In female mammals, one X chromosome is epigenetically silenced in adult cells by the process of X inactivation (Xi). However, in the pluripotent epiblast cells of the preimplantation mouse embryo, both X chromosomes are active and Xi of the paternal or maternal X occurs at random shortly after implantation (random Xi). By contrast, in very early mouse embryos (and in extra-embryonic lineages), the paternal X chromosome is selectively inactivated (imprinted Xi). So when exactly does the mode of Xi change from imprinted to random during development? On p. 197, Hitoshi Niwa and colleagues examine Xi during the differentiation of inner cell mass (ICM)-derived female mouse embryonic stem (ES) cells. The researchers use forced expression of Cdx2 and Gata6 to induce ES cell differentiation toward trophectoderm (TE) and primitive endoderm (PrE), respectively. They report that random Xi occurs in both TE and PrE cells and in the TE of cloned embryos derived from female ES cells, suggesting that all marks for imprinted Xi must be erased by the time the ICM forms.
X inactivation: from imprinted to random
X inactivation: from imprinted to random. Development 15 January 2011; 138 (2): e0202. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. September featured the Kerosuo lab at the National Institute of Dental and Craniofacial Research, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.