The airways of the lung are lined with multiciliated cells (MCCs), the coordinated beating of which generates fluid flow to remove particles from the lungs. Generation of MCCs requires massive amplification of centriole numbers to form the basal bodies of each cilium. How are MCCs specified and how do they differentiate? Here (p. 4277), Mark Krasnow and co-workers uncover a role for the cell cycle regulator MYB in promoting multiciliogenesis. MYB is expressed in newly postmitotic cells of the mouse airway epithelium (as well as other multiciliated cells), and mutants lacking MYB show defects in centriole amplification during MCC formation - particularly at earlier stages of development. They further show that MYB promotes the expression of the key late MCC regulator FOXJ1, while MYB itself is regulated by Notch signalling and the nuclear protein multicilin. As MYB is better known as an S-phase regulator, they propose that it may control multiciliogenesis by promoting an S-phase-like state in which centrioles are synthesized but DNA is not.