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wheat highlights the potential for genetic variation that could benefit hybrid breeding 

 

Abstract 

In the absence of pollination, female reproductive organs senesce leading to an irrevocable loss in 

the reproductive potential of the flower, which directly affects seed set. In self-pollinating crops like 

wheat (Triticum aestivum), the post-anthesis viability of unpollinated carpels has been overlooked, 

despite its importance for hybrid seed production systems. To advance our knowledge of carpel 

development in the absence of pollination, we created a high-throughput phenotyping approach to 

quantify stigma and ovary morphology. We demonstrate the suitability of the approach, which uses 

light microscopy imaging and machine learning, for the analysis of floral organ traits in field-grown 

plants using fresh and fixed samples. We show that the unpollinated carpel undergoes a well-

defined initial growth phase, followed by a peak phase (in which stigma area reaches its maximum 

and the radial expansion of the ovary slows), and a final deterioration phase. These developmental 

dynamics were consistent across years and could be used to classify male-sterile cultivars. This 

phenotyping approach provides a new tool for examining carpel development, which we hope will 

help advance research into female fertility of wheat. 

Keywords: carpel development, machine learning, stigma, ovary, wheat, hybrid breeding 

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t

mailto:scott.boden@adelaide.edu.au
mailto:cristobal.uauy@jic.ac.uk


Introduction 

The fertilisation of the pistil by a pollen grain is a vital event in the life cycle of a flowering plant as it 

contributes to the reproductive fitness of a species. In grasses, the pistil (or carpel) typically 

consists of an ovary bearing two styles densely covered by a feathery and dry-type stigma (Walker, 

1906, Heslop-Harrison and Shivanna, 1977). The stigmatic tissue plays a key role in successful 

fertilisation as it facilitates the interception and hydration of the pollen grain and mediates pollen 

tube growth into the stylodia branches towards the ovary containing the ovule (Heslop-Harrison, 

1979, Edlund et al., 2004). After successful fertilisation, the ovary undergoes growth and 

differentiation to develop into a grain. Under favourable growing conditions, the duration of carpel 

receptivity (or functionality) does not present a serious limitation to seed formation in self-

pollinating species, such as wheat (Triticum aestivum) or rice (Oryza sativa). However, 

environmental stresses such as heat and drought (Fabian et al., 2019, Onyemaobi et al., 2016, 

Mitchell and Petolino, 1988) or the absence of viable pollen (e.g., male sterile cultivars used in 

hybrid breeding (Kempe and Gils, 2011)) can affect normal seed set.  

Female floral organs have developed a series of survival mechanisms to secure seed set in the 

absence of self-pollination by increasing the likelihood of receiving pollen from neighbouring male 

fertile plants. Indeed, this process (directly or indirectly) has been harnessed by breeders to 

produce hybrid seeds in crops like maize (Zea mays), rice, barley (Hordeum vulgare), and wheat.  

In maize, one of the survival strategies described to increase pollen capture is silk (i.e., stigma) 

emergence and elongation from the husk (Westgate, 1993), while in wheat, the radial expansion of 

the unfertilised ovary pushes the floret open facilitating the access to airborne pollen, a 

phenomenon known as the “second opening” (Molnár-Láng et al., 1980, Okada et al., 2018). 

However, if pollination still does not occur after a specific time, which varies between species 

(Primack, 1985, Ashman and Schoen, 1994), a series of developmental processes leads to the 

senescence of the floral organs and the irreversible loss of reproductive potential (Carbonell-

Bejerano et al., 2010). For example, in several plants, the loss of papilla integrity has been 

regarded as one of the primary symptoms indicating the end of the floral receptive period and 

stigma senescence which is often manifested by the shrunken appearance of the stigma (Gao et 

al., 2018, Okada et al., 2018, González et al., 1995). These senescence processes are 

coordinated by transcription factors, including KIRA1 (KIR1) and ORESARA1 (ORE1) in 

Arabidopsis (Gao et al., 2018).Similarly, the unfertilised ovary undergoes a series of morphological 

changes that converges in the lignification of the epidermal cells and eventual collapse of the ovary 

walls (Carbonell-Bejerano et al., 2010, Okada et al., 2018). In many of these studies, the 

phenotypic characterisation of these processes is time-consuming and labour intensive and is, 

therefore, usually performed only under controlled growing conditions and on a small number of 

plants. These phenotyping approaches, although extremely informative, are often not conducive for 

translation into breeding targets where the screening of large germplasm sets is required. 
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In recent years, high-throughput phenotyping technologies have provided new opportunities to 

phenotype a diverse range of plant species at various scales, ranging from cellular to tissue and 

organ levels (Pieruschka and Schurr, 2019, Furbank and Tester, 2011). For instance, machine 

learning based algorithms, like neural networks, have become an essential tool for reliably 

extracting morphological information and providing visual quantitative parameters of microscopy 

images. These approaches can be used in large-scale experiments, like those of crop breeding 

programmes, and provide a way to quantify the morphological changes of the developing carpel in 

the absence of pollination.  

To advance our knowledge of carpel development in the absence of pollination, we developed a 

phenotyping approach for the quantification of stigma area and ovary diameter of field grown plants 

by combining light microscopy and machine learning. We focused on bread wheat carpels due to 

the current need to improve outcrossing rates in hybrid breeding programmes (Selva et al., 2020) 

and the lack of knowledge on the dynamics of stigma and ovary development among male sterile 

(MS) wheat cultivars under production conditions in the field. We applied our phenotyping 

approach to three MS cultivars during two consecutive field seasons to gain insights into genetic 

and environmental variation for these two florals traits and show that it is scalable to produce 

practical advances in breeding programmes.  

 

Results 

Defining quantifiable parameters of late carpel development and senescence  

To investigate the development of wheat carpels in the absence of pollination and determine 

parameters that correlate with key phases of its life cycle, we used nuclear and cytoplasmic male 

sterile plants. We imaged the unpollinated carpels of field-grown plants starting from Waddington 

stage 9.5 (W9.5, normally shortly after ear emergence; Fig. 1A) which corresponds with the most 

advanced developmental stage for an unpollinated carpel; W9.5 is only shortly before when male-

fertile plants would reach anthesis (at W10) and release viable pollen on the receptive stigma 

surface. At W9.5, stigma branches are well elongated and spread outwards to generate the 

plumose architecture, while the unfertilised ovary shows a round shape (Fig. 1A). In subsequent 

timepoints after W9.5, the unfertilised ovary will gradually expand horizontally leading to the 

“second opening” of the floret (as previously described by (Okada et al., 2018, Molnár-Láng et al., 

1980)). During this period of ovary growth, stigma branches continue growing and quickly curve 

away from each other, increasing the stigma surface area and contributing to the extrusion of 

unpollinated stigma outside the floret and thus, to the capture of airborne pollen. Towards the end 

of the time course, papilla cells of the stigma hairs start to lose turgor and become atrophied as the 

stigma degenerates (Fig. 1A, red arrowheads). Finally, the onset of stigma degeneration is 

followed by a slight and gradual decline in ovary radial size, causing the floret to close again 

(Molnár-Láng et al., 1980).  
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To quantify the observed morphological changes in these parameters, we imaged unpollinated 

carpels and manually delineated the area covered by the stigma hairs and the diameter of the 

ovary using Fiji (Fig. 1B). We distinguished a developmental pattern for stigma area characterised 

by an initial bell curve shape followed by a gradual reduction in area indicative of tissue 

deterioration. The ovary diameter gradually increased and reached a plateau with little changes in 

the diameter thereafter (Fig. 1C). More importantly, these patterns appear to be quite consistent 

across different cultivars and replicates (see Results below). Together, these findings suggest that 

stigma area and ovary diameter are promising parameters to quantitively track the life cycle of the 

unpollinated carpel. 

