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Summary Statement 

   Spherical harmonics analysis of three-dimensional cell shapes allows quantitative 

comparison of cell types and cell fate. 

Abstract 

  Cell shape is a powerful readout of cell state, fate, and function. We describe a custom workflow 

to perform semi-automated, 3D cell and nucleus segmentation, and spherical harmonics and principal 

components analysis to distill cell and nuclear shape variation into discrete biologically meaningful 

parameters. We apply these methods to analyze shape in neuromast cells of the zebrafish lateral line 

system, finding shapes vary with cell location and identity. The distinction between hair cells and 

support cells accounted for much of the variation, which allowed us to train classifiers to predict cell 

identity from shape features. Using transgenic markers for support cell subpopulations, we found that 

subtypes had different shapes from each other. To investigate how loss of a neuromast cell type altered 

cell shape distributions, we examined atoh1a mutants that lack hair cells. We found that mutant 

neuromasts lacked the cell shape phenotype associated with hair cells, but did not exhibit a mutant-

specific cell shape. Our results demonstrate the utility of using 3D cell shape features to characterize, 

compare, and classify cells in a living, developing organism.  
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Introduction  

  Cell shape emerges from a complex interplay between fate, function, and external forces (Chan 

et al., 2017). Quantifying cell shape during development has provided mechanistic insight into 

morphogenetic processes (Perez-Vale and Peifer, 2020) cell division and death (Chen et al., 1997) as 

well as differentiation (Watt et al., 1988; Kilian et al 2010).  However, most studies of cell shape in vivo 

have used descriptive features (such as volume and sphericity), which may not capture subtle or 

multifactorial variations in shape between cell types, especially in tissues with complex, 3D 

organization. More complete 2D shape representations have been used to study cell motility and 

migration (Pinkus and Theriot, 2007; Keren et al., 2008) but these methods cannot be easily 

generalized to 3D shapes. To fully appreciate the diversity of cell shape states during development and 

understand the relationship between cell shape and fate, robust 3D cell shape analysis methods must 

be applied to living, developing organisms.  

  Recently, several 3D cell shape representations have shown promising results. One approach 

uses spherical harmonics (SH), where the surface of each cell is mapped to a sphere, and the SH 

transform is used to generate a list of coefficients that describe the cell’s shape (Ruan and Murphy, 

2019). Principal components analysis (PCA) can then be applied to reduce dimensionality and facilitate 

interpretation of cell shape variation within and between cell populations. SH and PCA has been used 

to understand variation in cell and nuclear shape of IPS cells in culture (Viana et al., 2023), describe 

organ shape trajectories in murine limb and heart development (Dalmasso et al., 2022) and 3D shapes 

in medical imaging (Gerig et al., 2001). These methods maintains enough information to accurately 

reconstruct 3D cell shapes, enabling sophisticated, data-driven analysis. Here we test the idea that we 

can use SH coefficients to cluster and classify cell types.  

  The  zebrafish lateral line system is an ideal model for studying the relationship between cell 

shape, location, and fate in a living, developing animal. Organs of the lateral line, known as 

neuromasts, are small, tightly packed epithelial rosettes with apical-basal polarity, radially organized cell 

types, and mirror symmetry (Thomas et al., 2015). Mechanosensory hair cells (HCs) are located in the 

center of the neuromast and surrounded by nonsensory support cells (SCs). SCs can be distinguished 

based on their locations, gene expression patterns, and propensity for HC replacement during 

regeneration, and identified in live animals using established knock-in lines (Lush et al., 2019; Thomas 

and Raible, 2019). The superficial location of neuromasts and optical transparency of zebrafish larvae 

facilitate high resolution live imaging.   

  In this study, we developed a workflow to segment neuromast cells and nuclei and analyze their 

3D shapes using SH and PCA. We model cell and nucleus shape using just 8 cell shape and 4 nucleus 

shape principal components (PCs). We found that HCs were clearly distinct from SCs in shape space, 
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while SCs appeared to vary continuously in shape. Unsupervised clustering revealed that markers for 

SC subpopulations were enriched within certain clusters, suggesting these cell types have distinct cell 

shape features. Analysis of mutants in atoh1a, encoding a conserved transcription factor necessary for 

HC differentiation (Bermingham et al., 1999; Millimaki et al., 2007) revealed the loss of the HC shape 

cluster and expansion of other cell shape clusters. We also successfully built classifiers to predict HC 

identity from cell and nucleus shape features. Our work demonstrates that cell shape parameters can 

be used to characterize and classify cell types in neuromasts, laying the foundation for future studies of 

form, fate, and function in sensory epithelia.  

 

Results  

A Semi-automated Workflow Accurately Segments Zebrafish Lateral Line Cells and Nuclei  

  Neuromasts are epithelial organs with tightly packed, apically constricted cells that present 

challenges for imaging and segmentation (Figure 1A). For all experiments, we used the zebrafish 

Tg(cldnb:LY-EGFP) transgenic line that labels neuromast cell membranes (Haas and Gilmour, 2006). In 

addition, some zebrafish contained knock-in alleles that labeled cell populations of interest, for analysis 

described below. For numbers of neuromasts and cells from each line, refer to Supplemental Table 1. 

All fish were stained with the far-red nuclear dye DRAQ5 (Smith et al., 1999) Fish were imaged live at 5 

days post fertilization (dpf), when neuromasts are functionally mature.  

  We trained machine learning models to detect cell boundaries from membrane GFP signal and 

nuclei masks from DRAQ5 signal, and used model results as the foundation for instance segmentation.  

We first applied a distance transform watershed algorithm to segment every nucleus. Labeled nuclei 

were then used as seeds for marker-based watershed of membrane boundary predictions. The 

accuracy of segmentation was further improved through proofreading and manual correction. This 

semi-automated workflow produced good quality segmentations for most cells (Figure 1A). In total, 

3274 cells from 49 different neuromasts across 6 different imaging sessions were segmented. 

 

Spherical Harmonics Accurately Represent Most Neuromast Cell Shapes  

  To quantitatively compare cell shapes, we used a method based on SH expansion  

(Viana et al., 2023). The result is a vector of coefficients that describe cell shape (organized into a cell-

by-coefficients table), on which the inverse transform can be applied to create a reconstruction of the 
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cell (Figure 1D). To minimize variation due to cell orientation so that we could query intrinsic cell shape, 

we corrected for (1) the radial symmetry of cells around the apical-basal axis of the neuromast, (2) 

differential tilt along the radial axis as cells converge at the apical end of the rosette, and (3) tilt 

introduced in image acquisition resulting in the z-axis slightly off parallel to the apical-basal axis. An 

example of a cell aligned by this procedure is shown in Figure 1B,C.  

  Following alignment, we applied SH expansion to generate 2178 SH coefficients for each cell 

(Figure 1D). To measure reconstruction fidelity, we used directed Hausdorff distance. We found a 

bimodal distribution of error, with 84% of cells accurately reconstructed (Supplemental Figure 1A). 

Inaccurately reconstructed cells tended to be located midway between the center and periphery of the 

neuromast (Supplemental Figure 1B) and had shapes that rendered them unsuitable for SH expansion, 

such as high concavity (Supplemental Figure 1C). These cells tended to have greater cell surface area 

and height (Supplemental Figure 1D, top). However, nuclei of excluded cells had similar dimensions to 

those of retained cells (Supplemental Figure 1D, bottom). In sum, some tall, curved cells located in a 

ring around the middle of the neuromast were not reconstructed well by SH (421 cells, representing 

16% of the original dataset), and were excluded from subsequent cell shape analysis.   

 

Principal Components Analysis Reveals Variations in Cell Shape Between Neuromast Cell Types  

  To identify the main axes of shape variation, we applied principal component (PC) analysis. The 

2178 SH coefficients were reduced to 8 PCs representing approximately 70% of the total variance 

(Supplemental Figure 2). A key advantage of our approach is that from any point in this 8-dimensional 

shape space, it is possible to calculate the corresponding SH coefficients and create 3D 

representations of real or theoretical cells. We wondered whether variation in shape between cell types 

would be continuous (indicating smooth transitions between different shapes) or discrete (suggesting 

some populations have features that set them more clearly apart from other cells). To visualize shape 

variation, each PC was first individually z-scored to generate “shape modes.” We used the point 

corresponding to the origin in shape space (where the value of all 8 cell shape modes is 0) to create a 

visual representation of the mean cell shape. We then varied the value of one shape mode while 

keeping other shape modes constant (Figure 2A). To determine how each shape mode varied with 

position across neuromasts, we classified cell position by corresponding shape mode value (Figure 

2B). A small number of interpretable parameters therefore captures the majority of cell shape variation.   

