The Polycomb group (PcG) machinery silences terminal differentiation genes in stem cell lineages. Reversal of this epigenetic transcriptional silencing is implicated in the selective activation of these genes during differentiation, but little is known about the mechanism of this process. To find out more, Xin Chen, Margaret Fuller and colleagues have been examining the reversal of silencing in the Drosophila male germline stem cell (GSC) lineage. They report that developmentally regulated sequential events at promoters relieve the silenced state of the GSCs when their offspring commit to spermatocyte differentiation (see p. 2441). These sequential changes include the global downregulation of Polycomb repressive complex 2, the recruitment of hypophosphorylated RNA polymerase II to promoters, the expression and function of testis-specific homologues of TATA-binding protein-associated factors, and the function of the testis-specific meiotic arrest complex. These results provide a paradigm for how epigenetic silencing can be reversed in a gene-selective and stage-specific manner to allow the appropriate expression of terminal differentiation genes.