The Hippo pathway, which regulates cell proliferation, is regulated by cell density: low cell density induces weak Hippo signalling, leading to nuclear accumulation of the transcriptional co-activator Yap and the promotion of proliferation, whereas high cell density prevents nuclear accumulation of Yap and suppresses proliferation. The mechanisms by which cells detect density, however, are unknown. Here, on p. 3907, Hiroshi Sasaki and colleagues show that cell morphology plays a key role in regulating the Hippo pathway. The researchers show that manipulation of NIH3T3 cell morphology, by culture on fabricated microdomains, regulates the subcellular localisation of Yap. These changes in cell morphology, they report, lead to changes in actin stress fiber quantities and the subsequent regulation of Yap phosphorylation and localisation. Finally, the researchers show that stress fibers regulate Yap upstream of, or at the level of, the protein kinase Lats. The researchers thus propose that a cell morphology-based mechanism, mediated by stress fibers, cooperates with a cell adhesion-based mechanism to achieve density-dependent control of cell proliferation.
Shaping up the Hippo pathway
Shaping up the Hippo pathway. Development 15 September 2011; 138 (18): e1801. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. September featured the Kerosuo lab at the National Institute of Dental and Craniofacial Research, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.