The spatiotemporal control of gene expression is crucially important during development, and microRNAs (miRNAs; short RNA molecules that silence complementary mRNA sequences) are thought to fine-tune the expression of developmentally important genes. Here, Ramesh Shivdasani and colleagues report that specific miRNAs influence mouse stomach organogenesis by regulating the expression of the mesenchymal transcription factor Barx1 (see p. 1081). Barx1 controls stomach morphogenesis and helps to specify the stomach-specific epithelium. However, Barx1 levels in the stomach decline sharply after epithelial specification. The researchers show that depletion of the miRNA-processing enzyme Dicer in cultured stomach mesenchymal cells increases Barx1 levels and that conditional Dicer gene deletion in mice disrupts stomach development. They identify miR-7a and miR-203 as regulators of Barx1 expression and show that these miRNAs repress Barx1 expression in the developing stomach by binding to the Barx1 3′ untranslated region. Barx1 downregulation by miRNAs in the mouse embryonic stomach might thus be an example of a widely used mechanism for modulating gene expression during development.
miRNA hits Barx1 in the stomach
miRNA hits Barx1 in the stomach. Development 15 March 2011; 138 (6): e602. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. September featured the Kerosuo lab at the National Institute of Dental and Craniofacial Research, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.