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ABSTRACT

The efficient extraction of image data from curved tissue sheets
embedded in volumetric imaging data remains a serious and
unsolved problem in quantitative studies of embryogenesis. Here,
we present DeepProjection (DP), a trainable projection algorithm
based on deep learning. This algorithm is trained on user-generated
training data to locally classify 3D stack content, and to rapidly and
robustly predict binary masks containing the target content, e.g.
tissue boundaries, while masking highly fluorescent out-of-plane
artifacts. A projection of themasked 3D stack then yields background-
free 2D images with undistorted fluorescence intensity values. The
binary masks can further be applied to other fluorescent channels or
to extract local tissue curvature. DP is designed as a first processing
step than can be followed, for example, by segmentation to track cell
fate. We apply DP to follow the dynamic movements of 2D-tissue
sheets during dorsal closure in Drosophila embryos and of the
periderm layer in the elongating Danio embryo. DeepProjection is
available as a fully documented Python package.

KEY WORDS: 2D projection, 3D image analysis, Deep learning,
Software, Tissue morphogenesis

INTRODUCTION
Time-resolved three-dimensional fluorescence microscopy of
transparent model organisms such as embryos of the fruit fly
Drosophila, the nematode Caenorhabditis elegans or the zebrafish
Danio rerio is a central tool in developmental biology.With modern
techniques, the dynamics of entire organisms can be rapidly imaged
as sequences of stacks of two-dimensional image slices, resulting in
GBs of data per recording. Manual image processing is far too slow
to mine such data, and potentially introduces bias. Convolutional
neural networks, a form of machine learning, have been shown to far
outperform conventional algorithms for visual feature extraction in
many areas of research and engineering, including the life-sciences
(Belthangady and Royer, 2019). Neural networks such as U-Net

(Falk et al., 2019) can robustly segment and classify complex image
features, defined by an initial training process.

We here present a new deep learning approach that allows us to
automatically extract image content from dynamic curved 2D
manifolds embedded in 3D image stacks of developing tissues.
DeepProjection (DP) is an algorithm for structure-specific surface
projections based on feature detection with convolutional neural
networks. DP is a useful tool for developmental biology because,
throughout phylogeny, cell sheet migration is a fundamental feature
of morphogenesis in development and in wound healing. Cell sheets
assume complex curved geometries and move to form internal
organs and structures, including the neural tube, the gut and the
heart in vertebrates.

To follow tissue sheet morphogenesis in living embryos, it is
useful to extract selected sections of image content from different
slices of each 3D stack to create 2D projections, while rejecting
content from other planes before further processing. Past approaches
have significant shortcomings. Maximum intensity projection
(MIP) is simple and fast, but only works when fluorescence from
the structures of interest dominates noise and off-target labels. MIP
cannot differentiate subtle and low-intensity content of interest from
bright content in other image planes. Manual omission of
problematic slices or reduction of the overall imaging volume can
also eliminate parts of the target content. Manual masking of
individual slices is entirely impractical for long recordings. Other
reported methods for z-projection use pixel value statistics, e.g. the
minimum, the median or the sum of the pixels along the z-axis
through the stacks, typically assuming that the structures of interest
display the brightest fluorescence or have the sharpest contrast, but
do not use information from neighboring pixels. The extracted 2D
manifolds are easily distorted by single bright pixels, i.e. the masks
are not continuous, have holes and no sharp edges. The extracted 2D
manifolds are therefore not smooth. More sophisticated approaches
can be classified into three categories: (1) smoothing of height maps
derived by MIP (Blasse et al., 2017); (2) ranking of z-slices by
visual pattern recognition of targeted tissue structures by edge filters
(Erguvan et al., 2019), Fourier transforms or wavelet transforms
(Forster et al., 2004); or (3) evaluating mean and variance of
intensity distributions in the neighborhood of each pixel (Herbert
et al., 2021). All these algorithms perform well only when the target
structures are bright and clearly distinguishable from background
noise. Bright fluorescent structures with a clear texture in the image
background, such as auto-fluorescent yolk granules in Drosophila
embryos, are not robustly discriminated against (Mavrakis et al.,
2008). Most importantly, all these approaches are static, i.e. require
manual parameter optimization for each new recording. Machine
learning approaches, in contrast, can be trained to deal with a broad
range of imaging conditions. One pioneering application of ML to
developmental imaging is CSBDeep, a package for content-aware
image restoration (Weigert et al., 2018). This package demonstrates

