
S. N.
,
Nagasawa
,
T.
,
Yang
,
Z.
,
Baraban
,
S. C.
and
Rubenstein
,
J. L. R.
(
2014
).
Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position
.
Neuron
82
,
350
-
364
.
Wang
,
Y.
,
Li
,
G.
,
Stanco
,
A.
,
Long
,
J. E.
,
Crawford
,
D.
,
Potter
,
G. B.
,
Pleasure
,
S. J.
,
Behrens
,
T.
and
Rubenstein
,
J. L. R.
(
2011
).
CXCR4 and CXCR7 have distinct functions in regulating interneuron migration
.
Neuron
69
,
61
-
76
.
Weber
,
M.
,
Hauschild
,
R.
,
Schwarz
,
J.
,
Moussion
,
C.
,
de Vries
,
I.
,
Legler
,
D. F.
,
Luther
,
S. A.
,
Bollenbach
,
T.
and
Sixt
,
M.
(
2013
).
Interstitial dendritic cell guidance by haptotactic chemokine gradients
.
Science
339
,
328
-
332
.
Wright
,
D. E.
,
Wagers
,
A. J.
,
Gulati
,
A. P.
,
Johnson
,
F. L.
and
Weissman
,
I. L.
(
2001
).
Physiological migration of hematopoietic stem and progenitor cells
.
Science
294
,
1933
-
1936
.
Yoshida
,
R.,
Imai
,
T.
,
Hieshima
,
K.
,
Kusuda
,
J.
,
Baba
,
M.
,
Kitaura
,
M.
,
Nishimura
,
M.
,
Kakizaki
,
M.
,
Nomiyama
,
H.
and
Yoshie
,
O.
(
1997
).
Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7
.
J. Biol. Chem.
272
,
13803
-
13809
.
Yoshida
,
R.
,
Nagira
,
M.
,
Kitaura
,
M.
,
Imagawa
,
N.
,
Imai
,
T.
and
Yoshie
,
O.
(
1998
).
Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7
.
J. Biol. Chem.
273
,
7118
-
7122
.
Zhu
,
Y.
,
Yu
,
T.
,
Zhang
,
X.-C.
,
Nagasawa
,
T.
,
Wu
,
J. Y.
and
Rao
,
Y.
(
2002
).
Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons
.
Nat. Neurosci.
5
,
719
-
720
.
Zlotnik
,
A.
and
Yoshie
,
O.
(
2012
).
The chemokine superfamily revisited
.
Immunity
36
,
705
-
716
.
Zlotnik
,
A.
,
Burkhardt
,
A. M.
and
Homey
,
B.
(
2011
).
Homeostatic chemokine receptors and organ-specific metastasis
.
Nat. Rev. Immunol.
11
,
597
-
606
.
Zou
,
Y.-R.
,
Kottmann
,
A. H.
,
Kuroda
,
M.
,
Taniuchi
,
I.
and
Littman
,
D. R.
(
1998
).
Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development
.
Nature
393
,
595
-
599
.

Competing interests

The authors declare no competing financial interests.