 

Overview of the approach 

The rapid and accurate phenotyping of large numbers of field-grown plants represents a challenge 

for plant researchers. Here, to accelerate research into female floral traits, we propose a 

phenotyping approach that can be implemented in the screening of large populations, such as 

those of pre-breeding programmes (Fig. 2). This approach provides a visualization and 

quantification toolbox for morphometric information of stigma area and ovary diameter. A summary 

of each step is provided below, and detailed descriptions can be found in the Materials and 

Methods section.  

 

Experimental design, sample collection and image acquisition  

As our main aim was to study carpels in the absence of pollination, the first step is to prevent 

cross-pollination of MS plants in the field. To achieve this, different strategies can be used. For 

example, in this study we grew sterile rye surrounding the experimental plots to create an effective 

pollen barrier from surrounding fertile plants (Fig. 2A, S1). When anthers from the outer florets of 

the central spikelets are turning yellow and stigmatic branches are starting to spread outwards 

(W9.5), we tag spikes to indicate the beginning of the time course. Depending on the location and 

scale of the experiment, logistical issues such as transport and preservation methods also need to 

be considered at the time of sampling. For sample collection, we carefully dissect wheat carpels 

from central spikelets in the field, which can be performed by eye as they are relatively large (Fig. 

2B). Alternatively, we cut individual tillers between the uppermost and penultimate internode and 

transport them in water to the laboratory for carpel dissection. Once dissected, we store the 

carpels in 95% ethanol and acetic acid (75% v/v) for image acquisition at a later timepoint, or fresh 

(non-fixed) specimens are imaged directly if tillers have been transported to the laboratory. We use 

a stereo microscope with an integrated camera to acquire the two-dimensional RGB image of the 

carpel against a black background (Fig. 2C). We use different magnifications and fields of view to 

help capture the best representative plane of the carpel (Fig. S3). In the case of the fixed samples, 
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we place carpels in a Petri dish with 70% ethanol to preserve the feathery appearance of the 

stigma. Only one image per sampled carpel is required for subsequent steps.  

Annotation of microscopy images and quantification of carpel traits  

To process and perform quantitative analyses of the microscopy images, we trained a machine 

learning (ML)-based algorithm to automatically and rapidly annotate and measure stigma area and 

ovary diameter (Fig. 2D). The trained networks return a set of annotated images alongside their 

shape descriptors, together with a csv file containing the measurements of the analysed images in 

an output folder (see Supplementary Materials and Methods for a step-by-step guide on how to 

use the trained networks). This step requires some manual curation whereby the user inspects, 

detects, and corrects annotation errors, or removes corrupted images (Fig. 2E). 

 

Data modelling and knowledge transfer  

We developed code to model growth dynamics of stigma area and ovary diameter (Fig. 2F). The 

open-access customizable R scripts (see Supplementary Materials and Methods) can produce a 

range of outputs to compare genotypes, environmental conditions, or specific developmental 

stages, thereby helping to generate new hypotheses. Additionally, the exploitation of the 

knowledge generated could be key in the progress towards establishing successful hybrid breeding 

programmes as the selection of MS cultivars will be now based on novel phenotypic information.  

Development and validation of the stigma and ovary convolutional neural networks 

Our aim was to develop an automated phenotyping method to detect and annotate the perimeter 

covered by the stigma hairs and the ovary to determine stigma area and ovary diameter across the 

life cycle of wheat carpels. To carry out automated image annotation and measurement, we trained 

a convolutional neural network (CNN) on a set of representative carpel images with manual 

annotations of the stigma perimeter (n = 86 images) and ovary perimeter (n = 121 images) using 

the UNet design (Falk et al., 2019) (Fig. 3A). The training dataset spanned a random sample of 

seven genotypes, ranging from early carpel development (W9.5 and earlier) to fully degenerated 

carpels (Fig. 1A), and included both fixed and non-fixed carpels. After successfully training the 

networks, we obtained an adapted stigma CNN able to quantify the area covered by stigmatic hairs 

and an adapted ovary CNN that, after some post-processing of the network output, quantifies the 

diameter of the ovary (Fig. 3B).  

To evaluate the performance of the resulting adapted CNNs we applied the network to an unseen 

set of 60 microscope images without manual annotations (Fig. 3C). Subsequently, we manually 

annotated this new dataset using Fiji to provide a ground truth reference with which to compare to 

the CNN annotated outputs. We divided the cross-validation process according to the 

developmental stage of the carpels, sampling method (fixed or non-fixed), and the tissue of interest 

(Fig. 3C, S4 for ovary CNN validation). We observed a high overlap in stigma areas and ovary 
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diameters of fixed and non-fixed samples between the manual and automated annotations across 

all three developmental stages. There were no significant differences between the manual and 

automated annotations, apart for ovary diameter of the non-fixed samples at stage 3 (P = 0.03, 

one-way ANOVA; Table S2). Additionally, we calculated the Dice Similarity Coefficient (DSC) for 

each group of images which allowed quantitative evaluation of the performance of the adapted 

networks (Fig. 3C, S4). Overall, we found very uniform DSC values between the ground-truth and 

CNN annotation across floral traits, sampling methods and developmental stages (with the 

exception of the stigma CNN at the last developmental stage) with DSC mean averages of 0.89 

and 0.95 for the stigma and ovary CNN, respectively. Together, these results show that our 

machine learning approach quantifies key parameters of the carpel life cycle in wheat in agreement 

with the more time-consuming manual measurements.  

Variation in stigma and ovary growth patterns can be studied on fixed carpels 

Chemical fixation is commonly used to prevent tissue autolysis and degradation, while preserving 

morphology and cellular details for subsequent macro or microscopic evaluations. Fixatives, 

however, can lead to changes in volume and shape of the treated specimens due to cell shrinkage 

or swelling. Thus, artefacts of the technique could potentially lead to erroneous conclusions when 

measuring morphological traits of fixed samples.  

To assess the effect of the fixative solution (ethanol and acetic acid) on stigma area and ovary 

diameter, we used four MS cultivars and sampled carpels at five timepoints over an 18-days 

period. Analysis of variance (three-way ANOVA) indicated that the fixative significantly reduces 

stigma area (P < 0.001), whereas ovary diameter remained unchanged after applying the fixative 

(P = 0.25) (Fig. 4A, S5). For stigma area, the fixative x timepoint interaction was borderline non-

significant (P = 0.09) (Table S3) suggesting that the response to the fixative might change with 

floral age. By analysing individual timepoints, we observed that at 3 and 7 days after W9.5, at the 

peak of the stigma area, there are no-significant differences between fixed and non-fixed samples, 

whereas at 0, 13 (P < 0.05) and 18 days after W9.5 (P < 0.001) (Fig. 4A) the fixed samples show a 

reduced stigma area. Importantly, the absence of a significant fixative x cultivar interaction (P > 

0.52) suggests that all four cultivars react to the fixative in a similar manner (Fig. 4D). Taken 

together, we see that fixing the carpels in ethanol and acetic acid reduces stigma area although the 

developmental dynamics of stigma area are conserved in the four cultivars across the 18 days 

(Fig. 4D). We therefore conclude that the use of ethanol and acetic acid fixative allows us to 

accurately capture the growth dynamics of stigma area and ovary diameter and investigate 

phenotypic variation among diverse genotypes. Nonetheless, caution must be taken to compare 

absolute stigma areas across development given the significant reduction at early and late 

timepoints. 