  To test whether HCs would be quantitatively distinct from SCs, we manually annotated HCs in 

our dataset using the presence of apical stereocilia, which are visible in the Tg(cldnb:LY-EGFP) 

transgenic line. We found that cell shape mode 1 (CSM1, representing 27% of total variance) appeared 
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to represent “HC-ness.” Positive CSM1 scores corresponded with greater cell volume and width 

(Supplemental Figure 3B), as well as a more convex, flask-like shape (Figure 2C). Cells with positive 

CSM1 scores also tended to be closer to the neuromast center (Figure 2D, Supplemental Figure 3D), 

consistent with the characteristic HC location. This result suggests that much of cell shape variation in 

neuromasts is due to differences between HCs and SCs.  

  In contrast to CSM1, cell shape mode 2 (CSM2; 16% of total variance) did not distinguish 

between HCs and SCs; rather it appeared to distinguish among SC types. Cells with increasing CSM2 

scores were progressively taller and less deep (Figure 2E, Supplemental Figure 3B). CSM2 was also 

negatively associated with being located toward the neuromast periphery, particularly for SCs (Figure 

2F, Supplemental Figure 3D). HCs tended to have average CSM2 scores, clustered around zero, and 

showed a narrower distribution than SCs (Supplemental Figure 3C). Taken together, the relationships 

between cell type and cell position likely explain the “bullseye” pattern observed when CSM2 scores 

are plotted by relative cell location: SCs have higher CSM2 scores as they become more central, while 

HCs (which are also centrally located) have CSM2 scores close to zero (Figure 2F).These observations 

suggest that CSM2 represents shape variation between SCs in a way that is distinct from the variation 

between SCs and HCs.   

  To further query the relationships between shape modes and cell type, we compared shape 

modes to geometric features and location parameters (Supplemental Figure 3). We correlated CSM1 

and CSM2 to cell width, depth, height, volume, surface area and cell distance from the neuromast 

center (Supplemental Figure 3B,D). We found a positive correlation between CSM1 and cell volume 

and cell width, and a negative correlation with distance from the center of the neuromast. For CSM2, 

there was a positive correlation with cell height and a negative correlation with cell depth and distance 

from center. HCs consistently segregated with CSM1 but not CSM2 (Supplemental Figure 3C,D). 

Beyond CSM1 and CSM2, other shape modes appeared to represent more subtle ways in which 

neuromast cell shape varied (Supplemental Figure 2).  

 

Nuclear Shape Variation Is Captured by SHE and PCA  

  We also performed SHE and PCA on nucleus shape. Nuclei were aligned to account for position 

within the neuromast using a series of rotations similar to (but independent of) those used to align cells. 

Because nuclei had a much lower reconstruction error compared to cells (Supplemental Figure 1A), we 

did not to exclude any nuclei from analysis. Nuclear SHE coefficients were reduced to 4 principal 

components (PCs) representing approximately 76% of the total variance in nuclear shape 
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(Supplemental Figure 4). As for cell shape analysis, nuclear shape PCs were z-scored to describe them 

as nuclear shape modes.  

  Nucleus shape mode 1 (NSM1, representing 40% of total variance, Figure 3A) and nucleus 

shape mode 2 (NSM2, representing 18% of total variance, Figure 3C) captured distinct aspects of 

variation in nuclear shape. Increasing NSM1 scores were associated with a shift from short, wide 

shapes to a tall, crescent-like morphology (Figure 3A). NSM2 appeared to describe a progression from 

tall and cylindrical to flattened, rectangular shapes (Figure 3C). Nucleus shape modes 3 and 4 are 

summarized in Supplemental Figure 4. Comparing to other nuclear shape parameters (Supplemental 

Figure 5), we found NSM1 was negatively correlated with nucleus width and positively correlated with 

nucleus height (Supplemental Figure 5B,D). NSM2 was positively correlated with nucleus depth and 

negatively correlated with nucleus volume (Supplemental Figure 5B,D).   

  We asked to what degree nuclear shape modes distinguished among HCs and SCs. We found 

that NSM1 had a bimodal distribution (Supplemental Figure 5C) and was correlated with distance from 

the neuromast center (Figure 3B, Supplemental Figure 5D). Like CSM1, NSM1 also appeared to 

distinguish between HCs and SCs, but to a lesser degree (Supplemental Figure 5C). NSM2 showed a 

slightly skewed distribution and a correlation with distance to the neuromast center (Figure 3D, 

Supplemental Figure 5D), with some distinction between HCs and SCs. Nuclear shape modes 

therefore also captured variation between HCs and SCs, although this information was represented by 

multiple shape modes.  

 

Unsupervised Clustering of Neuromast Cells in Shape Space Identifies Groups of Cells With 

Similar Shapes and Locations  

  We next determined whether shape features could be used to assign neuromast cells to 

biologically meaningful categories beyond HCs and SCs. We performed unsupervised clustering on the 

first 8 cell shape PCs using the Phenograph package and Leiden community detection algorithm 

(Levine et al., 2015; Traag et al, 2019). Five identified clusters were represented in two dimensions by a 

uniform manifold approximation and projection (UMAP; McInnes et al., 2018; Figure 4A) where each 

cell is a point colored by cluster label. The fraction of cells within each cluster was proportional across 

all individual neuromasts (Supplemental Figure 6D) suggesting that clustering is influenced by shared 

shape parameters and not due to differences between neuromasts. To quantify the relationships 

between clusters, we performed partition-based graph abstraction (PAGA; Wolf et al., 2019). Relative 
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strength of association is represented by line thickness (Figure 4B). PAGA analysis revealed greater 

similarities between clusters 0/2, 1/2/3, and 2/4.   

To visualize the characteristic shapes of cells within each cluster, we identified the cell closest to 

the centroid of each cluster in eight-dimensional PC space as a “representative cell” (Figure 4C). Cells 

in clusters 0 tended to be shorter with greater depth, while cells in cluster 3 tended to be tall and wide. 

Cells in clusters 1 and 2 appeared to have intermediate shapes. Cells in cluster 4 tended to have flask 

shapes reminiscent of HCs; quantifying manually annotated HCs in each cluster confirmed that most 

HCs were assigned to cluster 4 (Supplemental Figure 6E) and cluster 4 was primarily composed of HCs 

(Supplemental Figure 6F).  

  Cells from a given cluster tended to be found at distinct radial distances from the neuromast 

center (Figure 4D,E), and we used this order to assign cluster number labels. However, we also found 

that some clusters were distributed in distinct quadrants of the neuromast (Figure 4D,F). This difference 

in distribution was particularly apparent for cluster 1, where cells were more concentrated within the 

dorsoventral quadrants (Figure 4F, represented by adjusted angle 90 and -90), and cluster 2, where 

cells were more often found within the anteroposterior quadrants (Figure 4F, represented by adjusted 

angle 0). These results suggest that grouping neuromast cells purely using shape descriptors, without 

explicitly including information about cell type or identity, recapitulates known aspects of neuromast 

organization (e.g. concentric and radially symmetric cell populations).  

  We also performed unsupervised clustering on the first 4 nucleus shape PCs. Similar to cell 

shape clusters, we found distinct nucleus shape clusters (Figure 5A) whose relative relationships could 

be measured through PAGA analysis (Figure 5B). As for cells, we identified representative nuclei for 

each cluster (Figure 5C). Clusters 4 and 5 were primarily composed of HCs, and cluster 1 was enriched 

for dorsoventral cells (Figure 5D). Nucleus shape clusters exhibited distinct spatial locations within the 

neuromast (Figure 5D,E,F). However, nucleus shape clusters did not appear to distinguish as well 

between SC subpopulations compared to cell shape clusters. Since the nucleus shape dataset contains 

cells that were excluded from cell shape analysis, we looked at the distribution of excluded cells across 

nucleus shape clusters (as a way to understand whether a particular class of cells had been excluded). 

