During the first phase of Arabidopsis female gamete formation (megasporogenesis), a somatic ovule cell differentiates into a megaspore mother cell and divides to generate four haploid megaspores. In the next phase (megagametogenesis), one of these megaspores undergoes syncytial mitosis and differentiates to form the female gametophyte. It’s known that a somatic small RNA (sRNA) pathway restricts reproductive potential to this functional megaspore but what controls the megasporogenesis to megagametogenesis transition? Here (p. 1399), Matthew Tucker and co-workers examine gene expression patterns in ovule tissues and show that an sRNA pathway is also involved in this phase of female gamete formation. The researchers report that ARGONAUTE5 (AGO5), a putative sRNA pathway effector, is expressed around reproductive cells during megasporogenesis and show that a unique semi-dominant ago5-4 insertion allele disrupts the initiation of megagametogenesis. Expression of a viral RNAi suppressor protein in the somatic cells flanking the megaspores produces a similar phenotype. Thus, the researchers conclude, at least two somatic sRNA pathways contribute to female gametophyte development in Arabidopsis.
sRNA paths to plant female gamete development
sRNA paths to plant female gamete development. Development 15 April 2012; 139 (8): e803. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. September featured the Kerosuo lab at the National Institute of Dental and Craniofacial Research, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.