Handling Editor: Thomas Lecuit
Received 10 February 2022; Accepted 12 September 2022

1Department of Physics and Soft Matter Center, Duke University, Durham, NC
27708, USA. 2Institute of Pharmacology and Toxicology, Göttingen University
Medical Center, Göttingen 37075, Germany. 3Advanced Light Imaging and
Spectroscopy Facility, Department of Physics, DukeUniversity, Durham, NC 27708,
USA. 4Department of Biology, Duke University, Durham, NC 27708, USA.
5Department of Cell Biology, Duke University Medical Center, Durham, NC 27710,
USA.

*Authors for correspondence (daniel.haertter@med.uni-goettingen.de,
dkiehart@duke.edu, cfschmidt@phy.duke.edu)

D.H., 0000-0002-9582-6141; X.W., 0000-0003-2660-0859; N.R., 0000-0002-
4086-4562; K.D.P., 0000-0002-6743-5709; S.D.T., 0000-0001-9758-7925; D.P.K.,
0000-0002-5790-5623; C.F.S., 0000-0003-2864-6973

1

© 2022. Published by The Company of Biologists Ltd | Development (2022) 149, dev200621. doi:10.1242/dev.200621

D
E
V
E
LO

P
M

E
N
T

mailto:daniel.haertter@med.uni-goettingen.de
mailto:dkiehart@duke.edu
mailto:cfschmidt@phy.duke.edu
http://orcid.org/0000-0002-9582-6141
http://orcid.org/0000-0003-2660-0859
http://orcid.org/0000-0002-4086-4562
http://orcid.org/0000-0002-4086-4562
http://orcid.org/0000-0002-6743-5709
http://orcid.org/0000-0001-9758-7925
http://orcid.org/0000-0002-5790-5623
http://orcid.org/0000-0003-2864-6973


how convolutional neural networks can be used for combined
projection and denoising of microscopy stacks of Drosophila wing
development, by coupling a small convolutional network for 2D
projection and a U-Net for subsequent denoising (Weigert et al.,
2018; Falk et al., 2019). However, owing to the strong emphasis
on denoising, original pixel intensities are not conserved in the
output and the algorithm does not yield the manifold containing the
tissue.
The key unaddressed challenge is to design an automated

approach that can (1) detect defined fluorescent features that do not
solely stand out by intensity or texture, and (2) project the entire 2D
manifold in which the detected features reside without distorting
intensities while completely rejecting content from regions outside
of this 2D manifold. The crucial advantage of convolutional neural
networks is that they can be trained to simultaneously detect various
distinctive features of the target structure and then also select image
content based on, but not limited to, the detected structures.
DP uses a convolutional neural network that analyzes features

and textures in a 3D stack to create binary masks that contain
only the regions specified as targets in the training data, in our case
tissue layers containing sharp and distinctive cell boundaries.
Thereby DP omits out-of-plane fluorescent structures and artifacts.
We demonstrate DP using two models, dorsal closure in fruit fly
(Drosophila melanogaster) development (Kiehart et al., 2000,
2017) and periderm development in zebrafish (Danio rerio)
embryogenesis (Chang and Hwang, 2011; Eisenhoffer et al.,
2017). DP predicts a single ZXY stack in just 1-10 s, depending
on stack size. Significant gains in signal-to-noise ratio allow us to
resolve even subtle structures. DP yields time-consistent results for
time-lapsed movies as the algorithm detects persistent spatially
extended features in the target manifold and is not deflected by
temporary fluctuations and artefacts. DP also outputs masks that
select 2D manifolds without modification of intensities in those
planes. We show how these masks can be used to select image
content from other fluorescent channels from the same 2D
manifolds by extracting actin dynamics near the apical surface of
amnioserosa cells during dorsal closure of Drosophila. We further
show how the detected 3D geometry can be used to uniaxially
flatten curved cell sheets.