We found excluded cells in all 5 nucleus shape clusters, suggesting that excluded cells can have a full 

range of nucleus shape phenotypes (Supplemental Figure 1E). Based on these results, we decided to 

perform the remaining analysis using only cell shape clusters.  
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Cell Fate Markers of SC Subpopulations Are Associated With Distinct Cell Shape Phenotypes  

  SC subpopulations have characteristic transcriptional profiles and behaviors during 

regeneration: DV cells act as HC progenitors while peripheral cells can replenish DV cells depleted by 

HC regeneration (Lush et al., 2019; Thomas and Raible, 2019). We therefore examined neuromasts 

from knock-in lines that mark these distinct SC subpopulations. The sost:NLS-Eos line marks cells in 

the DV compartment of the neuromast (Figure 6A-C). We measured the mean intensities of Eos 

fluorescence in each cell, normalizing to z-score for each individual neuromast. We then classified cells 

as Eos+ if they had fluorescence with z-score greater than 1 (Figure 6B, Supplemental Figure 6A). An 

example neuromast with labeled positive cells is shown in Figure 6B. As expected, sost:NLS-Eos+ cells 

were found in DV quadrants (Figure 6B,C). We next asked whether sost:NLS-Eos+ cells were 

differentially distributed across clusters (Figure 6E,F). Most sost:NLS-Eos+ cells were found in cluster 1 

(Figure 6E). 33% of cluster 1 cells were sost:NLS-Eos+, the highest proportion of any cluster (Figure 

6F). Some sost:NLS-Eos+ cells were also found in clusters 2 and 3,making up 13% and 17% of 

clusters 2 and 3, respectively (Figure 6F).   

  The sfrp1a:NLS-Eos line marks peripheral SCs (Figure 6G-I). We used the same threshold 

method to classify cells as Eos+ (Figure 6H, Supplemental Figure 6B). Eos+ cells were found in the 

neuromast periphery (Figure 6H,I). Most sfrp1a:NLS-Eos+ cells were found within cluster 0, making up 

about half of the cells in this cluster (Figure 6K,L). Some sfrp1a:NLS-Eos+ cells were also found in 

clusters 1 and 3, making up 13% and 29% of clusters 1 and 3, respectively. Clusters showed no 

differences in distribution among individual neuromasts across wildtype, sost:NLS-Eos, and 

sfrp1a:NLS-Eos lines (Supplemental Figure 6D). Taken together, these results demonstrate that cells 

with distinct identities and localization can be classified by distinct cell shape characteristics.  

 

atoh1a Mutants Exhibit Changes in Cell Shape Across Cell Populations  

  We next sought to test what happens to cell shape distributions when a single cell type is 

absent. The transcription factor atoh1a is required for HC fate specification in zebrafish lateral line 

neuromasts (Milimaki et al., 2007; Itoh and Chitnis, 2001). We expected that the loss of the HC shape 

phenotype would be readily observable in atoh1a mutants. However, we wondered whether SCs would 

maintain the same shapes seen in wildtype fish or if their shapes would also be altered in atoh1a 

mutants. In the atoh1a:mRuby line, the mRuby fluorophore was inserted into the coding sequence of 

the atoh1a gene, disrupting its function but acting as a readout for atoh1a promoter activity. This knock-
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in line enables comparisons not only between wildtype, mutant, and heterozygous cell populations as a 

whole, but also between mRuby+ and mRuby- populations in each genotype.   

  

  In heterozygous fish, mRuby+ cells are localized to the center of the neuromast (Figure 7A; 

Supplemental Figure 6E). Cells classified as mRuby+ had fluorescence with z-score greater than 1 

(Figure 7B, Supplemental Figure 6C). Overall, the proportions of cells in each cluster were similar to 

those of wildtype fish (Supplemental Figure 6D,G). However, mRuby+ cells were differentially 

proportioned across clusters and highly enriched in cluster 4 (Figure 7C,D), which contains a high 

proportion of hair cells (Supplemental Figure 6H,I).  

  In homozygous mutant fish, mRuby+ cells were still found in the center of the neuromast even 

though they did not differentiate into HCs (Figure 7E,F; Supplemental Figure 6E). There was no 

statistically significant difference in the proportion of mRuby+ cells between heterozygous and 

homozygous animals (Χ2 = 1.8, df = 1, p = 0.18; Supplemental Figure 6F). mRuby+ cells in 

homozygotes were differentially distributed across clusters (Figure 7G,H; Supplemental Figure 6D,G). 

Relative to wildtype and heterozygotes, mutant fish had far fewer cells in cluster 4 (Figure 7H; 

Supplemental Figure 6D,G). By contrast, the number of mRuby+ cells in clusters 2 and 3 were 

expanded in mutants. For mRuby- cells, cluster 2 was expanded in mutants relative to heterozygotes 

(Figure 7D,H). These results suggest that loss of atoh1a function is associated with a loss of the HC 

shape phenotype, an effect mainly seen in mRuby+ cells. The loss of HCs did not result in the 

appearance of a new cell shape cluster but rather assignment of cells into existing shape clusters, 

mainly cluster 2. These results demonstrate that cell shape analysis can be used to query changes in 

phenotype in contexts where development has been perturbed. Additionally, these results show that in 

neuromasts some aspects of cell shape are genetically determined, rather than being solely due to 

other factors (such as position).  

 

Shape Modes Can Be Used to Classify HCs  

  We next examined the distribution of CSM1 scores from atoh1a heterozygous and mutant fish. 

We found that the distribution of CSM1 scores in heterozygotes resembled that of wildtype fish, with 

HCs associated with positive scores (Figure 7I, top and middle). By contrast, the distribution of CSM1 

scores in homozygous mutants was no longer bimodal (Figure 7I, bottom) and was skewed negative 

and corresponded to the distribution of SCs in wildtype and heterozygous animals. CSM1 therefore 

captured the variation in shape between the two broadly defined neuromast cell populations (HCs and 

SCs) and was predictably perturbed in mutants lacking HCs.  

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



The distinction between HCs and SCs in CSM1 scores suggested that cell shape modes may 

contain sufficient information for classification. We trained a logistic regression classifier to predict HC 

identity given the first eight cell shape mode scores (CSM1-8). The Receiver Operating Characteristic 

(ROC) curve indicated robust classifier performance with Area Under the Curve (AUC) of 0.96 (Figure 

7J). Despite the imbalance of classes in the dataset (77% SCs and 23% HCs), the classifier correctly 

labeled most (78%, 100/128) of the HCs in the test set, while few SCs (5%, 22/422) were incorrectly 

labeled as HCs (Figure 7K). We also asked if HCs could be classified using nucleus shape features, 

training a classifier using the first four nucleus shape modes (NSM1-4). The nuclear shape classifier 

performed similarly well to one using cell shape features (AUC score = .0.96; data not shown). 

Therefore, nuclear shape features can also be used to classify HCs from SCs.  

  To visualize the shape characteristics associated with HC identity, we created a 3D 

reconstruction of the idealized mean HC and SC in the dataset by calculating the mean CSM1-8 scores 

for each cell type and deriving the corresponding SHE coefficients (Figure 7L). As expected, the 

“average” HC has a flask-like morphology, while the “average” SC has a concave shape. These results 

demonstrate the utility of cell shape features both for describing and classifying cell types.  

 

Discussion  

  Cells transition through states as they grow, divide, and differentiate. Measuring gene 

transcription has proven to be a powerful method for understanding and classifying cell types. However, 

cells can change in ways that are not necessarily reflected in RNA transcript levels (Marklein et al., 

2016; Gerbin et al., 2021). Cell shape analysis offers another avenue to quantitatively characterize and 

classify cells. Methods to encode cell shape in an unbiased, high dimensional representation have 

been employed with great success to cells in culture (Pincus et al., 2007; Keren et al., 2008; Viana et 

al., 2023). However, most studies of cell shape in living, developing animals have relied on 2D 

projections of cells or representative 3D geometric features, which may not capture many aspects of 

cell shape in these tissues. In this study, we use SH and PCA to encode cell shape information in a 

more complete, unbiased fashion, allowing for data-driven analysis of the relationships between cell 

shape and fate.   

