Regenerative medicine could provide treatments for heart disease but a source of cells capable of regenerating cardiac muscle cells remains elusive. One possible source is the epicardium, but lineage-tracing studies have produced conflicting results about the extent to which epicardial cells act as a natural source of cardiac muscle during development. Now, on p. 2895, Kazu Kikuchi and co-workers show that, in zebrafish, epicardial cells adopt only non-myocardial fates during heart development and also during heart regeneration, which is a naturally occurring process in adult zebrafish. The researchers identify the transcription factor gene tcf21 as a specific epicardial marker that is expressed throughout heart development and regeneration. Using tcf21 regulatory sequences and inducible Cre recombinase technology, they show that larval or adult cells labelled by tcf21 expression give rise to adult epicardial and perivascular cells during heart development and regeneration but do not differentiate into cardiomyocytes during either form of cardiogenesis. Thus, in zebrafish, natural epicardial fates are limited to non-myocardial cell types.
Getting to the heart of epicardial potential
Getting to the heart of epicardial potential. Development 15 July 2011; 138 (14): e1405. doi:
Download citation file:
Advertisement
Cited by
Development Journal Meeting 2023
-DevMeeting.png?versionId=4659)
We are delighted to announce that our 2023 Journal Meeting ‘Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology’ will be held from 17-20 September 2023 at Wotton House, Surrey, UK. Find out more and register here.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
preLights 5th Birthday webinar

preLights, our preprint highlighting service, is celebrating its 5th birthday this year. To mark the occasion, join us online on 14 March 2023 at 16:00 GMT for a discussion, led by four preLights alumni, on how to identify and navigate the challenges and opportunities while shaping your career as an early-career researcher.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4659)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.