The application of the phenotyping approach provides insight into the developmental behaviour of 

the unpollinated wheat carpel  
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Having established the method to quantitively measure the progression of carpel development in 

the absence of pollination, we next sought to employ this approach to gain insights into genetic and 

environmental variation for these two floral traits. To accomplish this, we applied our phenotyping 

approach to three MS cultivars grown during two consecutive field seasons (2020 and 2021) where 

we performed a developmental time course ranging from W9.5 until the carpel had visually 

deteriorated. We selected MS cultivars BSS1, 24522 and 24512 as they captured large part of the 

variation observed in a broader panel phenotyped in 2020 (data not shown). To accommodate for 

season-specific differences in temperature between the two seasons (Fig. S2), we incorporated 

daily temperatures in our model to normalise developmental stages by cumulative degree days.  

We found that all three MS cultivars exhibit contrasting developmental patterns for stigma area and 

ovary diameter and that these differences among cultivars are largely maintained across field 

seasons (Fig. 5A,B). The phenotypic differences, particularly in stigma area, are observed in both 

the growth (positive slope) and deterioration (negative slope) phases of carpel development, which 

inevitably impacts on the overall duration of the life cycle. For instance, we can distinguish the fast 

development of carpels from cultivar 24522 from the slow progression of carpels from cultivar 

BSS1 (Fig. 5B). Despite these differences, all three patterns seem to underline a common 

developmental trend for the dynamics of stigma and ovary traits that is characterised by: (1) an 

initial growth phase, (2) followed by a peak phase in which stigma reaches its maximum and the 

radial expansion of the ovary slows down, and (3) a final deterioration phase. This conceptual 

framework for quantifying and classifying the development of the unpollinated carpel is presented 

in Fig. 5C,D. The results obtained from breaking down late carpel development into more 

descriptive phases are detailed below. 

 

Growth phase 

Stigma and ovaries experience rapid and exponential growth during the first phase. The growth 

phase is underway at W9.5 (around ear emergence) and extends for 1 to 4 days until the stigma is 

well developed and potentially receptive for pollination. The end of the phase coincides with a 

developmental stage parallel to W10 (anthesis) in male-fertile plants. We found that for all three 

cultivars the end of this phase could be described by the stigma showing an area of approximately 

85% of its maximum size. The criteria for us to select the 85% cut-off as the end of the growth 

phase was based on 85% being the percentage that was present in all three cultivars across both 

field seasons and happened shortly after W9.5, thus mimicking anthesis (Fig. S6).  

Peak phase 

This second phase is denoted by the stigmatic tissue reaching its maximum size (asterisks in Fig. 

5C) at around 5 to 10 days after W9.5 (depending on the cultivar and year). After reaching this 

peak, a gradual and irreversible decline in stigma area is accompanied by a notable arrest of the 

ovary radial expansion. To mirror the behaviour of stigma area at the beginning of this phase, we 
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selected a 15% drop in stigma area to mark the end of the peak phase. Using this classification, 

we observed that this phase extends until 8 to 14 days after W9.5 in 2020, and 8 to 18 days in 

2021 (Fig. 5C). Considering previous studies on female receptivity in wheat where hybrid seed set 

was maintained from 7 to 13 days (Pickett, 1993, Kirby, 2002, De Vries, 1971) we hypothesise that 

the peak phase of wheat stigma development coincides with the maximum reproductive potential 

of the carpel under free pollination conditions. Nonetheless, further analyses of pollen germination 

and seed setting rates during each of the three phases are needed to prove this hypothesis. Ideally 

these experiments would be conducted both under free-pollinating conditions (i.e., field trials 

mimicking hybrid production blocks) and using controlled hand-pollinations, as results will most 

likely differ between experiments since other aspects of the female flower (e.g., opening angle of 

glumes) play a part in the reproductive potential of the floret (Selva et al., 2020). 

 

Deterioration phase 

During this phase, symptoms of stigma deterioration start to become obvious, where clusters of 

stigma hairs are collapsing in response to a loss in turgor pressure (inverted triangles in Fig. 5C 

indicate a 40% drop in stigma area). The collapse of the remaining stigma hairs continues for 

several days resulting in a completely deteriorated stigma at 18 and 27 days after W9.5 in 2020 

and 2021, respectively (Fig. 5C,D). By the end of this phase the ovary walls also show an irregular 

surface due to tissue deterioration. Based on these observations, we speculate that the onset of 

this phase marks the irrevocable loss of the reproductive potential of the floret. 

Dissecting carpel development into growth, peak and deterioration phases allowed us to assign the 

cultivars BSS1, 24512 and 24522 into slow, moderate, and fast developing carpels, respectively, 

according to when they reach the beginning of the deterioration phase. For example, cultivar BSS1 

reached the onset of the deterioration phase at 14 and 18 days after W9.5 in 2020 and 2021, 

respectively. This was approximately 4 days after cultivar 24512 and between 6 to 10 days after 

cultivar 24522 in 2020 and 2021, respectively (Fig. 5C). The developmental pattern classification 

also allows comparisons across field seasons, where the relative ranking of cultivars was well 

conserved between years. Although we adjusted for cumulative degree days, the colder and 

damper weather conditions of 2021 (Fig. S2) were reflected in an extension in the duration of most 

phases in some, but not all cultivars (Fig. 5D). For example, duration of the three phases was 

largely unaffected in cultivar 24522, whereas in cultivar BSS1, the duration of the peak phase in 

2021 (315 degree days) was almost twice that of the previous year (186 degree days). These initial 

analyses suggest that while the developmental dynamics of stigma area and ovary diameter are 

largely consistent across years there are cultivars in which the duration of the developmental 

phases could be sensitive to other environmental changes that remain to be tested.  
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To provide further support for the proposed stages of the stigma life-cycle, we investigated the 

expression of genes encoding senescence-related transcriptional regulators that we expect to be 

up-regulated during the late peak and deterioration phases. Stigmas were sampled across the 

different phases of development using field-grown MS cultivar 24512, and the extracted RNA from 

these samples were used for an RNA-sequencing transcriptome experiment. We focused on the 

expression of wheat homologues of the KIR1 and ORE1 transcription factors (TF) (Fig. S7), shown 

previously to promote stigma senescence in Arabidopsis (Gao et al., 2018), and the 36 top-ranked 

genes proposed to coordinate leaf senescence in wheat (Borrill et al., 2019) that included genes 

belonging to the GRAS, HSF, and RWP-RK TF families. All six KIR1 and ORE1 wheat homoeologs 

were expressed, and 28 of the 36 TFs associated with leaf senescence were also expressed in 

stigma, suggesting a large overlap between leaf and stigma senescence processes (Fig. 5E). Of 

the 34 TFs expressed in the stigma, we identified distinct waves of expression in their transcript 

profiles across the four sampling time points. While eight TFs had highest expression in the growth 

and early peak phase, over 70% of the expressed senescence-related TFs (including wheat KIR1 

and ORE1) were upregulated towards the end of the peak phase (10 genes) or at the deterioration 

phase (15 genes) (Fig. 5E). These results highlight that the proposed phases of late carpel 

development, determined using microscopy, associate with expected transcriptional changes 

based on the biological processes that occur during these later stages (Fig. 5E). 

 

Discussion 

High throughput phenotyping for the quantification of floral traits in unpollinated wheat carpels 

Our understanding of floral developmental processes has been assisted by the establishment of 

scales that describe changes in the shape, size and surface features of floral organs leading up to 

anthesis (Waddington et al., 1983, David R. Smyth, 1990). These scales often divide a continuous 

developmental process into defined stages, which are characterised by landmark events, such as 

the appearance of stigmatic branches. These scales have facilitated the interpretation of genetic 

studies and have contributed towards our understanding of the mechanisms that underlie the 

transitions leading to a given landmark event. During post-pollination stages, the focus shifts 

towards the developing fruit. Previous work, however, has also illustrated the importance of the 

quantitative monitoring of morphological changes associated with late carpel development (i.e., in 

the absence of pollination), such as silk elongation in maize (Westgate, 1993) or ovary radial 

expansion in wheat (Okada et al., 2018), as they represent survival mechanisms to ensure seed 

set by cross-pollination. So far, the few studies investigating the progression of the unpollinated 

female carpel after anthesis have focused in giving detailed descriptions of flowers from one or two 

different genotypes grown in controlled environment conditions. These types of meticulous 

approaches are arduous and expensive not only to implement in large scale experiments but also 
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to execute under field conditions, where equipment is often limited. Consequently, studies 

investigating detailed phenotypes in the field are lacking. 