  A primary goal of our study was to understand the relationship between neuromast cell shape 

and established indicators of cell identity. If cell shape and markers for neuromast cell fate were tightly 

correlated, then it might be possible to classify cell types using shape features. Our results suggest that 

this relationship was true of HCs, since we were able to build a logistic classifier for HCs using our 
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shape modes. When we performed unsupervised clustering of cells in shape space, there was a high 

degree of overlap between HC identity and one of the clusters (HCs comprised 79% of cluster 4). We 

believe similar methods could be used to build classifiers for cell types in other developmental contexts, 

potentially allowing for cell fate to be predicted from image-based data without expression of cell fate 

markers.  

The association between cell shape and SC subtypes was more nuanced. In our clustering 

analysis, DV cells defined by sost:NLS-Eos and peripheral cells defined by sfrp1a:NLS-Eos were 

enriched in distinct clusters. However, these clusters also contained substantial proportions of cells not 

expressing the marker. Given that SCs act as multipotent progenitors (Thomas et al., 2019; Romero-

Carvajal et al., 2015; Viader-Llargues et al., 2018) we speculate that perhaps the more continuous 

distribution of SC shapes may reflect this plasticity. In contrast, HCs are a terminally differentiated cell 

type, which may be represented in their more distinct cell shape phenotype. A caveat is that our cutoff 

for considering a cell positive for a marker was relatively strict. In addition, our transgenic reporters may 

not always reflect the cells most recently expressing the transgene due to the high stability of the NLS-

Eos protein (Cruz et al., 2015). Future studies using other methods to label SC subpopulations with 

genetic markers, such as RNA-FISH, could further elucidate the connection between gene expression 

and cell shape in neuromasts. More broadly, cell shape analysis could be integrated with other cellular 

properties, such as RNA transcript expression, protein expression and organelle location.  

  We were also interested to see whether nuclear shape could be used to classify cell types. 

Because nuclei are often easier to label and segment, nuclear shape representations may be more 

readily attainable in some developmental biology contexts. We found that nuclear shape could be used 

to reliably classify HCs from SCs. However, compared to cell shape features, nuclear shape features 

did not appear to distinguish as strongly between the SC subpopulations we tested in this study. 

However, nucleus shape may still be informative in other ways – we observed spatial patterns in 

nucleus shape within neuromasts, which may represent differences in cell type or state that were not 

tested in this study. Analysis of nucleus shape may also be more amenable to other tissues where cell 

membranes may not be easily resolved, allow more rapid collections of larger datasets, or allow 

analysis of cell types whose cell shapes are not amenable to SH analysis. More broadly, we imagine 

that cell shape, nuclear shape, or a combination of the two may be useful as predictors of cell fate in 

different tissues.  

  In many developmental contexts, it remains unclear how genetic factors determine cell shape. 

We observed that loss of function in atoh1a results in the large reduction of the cluster associated with 

HCs and concurrent increases in existing clusters, but does not lead to generation of a new shape 

cluster. Similarly, during an RNAi screen for morphological complexity in Drosophila Kc cells, RNAi 
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knockdown typically did not generate new shapes but instead changed distributions of pre-existing, 

wildtype shape states (Yin et al., 2013). It would be illuminating to explore other genes and signaling 

pathways that may pattern cell shape within neuromasts. For example, Fgf signaling has been shown 

to be required for apical constriction and rosette formation in the lateral line primordium (Harding and 

Nechiporuk, 2012; Ernst et al., 2012). Applying cell shape analysis to query other genetic and 

pharmacological perturbations could elucidate how cell shape in neuromasts is regulated by different 

signaling pathways.  

Previous work has proposed that HC death might induce cell shape changes and tissue 

deformations that trigger SCs to proliferate; this idea originates from observations that (1) mechanical 

strain and cellular spreading induce proliferation in some contexts (Chen et al., 1997; Watt et al., 1988; 

Benham-Pyle et al., 2015) and (2) SC shape change during HC death is positively correlated with an 

organism’s HC regeneration capability (Burns et al., 2013; 2014). Mechanical cues and cell density 

might also act as a brake on proliferation during regeneration, similar to what has been observed during 

development in the murine utricle (Gnedeva et al., 2017).  Quantifying cell shape change during HC 

death or targeted ablation of neuromast cells could query the role of cell shape in regulating 

proliferation and regeneration. Of particular interest is Yap, a transcriptional coactivator that regulates 

cell proliferation downstream of mechanical cues (Piccolo et al., 2014) known to play a role in regulating 

proliferation during development and regeneration of HCs in mammals (Rudolf et al., 2020; Gnedeva et 

al., 2020; Kastan et al., 2021). Coupling cell shape analysis with reporters for Yap activity could shed 

light on whether cell shape change acts upstream of Yap-induced cell proliferation. Cell shape analysis 

could also be combined with techniques to measure and perturb mechanical forces.   

  Previously, Hartmann and colleagues (2020) analyzed 3D cell morphology in the migrating 

posterior lateral line primordium using a novel method (ISLA-CBE) based on point cloud morphometry. 

A strength of ISLA-CBE is that rotational variation can be minimized using a pairwise distance 

transformation. In addition, ISLA-CBE is not limited only to cells that can be accurately spherically 

parameterized. However, ISLA-CBE does not easily allow cell shapes to be reconstructed from any 

point in feature space, an advantage of our method. We anticipate that both methods will be useful in 

the future, as the ideal method of cell shape encoding will likely depend on the context and goals of the 

study.  Although the method of encoding cell shape was different, we observed some commonalities 

with this study. Our observations suggested that HCs represent a discrete morphological state from 

SCs, while SCs appeared to vary more continuously in shape. Similarly, Hartmann and colleagues 

(2020) observed a continuous spectrum of shapes, without distinct clusters, in the lateral line 

primordium. Together, these results suggest a model whereby initially, cells in the lateral line vary 

continuously in shape, but as HCs differentiate, they emerge as a discrete shape. How early these 
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patterns develop and whether they change over time or remain static during neuromast deposition and 

maturity, could be addressed in future studies.  

  Although our study looked only at homeostatic, mature neuromasts at one time point, we 

believe the cell shape representation used here could be valuable for integrating information across 

multiple spatial and temporal scales. Using time lapse imaging and cell tracking, it would be possible to 

study dynamic cell shape changes during HC development, death, and regeneration. We envision that 

cell shape states could be ordered along trajectories that represent developmental time, analogous to 

pseudotime analysis employed in single cell RNA sequencing studies. In addition, shape analysis can 

be applied to understand the morphologies of whole tissues and organs (Dalmasso et al., 2022). 

Combining pseudotime analysis with tissue-scale measurements can elucidate the relationship 

between individual cell shape change and tissue/organ morphogenesis, as has been demonstrated in a 

study of amphioxus notochord development (Andrews et al., 2021). Quantifying how these relationships 

evolve as the animal grows could shed light into how individual cell shape changes and movements 

shape organs, as well as how, conversely, the shape of organs constrains individual cell shape. 

Comparative cell shape studies could also be done between different sensory epithelia in the same 

organism or even between different species or ages, which could inform evolutionary relationships. 

 

Limitations of the Study  

  Our machine-learning based method to segment cells may well be specific to the specific 

labeling conditions of our transgenic line and our live imaging methods.  In addition, the method was 

only semi-automated and required some manual curation and correction.  We may see improvement if 

we retrain the model with this expanded, corrected dataset as the ground truth.  However additional 

adjustments would likely be needed for cells labeled with other reagents.  As more sophisticated 

methods for automated segmentation become available, e.g. Cellpose (Pachitariu and Stringer, 2022), 

alternative pipelines may require less supervision.  We also note that the resulting cell and nuclear 

shapes will likely be influenced by the specific characteristics of fluorescent labels and segmentation 

algorithms used, which will in turn influence subsequent SH analysis.  We therefore constrained our 

analysis to the same nuclear and membrane label across different fish lines. 

