Genomic imprinting – epigenetic modifications that ensure that certain genes are expressed from only one of the two inherited chromosomes – is crucial for normal development. Mammalian imprinted genes are associated with differentially methylated regions (DMRs) that are CpG methylated on one parental chromosome. At least 21 DMRs become methylated in the mouse germline and, on p. 811, Hiroyuki Sasaki and co-workers analyse a panel of these gametic DMRs. The extent of methylation of these DMRs differs significantly from that of embryonic DMRs, they report, suggesting that gametic DMRs should be used to identify the features that establish imprinting in the germline. They also show that maternal gametic DMRs appear as unmethylated islands in male germ cells, and unexpectedly identify widespread oocyte-specific non-CpG methylation. Finally, they report that DMR methylation changes dynamically during early development, indicating that DMRs are not fully protected from preimplantation epigenetic reprogramming. These results underscore the importance of using gametic DMR sequences for the study of imprint establishment.
Marking up germline imprints
Marking up germline imprints. Development 1 March 2011; 138 (5): e506. doi:
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.