To enhance our understanding of the biological processes that occur in unpollinated carpel under 

breeding-relevant conditions, we created a machine learning-based approach to phenotype field-

grown MS wheat cultivars. Given the sequence of morphological changes we observed in the 

unpollinated wheat carpel (Fig. 1A), we next quantified changes in stigma area and ovary diameter 

to describe carpel development. Our findings are two-fold: (1) we demonstrate the suitability of our 

approach for the detailed study of floral organ traits in field screenings, and (2) we show that the 

unpollinated carpel undergoes a well-defined pattern of growth and senescence characterised by 

gradual changes in stigma and ovary sizes (Fig. 5A,B). Based on these findings, we propose 

developmental phases that are relative to the maximum stigma area and ovary size (Fig. 1C, 5C) 

with which to build the foundations of future research of floral organ development and senescence 

in the absence of pollination.  

 

Considerations on the use of the stigma and ovary adapted CNNs  

The quantification of stigma area and ovary diameter cannot be easily determined from surface 

observations of wheat spikes and requires the dissection and microscopy of individual carpels. The 

manual annotation and quantification of microscopy images is cumbersome and often delays 

scientific discoveries. Deep learning-based approaches, such as Convolutional Neural Networks 

(CNNs), have emerged as a solution to perform image quantification in an automated, rapid, and 

less biased manner, lifting the burden of image analysis from researchers. In this work we 

developed two CNNs (both publicly available at https://github.com/Uauy-Lab/ML-carpel_traits) that 

enable non-machine-learning experts to quantify stigma area and ovary diameter on their local 

computer in a matter of hours (Fig. 3). Evaluation metrics on the performance of the adapted 

networks (Fig. 3C and Table S2) demonstrate their capability to satisfactorily measure both floral 

traits by condensing each RGB image to a single value (i.e., pixels). Measurements between 

manual and CNN annotation were largely indistinguishable (Table S1), with the network being less 

capable at later stages (Fig. 3C, S1). We believe one of the reasons for the poorer performance 

could be due to the difficulty in distinguishing the stigma and ovary from each other when the 

stigma is severely deteriorated and resting on top of the ovary (Fig. S8). Also, it is worth noting that 

the ovary CNN relies on the performance of the stigma CNN to correctly predict the diameter of the 

ovary (see Materials and Methods for the detailed description of the algorithm), such that a bad 

prediction of the stigma area will likely affect ovary annotation. Poor quality images (i.e., out of 

focus, poor resolution images) and certain carpel orientations (Fig. S3) also hinder the 

identification of the ovary and/or stigma, impairing the normal performance of the CNNs. In the 

case of blurry images, using post-processing tools (e.g., Photoshop or other image sharpening 

techniques) to adjust the sharpness of the image might help reduce the likelihood of incorrect 
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annotations. However, there will still be certain cases where there is not an immediate reason for 

the failure of the CNN. We suggest, therefore, including an additional output verification step (Fig. 

2E) to identify potential errors before continuing with the downstream analyses. 

 

The implementation of the phenotyping approach opens new research paths on the biology of late 

carpel development 

To gain a more comprehensive overview of the developmental dynamics of the unpollinated carpel, 

we used our phenotyping approach (Fig. 2) to examine the sequential progression of changes in 

stigma and ovary morphology in three MS cultivars over two field seasons (Fig. 5). Across cultivars 

and seasons, we were able to identify an initial stigma and ovary growth phase, followed by a peak 

phase describing carpel developmental maturity, and a subsequent deterioration phase 

characterised by the eventual collapse of the female reproductive tissues and expression of 

multiple senescence-associated genes (Fig. 5C,E). Equivalent patterns for the post-anthesis 

development of the unpollinated stigma have also been reported in maize, peas (Pisum sativum) 

and Arabidopsis (Westgate, 1993, Y. Vercher, 1984, Carbonell-Bejerano et al., 2010), suggesting a 

conserved developmental programme that ensues in the absence of pollination.  

Despite the conserved overall patterns, we identified differences in the duration of the growth, peak 

and deterioration phases in the three wheat MS cultivars used here. Gene expression studies of 

unpollinated carpels (Carbonell-Bejerano et al., 2010) and stigma in Arabidopsis and maize (Gao 

et al., 2018, Šimášková et al., 2022) have demonstrated that the lifespans of these floral structures 

are controlled by transcription factors that regulate developmental programmed cell death in these 

tissues. Here, we also identified distinct waves of expression of genes encoding senescence-

associated TFs across late stigma development in a single wheat MS cultivar. Our results, along 

with previous evidence from Arabidopsis and maize, raise the prospect that the phenotypic 

variation observed between the three wheat MS cultivars could be due to differential gene 

expression patterns across cultivars that alter the onset of stigma senescence (Fig. 5B,C). Thus, 

new transcriptomic studies investigating the developmental transitions observed among the 

different field-grown cultivars would contribute to our understanding of the mechanisms governing 

these phases. We also observed that MS cultivars 24512 and 24522 had largely equivalent peak 

phase durations across years, whereas the duration of the peak phase in the CMS cultivar BSS1 

varied almost two-fold between field seasons (Fig. 5D). This suggests that, despite accounting for 

temperature in our analyses (by using cumulative degree days), the duration of the stigma peak 

phase is sensitive to additional environmental factors. The response to these additional 

environmental factors could depend on the genotype, sterility system used, and/or the 

developmental phase in which the environmental stimuli are encountered. Consistent with this, 

several studies in wheat have attributed differential seed set rates of out-crossing MS plants (i.e., 

an indicator for the duration of stigma receptivity) to environmental factors such as temperature, 
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relative humidity, and soil water availability (Fabian et al., 2019, De Vries, 1971, Imrie, 1966). 

Therefore, additional studies under field and controlled environment conditions will shed light on 

the causalities for the variation observed in ovary and stigma development across field seasons. 

Our phenotyping approach now improves the accessibility of the wheat carpel to detailed 

phenotypic analyses of the size of populations that are used in breeding programmes. This 

facilitates the identification of mutations that underpin genetic variation in carpel development 

contributing to understand gene function on a genome-wide scale. All in all, we provide a 

framework in which to conduct these new studies targeting diverse environments and genotypes, 

facilitating future hypothesis generation not only in wheat but also in other cereal crops. 