In the SH-based approach used here, all points on the surface of the cell must be able to be 

mapped onto a sphere to generate accurate reconstructions. However, some of our cells are sufficiently 

concave that this is not possible, since a line drawn from the center to the outside of the surface would 

intersect the surface more than once. Since this problem likely extends to other cell types beyond 

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



neuromasts, there is a need for other 3D cell shape analysis methods that can better represent 

complex, concave shapes. Development and application of alternative methods for spherical 

parameterization and SH expansion offer one potential solution to this problem. For example, Dalmasso 

and colleagues (2022) represented cell shapes as signed distances from concentric spheres, which 

enabled them to represent concave structures of mouse limbs. Another method using 4D hyperSH 

enables multiple disjointed objects to be parameterized together, and also enables representation of 

shapes with gaps or holes (Pasha Hosseinbor et al., 2015). There are also alternatives to SH for data-

driven 3D shape representations, including deep learning approaches such as autoencoders (De Vries 

et al., 2022). With the rate of exciting developments in the field, we expect that many methods will be 

available to study cell shape in a variety of contexts in the future.  

 

Materials and methods  

Fish lines  

Experiments were conducted on 5 dpf larval zebrafish (Danio rerio). The following zebrafish lines were 

used for these studies:  Tg(-8.0cldnb:LY-EGFP)zf106Tg [RRID:ZDB-ALT-060919-2] (Haas and Gilmour, 

2006), sostw215Tg [RRID: ZDB-ALT-190909-10] , sfrp1aw217Tg
 [RRID:ZDB-ALT190909-6] (Thomas and 

Raible, 2019), atoh1aw271Tg (this paper).  Animals were used at a stage before sex is determined. 

 

Generation of atoh1aw271Tg  

  The atoh1aw271Tg line was generated by CRISPR-Cas9 knock-in of the mRuby fluorophore into 

the coding sequence of the endogenous atoh1a locus, as previously published (Thomas and Raible, 

2019; Kimura et al., 2014). Homozygotes exhibit phenotypes consistent with atoh1a loss of function, 

such as hearing and vestibular defects, and are viable until approximately 10 days post fertilization 

(dpf).  
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Fish handling  

  Prior to experiments, embryos and larvae were raised in E3 embryo medium (14.97 mM  

NaCl, 500 μM KCL, 42 μM NaHPO4, 150 μM KH2PO4, 1 mM CaCl2dehydrate, 1 mM MgSO4, 0.714 mM 

NaHCO3, pH 7.2) at 28.5°C. Zebrafish larvae were fed rotifers daily from 4 dpf onwards. Experiments 

used zebrafish at 5 dpf, a stage before sex is determined.  Zebrafish experiments and husbandry 

followed standard protocols in accordance with University of Washington Institutional Animal Care and 

Use Committee guidelines.  

 

DRAQ5 staining  

  On the day of imaging, DRAQ5 dye (Thermo-Fisher) was diluted in E3 embryo medium to a 

working concentration of 5 µM. 5 dpf larval zebrafish were incubated in this solution for approximately 1 

hour, then prepared as described in “Preparation of larvae for live imaging.” We observed best results 

when the fish were incubated in DRAQ5 no longer than 1 hour and immediately prepared for imaging 

afterward.  

 

Photoconversion of NLS-Eos  

  For experiments done with sost:NLS-Eos or sfrp1a:NLS-Eos lines, larvae were photoconverted 

using an iLumen 8 UV flashlight (purchased from Amazon) for 15-20 minutes. Photoconversion was 

done by placing fish in a 60 × 15 mm petri dish, removing the petri dish lid, and placing the UV flashlight 

directly over the dish within a box lined with aluminum foil.  

 

Preparation of larvae for live imaging  

  Fish were transferred to E3 embryo medium containing approximately 1.5 mM MESAB to be 

anesthetized. Once larvae were suitably anesthetized, they were mounted on slides with bridged 

coverslips in 1.2% low melting point agarose. Fish were mounted in a standard orientation of anterior 

facing left and dorsal up.  
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Confocal imaging  

  Imaging was performed using a Zeiss LSM 880 with Airyscan (Huff, 2015) equipped with a Zeiss 

C-Apochromat 40x/1.2W numerical water objective. Imaging was performed at room temperature 

(approximately 25°C). For each fish, several anterior neuromasts were imaged. Neuromasts were 

chosen from a list based on which had the most ideal orientations in the fish being imaged (e.g. those 

neuromasts closest to the coverslip with apical-basal axes roughly parallel to the axial plane/Z-axis of 

imaging). 633 nm, 561 nm, and 488 nm lasers were used for excitation. Gain was adjusted for different 

transgenes but kept constant across experiments with the same transgene. Images were collected with 

physical voxel size of 0.05 x 0.05 x 0.22 µm3. All images were captured using the Zen Black acquisition 

software (Zeiss). Minimal cell death was observed during imaging; any neuromasts exhibiting 

significant amounts of cell death were excluded from further analysis.  

 

Image preprocessing  

  Using Zen Blue, Airyscan Processing was applied to all raw images using the default settings for 

pixel reassignment and deconvolution. Next, a custom Python script using the aicsimageio package 

(Brown et al., 2021) was used to remove any unneeded channels and export the CZI files to TIFFs. The 

original CZI files were kept to ensure access to the original acquisition metadata. To correct for xy drift 

between z-slices, StackReg was used, either through the MultiStackReg FIJI plugin or a custom script 

using the pystackreg Python port of StackReg (Thevenaz et al., 1998). Using the “rigid body” method 

and “previous” setting for the reference, transformation matrices were calculated for the membrane 

channel, saved, and applied to all channels in the image. Images were manually inspected following 

stack registration to ensure appropriate drift correction.  

  Occasionally, imaging acquisition errors or z drift caused either duplication of z slices within the 

stack or the need to acquire additional z-slices to cover the entire neuromast. In cases where this could 

be easily manually corrected, duplicated z-slices were deleted, or two zstacks were concatenated 

together to cover the entire neuromast. These manual corrections were done using FIJI (Schindelin et 

al 2012) prior to stack registration.  
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Training of machine learning models for detection of nuclei and membranes  

  Models to detect neuromast nuclei and membranes were trained using the iterative deep 

learning workflow of the Allen Cell and Structure Segmenter (Chen et al., 2018). For the membrane 

model, preliminary segmentations of cell boundaries were initially generated using the lamin B1 

workflow from the Segmenter. The “Curator” tool from the Segmenter was used to mask out areas of 

the images that were not segmented accurately. The original membrane model was trained on a 

dataset of 14 neuromasts labeled with Tg(-8.0cldnb:LY-EGFP). The membrane model predictions were 

thresholded and used as input for an interactive distance transform watershed segmentation workflow. 

Upon generating the label images, the find_boundaries function from scikit-image (van der Walt et al., 

2014) was used to generate watershed lines, which was used as input to train a second membrane 

model with improved performance. This process was repeated once more with a new dataset of 9 Tg(-

8.0cldnb:LYEGFP) neuromasts stained with DRAQ5, except labeled nuclei were used to generate 

seeds for the watershed instead of the distance transform. The results were used to train the third 

membrane model, which was used for instance segmentation (delineation of individual objects) of all 

the images in this study.  

  To generate the nucleus mask model, the “H2B coarse” model provided by AICS22 was used to 

generate preliminary nucleus predictions. The predictions were thresholded, and the membrane 

intensity image (or membrane boundary predictions) were used to “split” the nuclei (as described in 

“Instance segmentation”). Similar to the refinement for the membrane model, a distance transform 

watershed workflow was applied to thresholded nuclei predictions to generate labeled nuclei, which 

were converted to binary masks and used to train the first nucleus mask model. This process was 

repeated (starting from the model 1 predictions instead of the H2B coarse model predictions) to 

generate a second nucleus mask model with improved performance, which was used for all the images 

in this study.  

 

Instance segmentation  

  Instance segmentation of nuclei was done in a semi-automated, interactive fashion using a 

custom Python script. The Python packages napari (Soferoniew et al., 2022) and magicgui (Lambert et 

al., 2023) were used to create a graphical user interface for this step, enabling parameter tuning, 

interactivity, and manual annotations when needed.  