RESULTS AND DISCUSSION
We developed DP to be broadly applicable to the rapid, automated
processing of time-lapsed 3D recordings of developing embryos
and tested it on recordings of dorsal closure in Drosophila embryos
and periderm development in Danio embryos. At the core of DP
is a custom-designed 3D convolutional neural network (CNN)
that locally analyzes the image stack and classifies complex
morphologies and textures (Fig. 1A,B, details in the Materials and
Methods). For each application the user has to train a specific CNN
model with a training dataset consisting of input stacks and
manually generated ground truth. The CNN can simultaneously
detect various spatially extended structures and robustly classifies
each voxel into either target structure (e.g. a region with sharp cell
boundaries) or background (e.g. fluorescent noise, artifacts, yolk
granules, Fig. 1C). The resulting binary masks are then used to mask
the input stack to exclusively contain the target structures (Fig. 1D).
A maximum-intensity z-projection inside the predicted manifold
then yields the final DP result (Fig. 1E). The predicted masks for
each stack can be exported and subsequently applied to other
fluorescent channels. Additionally, DP allows post-processing of
binary masks to further tweak the algorithm result. DP was trained
with pairs of image stacks and the corresponding manually created
binary masks (Fig. 1F, details in the Materials and Methods).

In our applications to epithelial tissue sheets, only the regions of
the stack containing tissuewith sharp and distinctive cell boundaries
are retained (Fig. 2A-H). Dorsal closure during Drosophila
embryogenesis (Fig. 2A,C,E,F) occurs 12-15 h after egg laying
(Sokolow et al., 2012; Kiehart et al., 2017). At this stage of
development, the dorsal opening, which is left behind after germ
band retraction, is covered by a curved sheet of squamous epithelial
cells [amnioserosa (AS) cells]. The dorsal opening closes in ∼3 h
while AS cells subduct under the lateral epidermis (LE) or apoptose
(Sokolow et al., 2012). We labeled cell-cell junctions with
E-cadherin-GFP. Analyzing AS dynamics was complicated by the
curved shape of the AS, highly auto-fluorescent yolk granules and
subducted cells underneath the AS tissue (Fig. 2A,E). Tracking LE
cells was impeded by low signal-to-noise ratios. DP clearly resolved
AS and LE cell boundaries while yolk particles and gut cells were
masked (Fig. 2C,E,F). During zebrafish development (Fig. 2B,D,G,H),

Fig. 1. DeepProjection algorithm.
(A) Input 3D stack of Drosophila
dorsal closure. (B) Convolutional
neural network architecture.
(C) Output of neural network showing
binary masks (black=1, white=0). The
predicted masks can be saved and
applied to other fluorescent channels.
(D) Multiplication of input stack with
predicted binary masks yields a
masked 3D stack containing only
target tissue with sharp and distinctive
cell boundaries. (E) MIP of masked
3D stack yields the result.
(F) Illustration of manual training data
generation. Yellow regions are cut out
manually for each slide and only
regions containing the target tissue
are kept. Scale bar: 50 µm.
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the periderm covers the entire elongating embryo (Fig. 2B′).
As the embryo narrows towards the posterior region, the left and
right sides appear overlaid in the MIPs (Fig. 2B) when imaged
laterally. This makes it difficult to distinguish the upper from the
lower tissue layer. Furthermore, due to the strong curvature,
projected cell shapes and areas are distorted. DP distinguished the
tissue of interest from lower layers and the notochord, revealing the
cell boundaries and making it possible to study cell shapes (Fig. 2D,
G,H). As an example of subsequent processing, we segmented the
strongly elongated cells of the Drosophila LE tissue with faint
boundaries and achieved almost complete segmentation after
application of DP, clearly superior to the application of a simple
MIP, demonstrating the advantage of using DP prior to cell
segmentation (Fig. 2I,J).
To demonstrate the capabilities of DP, we compared its