 

First steps towards an integrated developmental scale of the unpollinated wheat flower  

The ultimate role of the carpel is the production of a viable seed. Thus, increasing the functional 

lifespan of carpels and stigmas (i.e., floral receptivity) are desirable agronomic traits that have the 

potential to increase the effective pollination period and seed set (Williams, 1965). Yet, detailed 

evaluations of carpel and stigma development and how they relate to female floral receptivity and 

seed set are still lacking, even more so in cereals. It is reasonable to think that the functional 

lifespan of stigma receptivity would coincide with stigma cell integrity, as illustrated in early studies 

of kiwifruit (Actinidia deliciosa) and maize (González et al., 1995, Westgate, 1993). According to 

these studies we could, for example, speculate that (a) seed set rates will be higher if pollination 

occurs during the peak phase compared to the deterioration phase, or (b) that cultivars with a 

prolonged peak phase (such as BSS1) will be receptive to pollination for longer than cultivars with 

a shorter peak phase (such as 24512 or 24522) (Fig. 5C). However, as recently demonstrated in 

Arabidopsis, a delay in stigma senescence caused by the disruption of two programmed cell death-

promoting transcription factors was only accompanied by a minor extension in floral receptivity, 

suggesting that additional processes must be involved in controlling the duration of floral 

receptivity, for instance, ovule viability (Gao et al., 2018). New studies, therefore, need to be 

conducted to help investigate stigma receptivity under defined phases of carpel development to 

help clarify the relationship between stigma morphology and viability, pollen germination, and seed 

set. Additionally, such information will allow a greater understanding of how genetic and 

environmental factors affect various aspects of the stigma life cycle (e.g., loss of stigma receptivity, 

onset of stigma cell death). The next steps towards understanding the cross-pollination process in 

the field will also require integrating the changes in carpel morphology with those of the overall 

spike. For instance, as reviewed by (Selva et al., 2020), certain wheat spike architectures, like the 

openness of the floret, facilitate airborne pollen access which would additionally contribute to 

increasing out-crossing rates in hybrid production.  

Our approach for phenotyping carpel development provides a new tool for examining a fertility trait 

that is poorly understood and hitherto time-consuming to analyse. Together with recent advances 

in genetic resources (Krasileva et al., 2017, Wingen et al., 2014, Sansaloni et al., 2020) and 
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genome sequence data (Walkowiak et al., 2020, International Wheat Genome Sequencing et al., 

2018), this approach provides a new opportunity to unlock genetic variation for stigma and ovary 

traits that associate with floret fertility, which is vital given that improved fertilisation will help 

address the increasing demands to enhance global food production.   

 

Materials and Methods 

Germplasm 

We used both spring and winter male sterile hexaploid wheat (Triticum aestivum) cultivars derived 

from commercial inbred lines. Cytoplasmic and nuclear male sterility (CMS and NMS) systems 

were used for the generation of the male sterile cultivars. BSS1 and GSS2 correspond to winter 

CMS cultivars while the winter cultivars 24511, 24512, 24516 and 24522, and the spring cultivars 

Jetstream, Alderon, BLA1, Mairra, Cadenza, Chamsin and BLA2 are NMS cultivars. All CMS and 

NMS cultivars were provided by KWS Ltd (Thriplow, UK) and Syngenta (Whittlesford, UK), 

respectively.  

We used MS cultivar 24516 as an example to illustrate the developmental dynamics of the 

unpollinated wheat stigma and ovary in Fig. 1. To train the convolutional neural network (CNN) for 

the quantification of carpel traits we used a random sample of plants extracted from a set of the 

seven spring NMS cultivars. The selection criteria for the generation of the training set, however, 

were based on diversity of carpel images rather than on a per cultivar-based criteria. 

We used four winter male sterile cultivars (24511, 24516, BSS1, GSS2) to characterise the effects 

of the fixative on stigma area and ovary diameter during the 2020 field season. Finally, for the 

multi-year field experiment performed to investigate the developmental patterns of the unpollinated 

carpel, we grew three winter male sterile cultivars (BSS1, 24512 and 24522) during two 

consecutive years. We selected these three cultivars as they represent a large part of the variation 

observed for carpel development in the absence of pollination from an original pool of 31 MS 

cultivars phenotyped in 2020 under field conditions (data not shown). Table S1 provides a 

summary of all cultivars used in the experiments. 

 

Glasshouse and field experiments 

For the development of the stigma and ovary CNNs we grew between 10 to 20 plants per MS 

cultivar (Jetstream, Alderon, BLA1, Mairra, Cadenza, Chamsin and BLA2) in the glasshouse in 1 L 

pots under long day conditions (16 h light: 8 h dark) and hand dissected carpels from either the 

first, second or third tiller at various timepoints representative of the different carpel morphologies. 

We stored a random selection of the dissected carpels in a fixative solution of 95% ethanol and 

absolute acetic acid (75% v/v) and kept them at 4 °C until image acquisition (approx. a month after 
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fixation). The cultivars selected are representative of carpel morphology diversity in wheat 

germplasm.  

For the carpel development time course experiments, we grew plants at John Innes Centre Church 

Farm (Bawburgh, UK; 52°37’50.7” N 1°10’39.7” E) in a randomised complete block design with two 

replicates (1 m plots) per MS cultivar in 2020, and three replicates in 2021 (Fig. S1). Number of 

replicates were chosen according to traditional use in field experiments and seed availability. To 

avoid unwanted cross-pollination, sterile rye barriers were grown surrounding the male sterile plots. 

To record environmental data, we placed data loggers (EasyLog USB, Lascar Electronics) next to 

the experimental plots at 50 cm height. Average temperature and relative humidity were measured 

every hour during the duration of the experiment (Fig. S2).  

In both field seasons, we tagged main spikes when carpels in the outer florets (floret 1 and 2) of 

central spikelets reached Waddington stage 9.5 (W9.5 (Waddington et al., 1983)). This is shortly 

after full ear emergence (Zadok’s growth stage 59 (Zadoks et al., 1974)). At the time of sampling, 

we cut individual tillers between the uppermost and penultimate internode and transported them in 

water to the laboratory for carpel dissection. We harvested four to seven carpels from the outer 

florets of central spikelets from two spikes per plot and timepoint. These timepoints were W9.5 and 

3, 7, 13 and 18 days after W9.5 (DAW9.5), with the only exception that the 2021-time course was 

extended for 9 more days (i.e., 27 DAW9.5) in cases where the carpel was not completely 

senesced at 18 DAW9.5. Due to the limited availability of spikes tagged at W9.5, sample size for 

the extended timepoints varied from 2 to 6 spikes per timepoint. Carpels that needed fixation were 

placed in 2 mL Eppendorf tubes containing fresh fixative solution, as described above.   

 

Image acquisition and manual annotations 

To generate the training set we used two different stereo microscopes equipped with an integrated 

camera for image capture (ZEISS Stemi 305 with a 1.2 Megapixel integrated colour camera; Leica 

MZ16 coupled with a Leica CLS100x white light source and a Leica DFC420 5 Megapixel colour 

camera). For the downstream experiments using the adapted CNNs we only used the ZEISS Stemi 

305 since it is easier to operate and to transport to the field. Depending on the size of the carpel, 

we used different magnifications (from 1x to 4x) to ensure that the complete carpel was captured in 

the image (Fig. S3). We adapted illumination and time of exposure to each image to ensure high 

contrast between the carpel and the black background. To maintain the feathery structure of the 

stigma in fixed samples, we imaged the carpels submerged in a 70% ethanol solution using a Petri 

dish (one carpel per image). Images were saved as RGB jpeg files. 
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To evaluate the effect of the fixative on carpel morphology traits, we first imaged the carpels as 

non-fixed samples and we then placed them in the fixative solution (as described previously) for 

image acquisition at a later time. For manual annotations of stigma and ovary perimeters, we 

analysed the resulting images using open-source image processing package Fiji. 

 

Development of stigma and ovary CNNs 

To carry out automated image annotation and measurement, we trained a CNN using the U-Net 

design which can be easily adapted to new tasks with only few annotated images  (Falk et al., 

2019). The network was implemented in the PyTorch framework (Adam Paszke, 2019), using the 

dtoolAI library (Hartley and Olsson, 2020). The networks were trained on carpel jpeg images with 

manual annotations of the stigma perimeter (n = 86 images) and ovary perimeters (n = 121 

images). These 207 images were randomly selected from a total of 1601 dissected carpels.  The 

Dice coefficient (Dice, 1945) was used as a loss function, and weight updates were applied using 

the Adam optimizer (Diederik P. Kingma, 2015).  