  First, the nucleus mask predictions and cell boundary predictions were binarized using 

thresholds of 0.6 and 0.4, respectively. These thresholds were selected a balance between capturing 
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intensity signal corresponding to the structures of interest and minimizing artifacts due to noise. The 

binarized membrane predictions were used to “split” falsely merged nuclei in the binarized nucleus 

mask predictions, using one of two methods. For experiments not involving NLS-Eos transgenes, the 

nucleus mask splitting was done fully automatically (e.g. wherever the membrane mask value was 1, 

the corresponding pixels in the nucleus mask were set to 0). For experiments involving NLS-Eos 

transgenes, incomplete photoconversion and/or ongoing transgene expression can cause some signal 

in the nuclei in the green channel, where the membranes are also imaged. This overlap can create 

artifacts when the cell boundary model is applied. To circumvent the issue, an alternative “interactive” 

nucleus splitting strategy was devised. For interactive nucleus splitting, regions of interest (ROIs) were 

manually drawn sliceby-slice in areas where splitting was desired using the shapes tool in napari. Then, 

only these regions within the membrane mask were considered during the splitting process.  

  Following nucleus splitting, individual nuclei were labeled using distance transform watershed. 

First, the Euclidean distance transform of the nucleus mask was calculated and smoothed using a 

Gaussian kernel. Next, the local maxima of the smoothed distance transform were calculated using the 

peak_local_max function from scikit-image. The local maxima were then used as markers for a 

watershed segmentation using the inverted distance transform as the input. The sigma parameter for 

the Gaussian smoothing of the distance transform and the minimum distance parameter for the 

peak_local_max function were adjusted interactively to yield the best results for each image. Remaining 

segmentation errors were corrected by manual annotation using a Wacom Cintiq 16 drawing tablet and 

built-in labels layer tools in napari.  

  To segment cells, the segmented nuclei were used as markers for a watershed segmentation 

(Beucher and Lantuejoul, 1979) with the cell boundary predictions (i.e. the raw, unthresholded output of 

the membrane model inference) as input. The resulting preliminary cell labels were post-processed to 

remove small objects and manually corrected using a Wacom Cintiq 16 drawing tablet and built-in 

labels layer tools in napari.  After segmentation, each field of view was manually inspected, and some 

cells were excluded for quality control (e.g. due to having poor signal or extending beyond the edge of 

the field of view). 164 cells were manually excluded in this way.  

 

Cell dataset preparation  

  Prior to running the cell variance analysis pipeline (Viana et al., 2023) individual cells from the 

raw and labeled whole neuromast images were cropped, subsampled in z to obtain isotropic voxel size, 
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and saved as individual images. A custom Python script was used to prepare cropped single cells and a 

manifest.csv file compatible with the pipeline.  

 

Cell and nucleus alignment  

  Cells were aligned using a series of three rotations. The first rotation was done with reference to 

the neuromast organ. The neuromast centroid was calculated from a mask representing the whole 

neuromast (created from the cell segmentation channel). For each cell, the relative position of the cell 

centroid to the neuromast centroid was used to calculate the angle between the cell centroid and the x-

axis. The corresponding cropped image of the cell was then rotated around the z-axis by this angle to 

minimize variation originating from the rosette structure of the neuromast.   

  The second and third rotations were done with reference to the cropped cell only. For the 

second rotation, the cropped image of the cell was rotated such that the long axis of the cell projected 

in the xz-plane was aligned to the z-axis. For the second rotation, the cropped image of the cell was 

rotated such that the long axis of the cell projected in the yz-plane was aligned to the z-axis, unless this 

angle would be greater than 45 degrees. In that case, the yz long axis was aligned to the y-axis 

instead. This adjustment prevented cells from being incorrectly rotated by 90 degrees if their long axis 

was in the horizontal plane.  

  To generate the nucleus shape space, the nuclei were aligned separately from the cells. The 

procedure was the same as for the cells, except for the second rotation which also was constrained to 

be no greater than 45 degrees. If the angle would be greater than 45 degrees, the long axis of the 

nuclei in the xz-plane was aligned to the x-axis instead of the z-axis.  

 

Spherical harmonics parameterization  

  Following cell dataset preparation and alignment, SH coefficients for each cell and nucleus were 

calculated using the cvapipe_analysis package (Viana et al., 2023) First, the “loaddata” step was run 

with the prepared manifest.csv, then the “computefeatures” step was run. To determine the degree of 

expansion (Lmax) for SH parameterization, we plotted several metrics of reconstruction fidelity for 

different values of Lmax using a subset of the data. As Lmax increases, shapes can be reconstructed with 

greater detail, but higher L
  

max values incur  
 
additional computational costs and exhibit 

diminishing returns in reconstruction fidelity. We 
 
selected an Lmax of 32 as a value around which 
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reconstruction fidelity plateaued, which yielded 2178 coefficients. The directed Hausdorff distance 

(Huttenlocher et al., 1993), which represents 
 
the furthest distance between the closest points on the 

original and reconstructed meshes, was used as a measure of reconstruction error. A Gaussian mixture 

model was used to identify cells belonging to the second peak in the reconstruction error distribution, 

which were subsequently excluded from cell shape analysis.  

 

Principal components analysis and unsupervised clustering  

  Principal components analysis (PCA) was performed using the Python library scikit-learn  

(Pendregosa et al., 2011). To create “shape modes,” PCs were z-scored (i.e. the values for each PC 

were divided by their respective standard deviation). Visualizations of cells in shape space were 

generated by applying the inverse PCA transform to generate corresponding SHE coefficients, which 

were then used to generate 3D reconstructions using the aics-shparam package.10 Reconstructions 

were visualized in 3D using ParaView (Ahrens et al., 2005).  

  Clustering was performed using the Python package Phenograph (Levine et al., 2015) with the 

Leiden algorithm for community detection (Traag et al., 2019). For analysis of cell shape, the first eight 

PCs were used for clustering; for nuclear shape, the first four PCs were used. These PCs explained 

70% and 76% of total variance, respectively. The Uniform Manifold Approximation and Projection 

(UMAP) implementation from the Python package umap-learn was used to project the data in two 

dimensions for visualization (McInnes et al., 2018) Partition based graph abstraction (PAGA) was 

performed using the scanpy Python package (Wolf et al., 2018; 2019) PAGA was used to initialize the 

layout of UMAPs.  

 

Quantification of fluorescence intensity of transgenes  

  For reporter lines expressing nuclear localized Eos, sost:NLS-Eos and sfrp1a:NLS-Eos, the 

mean intensity within each cell was calculated using the segmented nuclei as masks. For 

atoh1a:mRuby, which has cytoplasmic mRuby localization, the mean intensity within each cell was 

calculated using the segmented cell as masks. Because intensities of fluorescent proteins from 

targeted insertions can vary between individual neuromasts and fish, we z-scored the mean intensities 

for each neuromast and used a threshold of 1 to determine cells “positive” for a marker. In other words, 

the mean intensity of fluorescent protein within a cell needed to be at least one standard deviation 

above the mean for that neuromast to be classified as “positive” for that protein.  
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Measurement of cell location and shape features  

  Locations of neuromast cells were estimated using the x and y coordinates of the cell 

segmentation centroids. The neuromast centroid was calculated by using the cell segmentation channel 

to generate a mask representing the whole neuromast. For each cell, the distance between the cell 

centroid and neuromast centroid in the xy plane was calculated. This distance was normalized to that of 

the cell with the greatest distance from the neuromast centroid to account for differences in neuromast 

size (Vlader-Llargues et al., 2018).  

