Neural crest (NC) cells arise in the neural tube (NT), undergo an epithelial-mesenchymal transition, and migrate away along defined routes, differentiating into multiple lineages. Precisely how NC cells exit the NT, and whether their fate is predetermined by their initial position within the NT, has been controversial. To address these issues, the Kulesa and Bronner laboratories performed a collaborative study (p. 820). Using a combination of photoactivation and two-photon time-lapse microscopy, they precisely marked individual or small groups of NC precursors in vivo in the chick embryonic NT and followed their fate. They found that most NC cells exit the NT at the dorsal midline, and that some precursors remain resident in the dorsal midline, producing an unordered emigration of cells. Moreover, they showed that differentiation potential is not defined by initial position within the NT, as has previously been suggested, although time of NT exit did influence fate. Together, these results suggest a more plastic and dynamic behaviour for NC cell emigration than previously appreciated.
Mapping the neural crest
Mapping the neural crest. Development 15 February 2013; 140 (4): e403. doi:
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.