Terminally differentiated cells are generally considered to be in a developmentally locked state in vivo; they are incapable of being directly reprogrammed into an entirely different state. Now, on p. 4844, Joel Rothman and co-workers show that the expression of a single transcription factor can trigger the transdifferentiation of fully differentiated, highly specialised cells in C. elegans larvae and adults. They show that brief ectopic expression of ELT-7, a GATA transcription factor that regulates intestinal differentiation, can specifically convert non-endodermal cells of the pharynx into fully differentiated intestinal cells. This conversion is accompanied by an increase in the expression of intestine-specific genes and a concomitant decrease in the expression of pharynx-specific markers and structural proteins. The reprogrammed cells also exhibit morphological characteristics of intestinal cells. These, together with other findings in the study, demonstrate that terminally differentiated cells can be reprogrammed to an alternative fate without the need for cell division, without the requirement for a dedifferentiated intermediate state and without prior removal of an inhibitory factor.
One-step transdifferentiation
One-step transdifferentiation. Development 15 December 2013; 140 (24): e2401. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. August featured the Nichols lab at the University of Edinburgh, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.