Major advances in our knowledge of the genetic organization of the mouse X chromosome have been obtained by the use of interspecific crosses involving Mus spretus-derived strains. This system has been used to study sequences detected by three probes 80Y/B, 302Y/B and 371Y/B isolated from a mouse Y-chromosome library which have been shown to recognize both male–female common and male–female differential sequences. These patterns are due to the presence of a family of cross-reacting sequences on the mouse X and Y chromosomes. Detailed genetic analysis of the localization of the X-chromosomespecific sequences using both a somatic cell hybrid panel and an interspecific mouse cross has revealed the presence of at least three discrete clusters of loci (X–Y)A, (X–Y)B and (X–Y)C. Two of these clusters, (X–Y)B and (X–Y)C, lie distally on the mouse X chromosome, the other cluster (X–Y)A being situated close to the centromere. In situ hybridization shows a striking symmetry in the localization of the major sequences on both the X and Y chromosomes detected by these probes, hybridization being preferentially localized to a subcentromeric and subtelomeric region on each chromosome.

This striking localization symmetry between the X and Y chromosome sequences is discussed in terms of the extensive pairing of the X–Y chromosomes noted during meiosis.

This content is only available via PDF.