  We used the first alignment rotation angle to approximate the angular location of each 

neuromast cell. This angle represents the angle between the neuromast x-axis (which extends from the 

neuromast centroid) and a vector drawn from the cell centroid to the neuromast centroid in the xy-plane 

(Figure 2B). In our images, the neuromast x-axis is approximately parallel to the anterior-posterior body 

axis of the fish. Lateral line neuromasts can be polarized in one of two ways relative to the 

anteroposterior body axis: parallel or perpendicular (LopezSchier et al., 2004). Because our dataset 

contained neuromasts of both types, we standardized the orientations of the neuromasts by adjusting 

the angles of perpendicular neuromasts using the following formula: 

𝑖𝑓𝑜 ≤ 90: 𝑎 = 𝑜 + 90 

𝑖𝑓𝑜 > 90: 𝑎 = 360 − (𝑜 + 90) 

where o is the original angle, and a is the adjusted angle. This is equivalent to rotating a perpendicular 

neuromast 90 degrees counterclockwise such that its dorsoventral axis is aligned with the 

anteroposterior body axis. The decision to rotate counterclockwise was based on the fact that Emx2 is 

expressed in the anterior region of parallel neuromasts and the dorsal region of perpendicular 

neuromasts (Jiang et al., 2017). The radial distances and angular locations of each cell were combined 

to plot the locations of neuromast cells on polar coordinates.  

  Other shape measurements, such as volume, height, etc. were obtained as outputs of the 

cvapipe_analysis computefeatures step (Viana et al., 2023)  

 

Logistic regression classification  

  Logistic regression was performed using the Python package scikit-learn (Pedregosa et al., 

2011). The data were split into an 80/20 ratio of training data to test data. The test and train subsets 

were split such that both had similar proportions of HCs. The logistic regression model was trained to 
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classify HCs on the train subset, using one or more shape modes as predictor variables. The trained 

model was then applied to the testing subset to generate the ROC curves and confusion matrices.  

 

Statistical Analysis  

Chi-square analysis was used to distinguish distribution differences among groups, using the 

Python package SciPy (Virtanen et al., 2020).  
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Figures 
 

 

 

Fig. 1. Overview of segmentation and shape parameterization  

(A) Representative maximum intensity projections (left column) and corresponding 3D projections 

(right column) for nuclei labeled by DRAQ5 dye (top row), cells labeled by Tg(-8.0cldnb:LY-EGFP) 

(middle row), and both channels together (bottom row).  
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(B) Image depicting how the first rotation angle is calculated. Example given for the maximum 

intensity projection segmentation channel of the neuromast shown in (A). Cells 1, 2, and 3 are used in 

(C) and (D).  

(C) Example of the alignment procedure as applied to cell 1 from (B). To correct for radial symmetry, 

cells are first rotated around the z axis. Cells were then rotated around the y axis to correct for 

apicobasal tilt, and then around the x axis to correct for off-parallel tilt during imaging.  

(D) Overview of shape parameterization using SH, as applied to cells 1, 2, and 3 from (B). SH 

expansion is applied to original 3D surface meshes (left) to generate the cell-by-SHE coefficients table 

(middle) which can then be used to generate 3D reconstructions (right).   
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Fig. 2. Visualization of cell shape modes 1 and 2  

(A) Schematic depicting how shape variation was visualized. PCs were first z-scored to generate 

shape modes. Visual representations of each shape mode were generated by finding the mean cell (a 
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hypothetical cell with a value of 0 for all 8 shape modes) and varying one shape mode (here, shape 

mode 1) by up to 2 standard deviations (sd) while holding other shape modes at the mean (0).  

(B) Schematic depicting how relative cell locations within each neuromast were calculated. The 

distance between the neuromast centroid and the furthest cell (r) in the XY plane was calculated. The 

distances between the neuromast centroid and cell centroids were divided by (r) to yield the normalized 

distance from the neuromast center (d). The angular location of each cell was determined in reference 

to the positive x-axis centered on the neuromast centroid. Cell locations were projected onto a unit 

circle with radius 1.  

(C) Visualization of CSM1, generated as described in (A). 3D surface renderings are shown from 3 

different views, as well as an overlay of point representations for each view (rightmost column).  

(D) Polar plots of relative cell locations (generated as shown in B) binned by CSM1 scores. Bins 

were centered on the corresponding z-score and included cells with values within 0.5. For the -2 sd and 

2 sd plots, the upper bounds were not limited to within 0.5 (e.g. the first plot includes all cells with 

CSM1 values < -1.5 sd). An overlay of the first 5 plots is shown in the rightmost column.  

(E) Visualization of CSM2. 3D surface renderings are shown from 3 different views, as well as an 

overlay of point representations for each view (rightmost column).  

(F) Polar plots of relative cell locations binned by CSM2 scores. An overlay of the first 5 plots is 

shown in the rightmost column.  
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Fig. 3. Visualization of nuclear shape modes 1 and 2  

(A) Visualization of NSM1, generated as in Figure 2A. 3D surface renderings are shown from 3 

different views, as well as an overlay of point representations for each view (rightmost column).  

(B) Polar plots of relative cell locations (generated as in Figure 2D) binned by NSM1 scores. An 

overlay of the first 5 plots is shown in the rightmost column.  

(C) Visualization of NSM2. 3D surface renderings are shown from 3 different views, as well as an 

overlay of point representations for each view (rightmost column).  

(D) Polar plots of relative cell locations binned by NSM2 scores. An overlay of the first 5 plots is 

shown in the rightmost column.  
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Fig. 4. Unsupervised clustering of cells in shape space  

(A) UMAP of neuromast cells, color coded by cell shape cluster. Colors and associated cluster numbers 

are used in (B-F).  

(B) PAGA plot of cell shape clusters. Each node represents a cluster. Thickness of the line drawn 

between nodes indicates estimated connectivity between clusters (the value of which is shown 

adjacent to the corresponding line). Edges with connectivity below 0.1 are not depicted.  
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(C) 3D projections of representative cells for each cluster, defined as the cell closest to the cluster 

centroid in eight-dimensional PC space.   

(D) Polar plots of relative neuromast locations of cells within each cluster.  

(E) Distributions of the cell distance from the neuromast center for each cluster. Dashed lines indicate 

quartiles.  

(F) Distributions of neuromast cell angles for each cluster. Dashed lines indicate quartiles. Angles were 

calculated with reference to the positive x-axis extending from the neuromast centroid. Cluster 1 

shows a bias towards the dorsoventral poles (90, -90), while cluster 2 shows a bias to the anterior-

posterior compartments (0, 180, -180).    
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Fig. 5. Unsupervised clustering of nuclei in shape space  

(A) UMAP of neuromast cells, color coded by nucleus shape cluster. Colors and associated cluster 

numbers are used in (B), (C), (D), (E), and (F).  

(B) PAGA plot of nucleus shape clusters. Each node represents a cluster. Thickness of the line drawn 

between nodes indicates estimated connectivity between clusters (the value of which is shown 

adjacent to the corresponding line). Edges with connectivity below 0.1 are not depicted.  
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(C) 3D projections of representative cells for each nuclear cluster, defined as the cell closest to the 

cluster centroid in four-dimensional PC space. The original segmentation masks are depicted (not 

SHE reconstructions).  

(D) Polar plots of relative locations of cells within each cluster.  

(E) Distributions of the cell distance from the neuromast center for each cluster. Dashed lines indicate 

quartiles.   

(F) Distributions of neuromast cell angles for each cluster. Dashed lines indicate quartiles. Angles were 

calculated with reference to the positive x-axis extending from the neuromast centroid.  
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Fig. 6. Location and shape characteristics of cells expressing sost:NLS-Eos and sfrp1a:NLS-

Eos  

(A) Single confocal slice of a neuromast from sost:NLS-Eos; Tg(-8.0cldnb:LY-EGFP) fish stained with 

DRAQ5. Image contrast was adjusted for visibility.  

(B) The same slice as in (A), with the sost:NLS-Eos channel (gray) overlaid with a mask indicating cells 

classified as Eos+ (dark cyan).  
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(C) Polar plot showing relative cell locations of locations of Eos+ (dark cyan) and Eos- (gray) cells.  

(D) UMAP of Eos+ (dark cyan) and Eos- (gray) cells from sost:NLS-Eos.  

(E) sost:NLS-Eos+ cells plotted as raw counts within each cell shape cluster.  

(F) sost:NLS-Eos+ cells plotted as the percentage of each cluster.  

(G) Single confocal slice of a neuromast from sfrp1a:NLS-Eos; Tg(-8.0cldnb:LY-EGFP) fish stained with 

DRAQ5. Image contrast was adjusted for visibility.  