The trained stigma network predicted a mask corresponding to the stigma location for each RGB 

input image. The stigma mask was used to calculate the stigma area directly by extracting the 

number of pixels. The trained ovary network predicted two masks for each RGB input image, one 

corresponding to the ovary location and the other to the stigma location. To determine the ovary 

diameter, the following algorithm was applied: 

1. Determine the centroid of the predicted stigma mask. 

2. Determine the centroid of the predicted ovary mask. 

3. Take the perpendicular to the line drawn through the centroids. 

4. Determine the two points where this line crosses the border of the predicted ovary 

mask. 

5. Measure the length of this line, converting to physical units from the original input image 

scale. 

We converted pixels (CNN output) to stigma area (mm2), and ovary diameter (mm) according to 

the scale bar used in each image. Implementation scripts and training data are available at 

https://github.com/Uauy-Lab/ML-carpel_traits  and 

https://opendata.earlham.ac.uk/wheat/under_license/toronto/Millan-Blanquez_etal_2022_machine-

learning-carpel-traits/, respectively.    
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Statistical analyses and data visualisation 

Evaluation of CNN performance 

To evaluate differences in stigma area and ovary diameter between the manual and CNN 

annotations, we selected a random set of 60 microscopy images that were not used to train the 

networks (30 images of fixed carpels and 30 of non-fixed carpels). We divided the images into 

three different developmental stages based on the appearance of the carpel to account for all the 

possible carpel morphologies the algorithm could be exposed to. Stage 1 represents a young 

carpel (stigma and ovary still developing), stage 2 represents a fully developed carpel (widely 

spread stigma and enlarged ovary), and stage 3 includes visibly deteriorated carpels. We 

performed one-way analysis of variance (ANOVA) for each trait and sampling method, including 

“floral age” as the single factor (Table S2). To measure the spatial overlap between the manual 

and CNN annotation, we calculated Dice similarity coefficients on the same set of images.  

 

Carpel development time courses 

For the quantification of stigma area and ovary diameter of fixed and non-fixed samples, a total of 

666 and 634 images were annotated by the stigma CNN and ovary CNN, respectively, and used 

for subsequent analyses. We conducted three-way ANOVAs (fixative, timepoint, cultivar) to test the 

effect of the fixative on stigma area and ovary diameter and their interaction with floral age 

(timepoint) and cultivar (Table S3). We include in the model block and spike information as random 

effects to account for the nested nature of the experimental design. Tukey’s multiple comparison 

method was used to adjust for multiple comparisons. 

To generate the patterns describing stigma and ovary development for MS cultivars 24512, 24522 

and BSS1, 294 and 520 images were annotated by the stigma and ovary CNNs, in 2020 and 2021, 

respectively, and used for downstream analyses. Next, we filtered out outliers following the 

interquartile range criterion and used loess smooth lines with a span value of 0.9 (i.e., width of the 

moving window when smoothing the data) and a 95% confidence interval. To have an estimate of 

the amount of growth the plants achieved during the different field seasons we calculated 

cumulative degree days using 0 oC as base temperature (according to (Perry Miller, 2001) and 

average daily temperatures as follows:   

                       ∑(         )           

 

   

 

i: beginning of the temporal window considered (e.g., W9.5 date) 

j: end of the temporal window considered (e.g., sampling date at 7 days after W9.5)   

Codes to model carpel and ovary development were conducted in RStudio Version 4.0.3 and are 

available at: https://github.com/Uauy-Lab/ML-carpel_traits. Image data used for the statistical 
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analyses (i.e., one-way and three-way ANOVAs provided in Table S2 and S3, respectively) also 

available at: https://opendata.earlham.ac.uk/wheat/under_license/toronto/Millan-

Blanquez_etal_2022_machine-learning-carpel-traits/. Detailed step-by-step instructions are 

provided as Supplementary materials and methods. 

 

Stigma transcriptome analysis by RNA-seq  

During the 2021 field season, we used MS cultivar 24512 to investigate the expression patterns of 

senescence-related genes in the stigmatic tissues. We collected stigma samples at four 

developmental timepoints spanning the proposed growth, peak and deterioration phases (3, 7, 13 

and 18 DAW9.5). We sampled plants between 11:00-15:00 and dissected five to eight stigmas 

(size dependent) from the primary and secondary florets of the central four spikelets. We stored 

stigmas in DNA/RNA Shield solution (ZYMO Research Cat. R1100-50) at -20 oC. The stigma 

samples include both the stigma and style as these structures are intimately linked in wheat.  

We extracted RNA from three independent biological replicates. RNA was extracted using 

TRIzol/Chloroform (TRI Reagent® (Sigma-Aldrich); Chloroform, >= 99.8% (Fisher Scientific)) and 

purified using the RNA Clean and Concentrator kit (ZYMO-Research, Cat. R1013) as specified in 

https://dx.doi.org/10.17504/protocols.io.36wgq7kj3vk5/v1. RNA quantity and quality were assessed 

by spectrophotometric analysis (NanoDrop™ One/OneC; Thermo) and by agarose gel 

electrophoresis. Total RNA samples with a quality value greater than an RNA integrity number 

(RIN) of 6 were used for Illumina HiSeq 150-bp paired-end sequencing (Novogene).  

RNA-seq data were pseudoaligned to the wheat RefSeqv1.1 transcriptome (International Wheat 

Genome Sequencing et al., 2018) using kallisto (Bray et al., 2016). We filtered for genes 

expressed on average > 0.5 transcripts per million (TPM) in at least one of the timepoints to 

exclude low expressed genes (consistent with (Ramírez-González et al., 2018)). TPM values were 

normalised across the four timepoints for each gene, and the individual TPM values are presented 

in Supplemental Table S4. 
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Figures 

 

 

 

Fig. 1. Representative stages of late carpel development in the absence of pollination. (A) 

Morphological changes observed in the stigma (St) and ovary (Ov) from Waddington stage 9.5 

(approx. ear emergence) until complete degeneration of the carpel (from left to right). Arrowheads 

indicate regions of the stigma (red) and ovary (yellow) where symptoms of cell degeneration are 

visible. (B) Diagram illustrating the morphological traits of interest: the yellow line delimits the area 

covered by the stigmatic hairs, the blue line depicts the diameter of the ovary. (C) Representative 

growth trends observed for the stigma hair area (yellow) and ovary diameter (blue) in the absence 

of pollination for field grown plants. For the regression curves we have used a single exemplar 

male sterile cultivar (n = 10-30 carpels sampled from a total of 6 plants per timepoint. Total of 8 

timepoints). In B and C, scale bar = 1 mm.  
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Fig. 2. Schematic representation of the proposed phenotyping approach for the study of 

carpel development in the absence of pollination under field conditions. (A-C) Experimental 

design, sample collection and image acquisition. (D-E) Annotation of microscopy images and 

quantification of the stigma area (as an example, D) and verification of the CNN outputs (E). (F) 

and (G) illustrates the applicability of the phenotyping approach to enhance our understanding of 

the post-anthesis behaviour of unpollinated carpels. 
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Fig. 3. Development and validation of convolutional neural network for stigma and ovary 

annotation. (A) Pipeline for the development of the stigma and ovary networks. (B) Application of 

the adapted network for stigma area annotation to new data. (C) Cross-validation of ground-truth 

measurements and network values extracted from 60 randomly chosen images divided into six 

classes according to floral age (stage) and sampling method. First box plot shows the distribution 

of the stigma areas in mm2 per cross-validation class (n = 10 images per stage x method 

combination) determined by manual (yellow) and network (grey) annotation. There were no 

significant differences for any of the six classes (stage x sampling method combination). Second 

box plot indicates DICE scores of stigma area in non-fixed (green) and fixed (red) samples. A DICE 

score of 0 indicates no spatial overlap between the two sets of annotation results, 1 indicates 

complete overlap. The box plots show the middle 50% of the data with the median represented by 

the horizontal line. Whiskers represent datapoints within 1.5 times the interquartile range with 

outliers highlighted as individual points.  
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Fig.4. Effects of the fixative on carpel morphology across time and cultivars. (A) 

