During epithelial wound healing, actin assembles at the leading edge of cells that border the wound, forming dynamic protrusions and, in some cases, an actomyosin cable. Together, these actin-rich structures are essential for wound closure. The process of dorsal closure in Drosophila shares many characteristics with wound healing and is a convenient system for cell biological analysis. Building on earlier results showing that the apical polarity determinant Par3/Bazooka (Baz) is lost from the leading edge of cells during dorsal closure, Tom Millard and colleagues (p. 800) now uncover a molecular mechanism by which Baz localisation regulates actin dynamics. Baz is known to bind the lipid phosphatase Pten, and the authors find that loss of Baz from the leading edge causes Pten redistribution. This, in turn, leads to an accumulation of the lipid PIP3 at the leading edge, which promotes formation of actin protrusions that are required for closure. This pathway is conserved during both dorsal closure and wound healing, offering a mechanistic basis for actin assembly during epithelial closure.
Lipid leads the way in wound healing
Lipid leads the way in wound healing. Development 15 February 2013; 140 (4): e402. doi:
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.