(H) The same slice as in (A), with the sfrp1a:NLS-Eos channel (gray) overlaid with a mask indicating 

cells classified as Eos+ (dark cyan).  

(I) Polar plot showing relative cell locations of locations of Eos+ (dark cyan) and Eos- (gray) cells.  

(J) UMAP of Eos+ (dark cyan) and Eos- (gray) cells from sfrp1a:NLS-Eos.  

(K) sfrp1a:NLS-Eos+ cells plotted as raw counts within each cell shape cluster.  

(L) sfrp1a:NLS-Eos+ cells plotted as the percentage of each cluster.  
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Fig. 7. Shape characteristics of atoh1a:mRuby heterozygotes and mutants and logistic classifier 

for hair cells based on cell shape features  

Analysis of cell shape distributions in atoh1a:mRuby heterozygotes (A-D) and mutants (E-G).   

(A, E) Single confocal slice of a neuromast from a atoh1a:mRuby heterozygote (A) and mutant (E) also 

expressing Tg(-8.0cldnb:LY-EGFP) and stained with DRAQ5. Image contrast was adjusted for visibility.  

(B, F) The same slices as in (A) and (E), with the atoh1a:mRuby channel (gray) overlaid with a mask 

indicating cells classified as mRuby+ (dark cyan) for a atoh1a:mRuby heterozygote (B) and mutant (F).  

(C, G) UMAP of mRuby+ (dark cyan) and mRuby- (gray) cells from atoh1a:mRuby heterozygotes (C) 

and mutants (F).  
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(D, H) Proportions of mRuby- cells (left bar) and mRuby+ cells (right bar) from atoh1a:mRuby 

heterozygotes (D) and mutants (H) in each cell shape cluster.  

(I) Distributions of cell shape mode 1 scores, separated by genotype (top row: wildtype; middle row: 

atoh1a heterozygous; bottom row: atoh1a mutant). Hair cells (hc, green); support cells (sc, orange).  

(J) Receiver Operating Characteristic (ROC) curve (fuchsia) for a logistic regression classifier trained to 

detect hair cells based on cell shape mode 1-8. The Area Under the Curve (AUC) score is shown 

(0.96). Silver dashed line = performance of a random classifier.  

(K) Confusion matrix for the cell shape-based hair cell classifier. 0 = support cells; 1 = hair cells. Top 

left: true negatives; top right: false positives; bottom left: false negatives; bottom right: true positives.  

(L) The idealized mean cell shape for hair cells (top, orange) and support cells (bottom, green).  
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Fig. S1. 
(A) Distribution of reconstruction error, as measured by directed Hausdorff distance, for cell shape (top) and 

nuclear shape (bottom). Some cells were excluded from cell shape analysis (orange) due to high 
reconstruction error.  

(B) Polar plots showing relative locations of cells kept (left, blue) and excluded from cell shape analysis (right, 
orange). 

(C) Examples of well reconstructed (left) and poorly reconstructed (right) cells. 3D representations of the 
original mesh (top), reconstructed mesh (middle), and the associated Hausdorff distances (bottom) for two 
examples of each are shown.  

(D) Distributions of cell (top) and nuclei (bottom) shape features in kept (blue) and excluded (orange) cells. 

(E) Left: UMAP projection of cells in nuclear shape space (corresponding with Figure 5A) colored by whether 
they were kept (blue) or excluded (orange) from cell shape analysis. Middle: Excluded cells plotted as 
number  

(raw counts) for each nuclear shape cluster. Right: Excluded cells as a percentage of each nuclear shape 
cluster.  
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Fig. S2. 

(A) Distributions of shape mode scores for the first eight cell shape modes (CSM1-CSM8). Percent 
variance explained for each shape mode is provided in the upper right corner.  

(B) Polar plots showing relative locations of neuromast cells in the dataset, color coded by shape mode 
scores for CSM1-CSM8.  

(C) Overlaid 3D point view representations of CSM1-CSM8, generated by finding the mean cell and varying 
each shape mode by up to 2 standard deviations (sd) in increments of 1 sd while holding other shape modes 
at the mean (0).  
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(D) Top row: Correlations between cell volume (left), width (center), and distance from center (right) 

versus  cell shape mode 1 color coded by cell type. Bottom row: Correlations between cell height (left), 
depth (center), and distance from center (right) versus cell shape mode 2 color coded by cell type. The 
Pearson correlation coefficient (r) is displayed on each plot. SCs (green) and hair cells (orange).  

Fig. S3.  

(A) Side view of a 3D projection of a representative cell with its dimensions labeled.  

(B) Heatmap of correlations between cell shape mode 1, cell shape mode 2, and cell shape/location features. 

(C) Plot of cell shape mode 1 and cell shape mode 2 for SCs (green) and hair cells (orange).  
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Fig. S4. 

(A) Distributions of shape mode scores for the first four nucleus shape modes (NSM1-NSM4). Percent 
variance explained for each shape mode is provided in the upper right corner.  

(B) Polar plots showing relative locations of neuromast cells in the dataset, color coded by shape mode 
scores for NSM1-NSM4.  

(C) Overlaid 3D point view representations of CSM1-CSM8, generated by finding the mean cell and 
varying each shape mode by up to 2 standard deviations (sd) in increments of 1 sd while holding other 
shape modes at the mean (0).  
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Fig. S5. 

(A) Side view of a 3D projection of a representative nucleus with its dimensions labeled. 

(B) Heatmap of correlations between nucleus shape mode 1, nucleus shape mode 2, and nucleus 
shape/location features. 

(C) Plot of nucleus shape mode 1 and nucleus shape mode 2 for SCs (green) and hair cells (orange). 

(D) Top row: Correlations between nucleus width (left), height (center), and distance from center (right) versus 
nucleus shape mode 1 color coded by cell type. Bottom row: Correlations between nucleus depth (left), 
volume (center), and distance from center (right) versus nucleus shape mode 2 color coded by cell type. 
The Pearson correlation coefficient (r) is displayed on each plot. SCs (green) and hair cells (orange).   
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Fig. S6.  

(A) Distribution of mean sost:NLS-Eos intensities (z-scored) for cells in each cell shape cluster. Gray line 
represents intensity threshold (1 SD) used to label a cell as positive. 

(B) Distribution of mean sfrp1a:NLS-Eos intensities (z-scored) for cells in each cell shape cluster. Gray line 
represents intensity threshold (1 SD) used to label a cell as positive. 

(C) Distribution of mean atoh1a:mRuby intensities (z-scored) for cells in each cell shape cluster. Gray line 
represents intensity threshold (1 SD) used to label a cell as positive. 

(D) Proportions of cells in individual neuromasts belonging to each cluster, grouped by reporter expression and 
genotype (n=49 neuromasts). 

(E) Polar plots of relative cell locations of mRuby- cells (gray) and mRuby+ cells (dark cyan) in atoh1a:mRuby 
heterozygotes (left) and atoh1a:mRuby mutants (right). 

(F) Proportions of mRuby+ cells (dark cyan) and mRuby- cells (gray) in atoh1a:mRuby heterozygotes (left bar) 
and atoh1a:mRuby mutants (right bar). 

(G) Proportions of cells of each genotype - atoh1a:mRuby mutants, heterozygotes, and wildtype - belonging to 
each cell shape cluster. 

(H) Hair cells as raw counts (number) within each cell shape cluster. 

(I) Hair cells as a percentage of each cell shape cluster. 
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batch reporter # neuromasts # cells (pre-filter) # cells (post-filter) 
1 sfrp1a:nlsEos 7 453 383 
2 sost:nlsEos 10 824 676 
3 sfrp1a:nlsEos 6 459 371 
4 atoh1a:mRuby 10 560 496 
5 atoh1a:mRuby 5 295 244 
6 N/A (wildtype) 11 683 580 

Table S1. Summary of the dataset. Each batch represents a separate imaging session. All neuromasts 
were labeled with DRAQ5 dye in the Tg(-8.0cldnb:LY-EGFP) background; the “reporter” column indicates 
additional genetic labels. “Filter” refers to cells excluded for having high cell shape reconstruction error 
(see Fig. S1 for details).  
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