Representative images of carpels before (non-fixed) and after (fixed) applying the fixative. (B-C) 

Box plots showing the comparison between non-fixed (green) and fixed (red) samples for stigma 

area (B) and ovary diameter (C) at different sampling points. Data are the average of the four 

cultivars shown in panel D which comprise 10-20 carpels from a total of 4 plants per timepoint and 

cultivar. * P <0.05; ***P <0.001. The box plots show the middle 50% of the data with the median 

represented by the horizontal line. Whiskers represent datapoint within 1.5 times the interquartile 

range with outliers highlighted as individual. (D) Developmental dynamics of stigma area of four 

male sterile cultivars, comparing non-fixed (green) and fixed (red) carpel samples (between 10-20 

carpels from a total of 4 plants per timepoint). Error bar denotes the standard error of the mean. 
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Fig. 5. Phenotypic quantification of carpel development in three distinct MS cultivars under 

field conditions. (A) Temporal trends of ovary diameter (mm) in 2020 and 2021. (B) Temporal 

trends of stigma area (mm2) for 2020 and 2021 field seasons. (C) Growth, peak and deterioration 

phases represented in days after W9.5 for 24522 (orange), BSS1 (purple) and 24512 (green). The 

temporal units are directly comparable to cumulative degree days shown in panel A. 

Representative images illustrating carpel appearance at the beginning and end of each phase (3rd 

picture represent carpel with 100% stigma area). (D) Bar charts show the duration (in degree days) 

of each of the phases across cultivars and field seasons. The end of the deterioration phase is 

marked by the last sampling point. In A and B, polynomial regression models at a 95% confidence 

interval (Loess smooth line) are shown. Grey shading represents standard error. Five carpels from 

4 and 6 plants were sampled at each timepoint in 2020 and 2021, respectively. Scale bar in C = 2 

mm. C and D, (*) indicates maximum stigma area; (▼) indicates a 40% drop in stigma area with 

respect to the maximum area. Before plotting, outliers were filtered out following the interquartile 

range criterion. (E) Heatmap illustrating the relative expression of KIR1, ORE1 and genes 

associated with leaf senescence (Borrill et al., 2019) in stigma samples from MS cultivar 24512. 

Samples were collected in the growth, peak (1st and 2nd half) and deterioration phase during the 

2021 field season. Expression levels are normalised within each gene across the four timepoints 

and rows are sorted according to the similarity of expression and waves of expression in each 

phase of stigma development. For absolute expression values see Supplemental Table S4. 
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Fig. S1. Schematic representations of the field layout. Male sterile (MS) cultivars 

were grown surrounded by a continuous stripe of sterile rye that was used as pollen 

barrier. Plots were replicated twice in 2020 (N = 7) and 3 times in 2021 (N = 3).  
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Fig. S2. Environmental conditions recorded during 2020 and 2021 field seasons. 
Left panel illustrates daily temperatures in degrees Celsius recorded during both field 

experiments (2020: green line; 2021: orange line). Shaded rectangles indicate the 

beginning and end of 2020 and 2021 time courses. Right panel shows the water vapor 

contained in the air expressed in percentage of relative humidity.    
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Fig. S3. Unaccepted and accepted carpel images. Representation of images 

(jpeg format) unlikely to be correctly annotated by either the stigma CNN or ovary 

CNN (red crosses, e.g., blurry or out of focus images, lifted carpels, presence of 

other objects, etc.) and example of images the stigma and ovary CNNs expect and 

would be able to annotate accurately (green ticks).  
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Fig. S4. Validation of convolutional neural network for stigma and ovary 
annotation. (A) Cross-validation of ground-truth measurements and network values 

extracted from 60 randomly chosen images divided into six classes according to floral 

age and sampling method. Distribution of the ovary diameter in mm per cross-validation 

class (n = 7-10), determined by manual (yellow) and automated (violet) annotation. (B) 
Box plots showing Dice similarity coefficient of ovary diameter in non-fixed (green; n = 

10) and fixed (red; n = 10) samples (0 indicates no spatial overlap between the two sets 

of annotation results, 1 indicates complete overlap). Box plots show the middle 50% of 

the data with the median represented by the horizontal line. Whisker represents 

datapoint within 1.5 times the interquartile range with outliers highlighted as individual.  

Development: doi:10.1242/dev.200889: Supplementary information
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Fig. S5. Effects of the fixative on ovary diameter across time and cultivars. Stigma 

area development dynamics of four MS cultivars comparing non-fixed (green) and fixed 

(red) carpel samples (between 10-20 carpels from 4 plants per timepoint). Error bar 

denotes the standard error. 
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Fig. S6. Developmental stigma patterns expressed in percentage from maximum 
observed stigma area. Red dashed line indicates 85% benchmark for the selection of 

the boundaries of the peak phase with the growth and deterioration phases. 
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Fig. S7. Phylogenetic tree of KIR1 and ORE1 from Arabidopsis and its closest 
wheat homologs. Peptide sequences used to construct a rooted neighbor-joining 
tree of both splice variants of KIR1 (AT4G28530), ORE1 (AT5G39610) and its 
orthologs in wheat. ANAC082 (AT5G09330) was used as outgroup.  

Fig. S8. Erroneous stigma area and ovary diameter CNN annotations. 
Examples of bright field images of carpels wrongly annotated by the stigma (left) 

and ovary (right) CNNs. 

Development: doi:10.1242/dev.200889: Supplementary information
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Fig. S9. Visual output obtained after running “Stigma_area_script.R” on the 
examples provided. Stigma area developmental patterns observed for the two 

examples provided, GSS2 and 24524. Each dot represents the area of the stigma 

of an unpollinated carpel. The blue line is a loess smooth line (polynomial 

regression) and the grey shading indicates the standard error. 

Development: doi:10.1242/dev.200889: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Table S1.  Summary of the germplasm used for each experiment described in this 
study.  

Experiment Output Germplasm used Growth 
Representative stigma and ovary growth 
patterns 

Fig. 1 24516 Field 

Training set for the development of stigma and 
ovary CNNs 

Trained 
CNNs 

Jetstream, Alderon, BLA1, 
Mairra, Cadenza, 
Chamsin, BLA2 

Glasshouse 

Effect of fixative on stigma area and ovary 
diameter 

Fig. 4 and 
S5 

24511, 24516, BSS1, 
GSS2 

Field 

Multi-year field experiment Fig. 5 BSS1, 24512, 24522 Field 

Stigma transcriptome Fig. 5E 24512 Field 
Mock example provided to run 
"Stigma_area_script.R" 

Fig. S8 24524, GSS2 Field 

Table S2. Summary table on the manual and CNN annotation metrics 
obtained for stigma area and ovary diameter. 

Note: Estimated marginal means ± standard errors are given for each type of annotation. P 
values indicate statistical significance of the pairwise comparison in one-way ANOVA. 

Stigma area (mm2) 

Stage-1 Stage-2 Stage-3 
Manual 
annot. 

CNN 
annot. 

ANOVA 
P value 

Manual 
annot. 

CNN 
annot. 

ANOVA 
P value 

Manual 
annot. 

CNN 
annot. 

