During sexual reproduction in flowering plants, cellular interactions guide the growth of the pollen tube from the stigma to the embryo sac where fertilisation occurs. The cytoplasmic Ca2+ concentration ([Ca2+]cyt) regulates pollen tube growth, but does it also regulate pollen tube guidance and reception? On p. 4202, Seiji Takayama and colleagues investigate Ca2+ dynamics during fertilisation by expressing a Ca2+ sensor in Arabidopsis pollen tubes and synergid cells (cells in the ovule that guide the pollen tube). During semi-in vivo fertilisation, they report, pollen tubes turn towards wild-type ovules but not towards ovules in which pollen tube guidance has been genetically disrupted. Notably, [Ca2+]cyt is higher in turning pollen tube tips than in non-turning tips. Moreover, [Ca2+]cyt oscillation in the synergid cells, which reaches a maximum at pollen tube rupture, begins only upon pollen tube arrival. These results suggest that signals from the synergid cells induce Ca2+ oscillations in the pollen tube and vice versa, and that these oscillations are involved in pollen tube guidance and reception.
Calcium crosstalk during plant fertilisation
Calcium crosstalk during plant fertilisation. Development 15 November 2012; 139 (22): e2206. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. August featured the Nichols lab at the University of Edinburgh, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.