The insulin-like growth factor (IGF)/insulin signalling pathway regulates cell proliferation, differentiation, aging and life span. During embryonic development, transcription of the mouse and human Igf2 gene is tightly regulated by four alternative promoters whose specific roles are unclear. Now, Sylvie Nathalie Hardouin and colleagues reveal that the transcriptional activity of one of these promoters, Igf2-P2, regulates mesenchymal stem cell differentiation and osteogenesis in mice (see p. 203). The researchers show that Igf2-P2 loss-of-function mice, in which a lacZ-neo cassette replaces the P2-driven transcriptional unit of Igf2, have short, thin, poorly mineralised bones and exhibit altered bone remodelling. These abnormalities are associated with decreased numbers of embryonic mesenchymal chondroprogenitors, adult mesenchymal stem cells and osteoprogenitors. Together, these and other results support a model in which the transcriptional activity of the Igf2-P2 promoter regulates the fate of mesenchymal progenitors during bone development and adult bone remodelling, and regulates osteogenesis through its effects on both osteoprogenitors and their microenvironment.
Boning up on stem cell Igf2-P2 function
Boning up on stem cell Igf2-P2 function. Development 15 January 2011; 138 (2): e0201. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. September featured the Kerosuo lab at the National Institute of Dental and Craniofacial Research, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.