ANOVA 
P value 

Non-fixed 
carpels 

7.27 ± 
0.648 

7.54 ± 
0.648 0.7741 10.23 ± 

0.648 
11.16 ± 
0.648 0.3118 4.75 ± 

0.648 
4.19 ± 
0.648 0.5488 

Fixed 
carpels 

7.54 ± 
0.605 

7.6 ± 
0.605 0.9358 10.54 ± 

0.605 
11.1 ± 
0.605 0.514 4.73 ± 

0.605 
4.84 ± 
0.605 0.9005 

Ovary diameter (mm) 

Stage-1 Stage-2 Stage-3 
Manual 
annot. 

CNN 
annot. 

ANOVA 
P value 

Manual 
annot. 

CNN 
annot. 

ANOVA 
P value 

Manual 
annot. 

CNN 
annot. 

ANOVA 
P value 

Non-fixed 
carpels 

2.09 ± 
0.122 

2.12 ± 
0.122 0.8556 3.58 ± 

0.129 
3.59 ± 
0.129 0.9769 3.48 ± 

0.137 
3.04 ± 
0.137 0.0298 

Fixed 
carpels 

2.1 ± 
0.0975 

2.15 ± 
0.0975 0.7473 3.27 ± 

0.1027 
3.27 ± 
0.1027 0.9966 3.36 ± 

0.1165 
3.33 ± 
0.1165 0.8659 
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Table S3. Summary table of three-way ANOVA on the effect of the fixative on stigma 
area and ovary diameter across different timepoints. 

Note: P values shown for the different timepoints indicate the P values for the pairwise 
comparisons. Estimated marginal means ± standard errors are also given for each treatment 
(fixed or non-fixed). 

ANOVA P value 

Fixative Fixative × Timepoint Fixative × Cultivar Fixative × Timepoint
×Cultivar 

Stigma area 6.39E-06 0.08956 0.52333 0.781 
Ovary diameter 0.24692 0.08693 0.96446 0.98034 

0 DAW9.5 
Fixed Non-fixed Fixative effect (%) P value 

Stigma area (mm2) 7.15 ± 0.265 7.92 ± 0.265 -9.72 0.0292 
Ovary diameter (mm) 2.01 ± 0.0468 2.09 ± 0.0468 -3.83 0.2299 

3 DAW9.5 
Fixed Non-fixed Fixative effect (%) P value 

Stigma area (mm2) 10.24 ± 0.179 10.46 ± 0.178 -1.91 0.3855 
Ovary diameter (mm) 2.49 ± 0.0324 2.57 ± 0.0324 -3.11 0.058 

7 DAW9.5 
Fixed Non-fixed Fixative effect (%) P value 

Stigma area (mm2) 10.58 ± 0.242 10.78 ± 0.219 -1.85 0.5164 
Ovary diameter (mm) 3.06 ± 0.0431 3.09 ± 0.0396 -0.97 0.479 

13 DAW9.5 
Fixed Non-fixed Fixative effect (%) P value 

Stigma area (mm2) 8.34 ± 0.18 8.97 ± 0.18 -7.02 0.0132 
Ovary diameter (mm) 3.47 ± 0.0328 3.49 ± 0.0418 -0.57 0.677 

18 DAW9.5 
Fixed Non-fixed Fixative effect (%) P value 

Stigma area (mm2) 5.27 ± 0.178 6.35 ± 0.178 -17 <0.0001 
Ovary diameter (mm) 3.71 ± 0.0328 3.63 ± 0.0339 2.2 0.0662 
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Table S4. Expression data (raw transcript per million (TPM) values) for 42 
senescence-associated genes in the wheat stigma of MS cultivar 24512 grown 
during the 2021 field season. In cases where a gene is below the 0.5 TPM detection 
criteria (see Methods) the value is “.”. Information about each gene is also provided 
(i.e. Gene name, TF family and publication from which the candidate gene was 
selected).

Table S5.  Output data obtained after running stigma CNN. Pixels were converted to 
mm2.

Table S6.  Environmental data collected during 2021 field season.

Click here to download Table S4

Click here to download Table S5

Click here to download Table S6
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Supplementary Materials and Methods 

List of scripts and directories included in https://github.com/Uauy-Lab/ML-carpel_traits. 

Scripts used to run stigma or ovary trained CNNs on raw .jpg data: 

- measure-ovary.yml 

- measure-stigma.yml 

- requirements.txt 

- analyse_ovary_diam_resumable.py 

- analyse_stigma_area_resumable.py 

- gather_working_dir.py 

- gather_working_dir_area.py 

Scripts can be found in “running_the_model” directory. 

R script used to organise and visualise output data from stigma or ovary CNNs. An example 

is provided to analyse stigma area data: 

- Stigma_area_script.R 

Step-by-step guide: example for stigma area measurements 

Download ML-carpel_traits repository by selecting “Download ZIP” under the “Code” button 

highlighted in green. Once downloaded you can decompress the folder. 

For the following steps we used the command line in Git Bash. Git Bash can be downloaded 

from the following link: https://git-scm.com/downloads    

Applying trained model to raw images to make stigma measurements 
First, ensure you have a working version of Python 3, version 3.7 or later. You can do so by 

typing the following on the command line: 
python –-version 

To install Python 3 on Windows 10 you can directly type python3 on the command line and 

it will automatically be downloaded. Once the download is completed you can type python 

--version again to check Python 3 is now working.  
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Next, create a virtual environment: 

cd ML-carpel_traits-main/running_the_model/ 

python3 -m venv venv 

source venv/bin/activate 

Then install the requirements: 

pip install -r requirements.txt 

 

If the installation of some requirements fails, you can manually do so as follows: 
pip install dtoolai==0.2.0 

 

Errors tend to be user-specific so we also recommend users to inspect the error messages 

that might appear during the installation as they normally suggest a way to solve the 

problem.   

Create new directories for the raw images we want to analyse and output directories where 

the results will be saved: 

mkdir -p input_folder_carpel #In this folder you should paste the 

   images 

mkdir -p working_stigma #For ovary CNN, you need to create 

   working_ovary directory 

mkdir -p results_stigma #For ovary CNN, you need to create 

          results_ovary directory 

Once all the requirements have been successfully installed and additional directories 

created, we run the model as follows: 

Stigma CNN 

python scripts/analyse_stigma_area_resumable.py measure-stigma.yml 

python scripts/gather_working_dir_area.py measure-stigma.yml 

Ovary CNN 

python scripts/analyse_ovary_diam_resumable.py measure- ovary.yml 

python scripts/gather_working_dir.py measure-ovary.yml 
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Note: requirements need to be installed only the first time you run the model (independently 

of whether you run the stigma CNN or ovary CNN). 

In “results_stigma” you should find a folder containing all the images annotated by the CNN 

and their annotations (expected path: 

running_the_model/results_stigma\output_folder_annotated_stigma/data). Additionally, you 

will find a “results.csv” file containing a filename column and a stigma_area_pixels column 

with the CNN measurements in pixels. Conversion to mm2 will depend on the scale used for 

each image. We recommend acquiring all the images with the same magnification to ease 

the transformation of pixels to mm2.  

Verification of CNN annotated images 
 

As previously mentioned (see discussion and Fig. 2E), we suggest the user to add a 

verification step to identify potential annotation errors before continuing with the downstream 

analyses. See Fig. S7 for examples. The user can decide whether to remove that image 

from the analysis or correct it by manually annotating the image using Fiji.  

Organise and visualise output data 
 

The R script Stigma_area_script.R can be used and modified to accommodate the research 

interests of the user. The aim of the script is to organise the output data, integrate additional 

field data (e.g., day temperatures) and generate ggplots illustrating the developmental 

dynamics of the carpel for the selected cultivars (Fig. S9). Rstudio is required to run the script. 

Note that the same script can be used for ovary diameter data by simply changing 

“stigma_area_mm” to, for example, “ovary_diam_mm”. In Supplementary Table 4 and 5 we 

provide data for two different MS cultivars as an example. 
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