performance with simple MIP, three published algorithms and
manually generated ground truth: FastSME (FSME) (Basu et al.,
2018), Local Z Projector (LZP) (Herbert et al., 2021) and CSBDeep
(CSBD) (Weigert et al., 2018). We further tested Ilastik, a trainable
pixel-segmentation algorithm not specifically designed for
projections, as an alternative to our custom convolutional neural
network (Berg et al., 2019). After multiple iterations of annotation
and training, Ilastik was, unlike DP, not able to detect the target
regions (Fig S1; supplementary Materials andMethods). We trained
CSBDeep with the MIP of the masked stacks of the DP training data
as ground truth (GT) using default parameters (200 epochs with

learning rate 4e-5). We then selected representative confocal stacks
from recordings of Drosophila dorsal closure (n=8) and zebrafish
periderm (n=4), which are distinct from the training data,
and compared the respective results with manually created GT
(Fig. 3A-C). The parameters of FSME and LZP were optimized
individually for each stack.

For the dorsal-closure stacks, DP was able to reproduce the
ground truth, while MIP and FSME failed to remove yolk granules
and underlying gut tissue; LZP detected only parts of the AS tissue,
and yolk granules leaked through; CSBD showed holes and yolk
granules in the cell centers and the intensity gray values appeared
distorted (Fig. 3A). The faint cell boundaries of the LE tissue were
well detected by DP and LZP, while FSME did not perform better
than MIP. CSBD showed opaque fog-like artifacts (Fig. 3B).
Subducting cells along the seam under the LE were only
discriminated against by CSBD and DP. CSDB distorted intensity
values (Fig. 3B). For the zebrafish periderm, DP, LZP and CSBD
were able to differentiate upper from lower tissue layers, in contrast
to MIP and FSME (Fig. 3C). However, FSME, LZP and CSBD
produced artifacts as black lines and cell boundary snippets, owing
to the high local gradient of the tissue at the edge (Fig. 3C). CSBD
again distorted intensity values, and high-frequency details inside
the tissue manifold appeared smoothed or were missing (Fig. 3C).
The CSBD algorithm attenuates or emphasizes certain features,
which is evident in a plot of pixel grey values of the results
against the GT (Fig. 3D). FSME and LZP yield pixel gray values

Fig. 2. Comparison of
DeepProjection (DP) with maximum
intensity projection (MIP). (A) MIP of
a single stack (eight slices, 1 µm
z-distance) of images of the dorsal
opening of a Drosophila embryo
during dorsal closure, cell boundaries
labeled with Cadherin-GFP. (B) MIP
of a single stack (53 slices, 2 µm
z-distance) of images of zebrafish
periderm labeled using krt4-directed
lyn-EGFP fluorescence 1 day post
fertilization (dpf ). (A′,B′) y-z cuts of
3D image stacks at the red dashed
lines in A and B. (C,D) DP results
from the same stacks of Drosophila
and zebrafish embryo. (C′,D′) The
masked stack with the manifolds
predicted by DP. (E,F) Enlargement of
amnioserosal tissue in Drosophila
comparing MIP (E) and DP (F),
showing successful masking of yolk
granules and gut tissue underneath
the amnioserosal tissue. (G,H)
Enlargement of a zebrafish embryo
comparing MIP (G) and DP (H),
showing masking of underlying
epithelial tissue layer. (I,J) Drosophila
lateral epidermis cell shape
segmentation of MIP and DP results.
Colors show cell labels. Scale bars:
50 µm in A,C; 100 µm in B,D; 10 µm
in E,F; 50 µm in G,H; 15 µm in I,J.
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scattering around the GT, while DP results were almost identical to
GT. CSBD, however, nonlinearly distorts the pixel values, which
makes it impossible to quantitate protein concentrations (Fig. 3D).
We further evaluated the performance of all methods in three

ways.
(1) We calculated the normalized root-mean-square errors

(RMSE) of the z-height maps Z(x, y) with respect to the ground
truth:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x;y ðZRðx; yÞ � ZGT ðx; yÞÞ2
W � H

s
:

As DP yields masks with potentially more than one slice selected
per x-y pixel, we created unique z-height maps for DP and ground
truth by selecting the z-height corresponding to the maximum
intensity inside the manifold. The CSBD package does not output a
z-map or binary masks. DP strongly outperformed all other
algorithms (Fig. 3E).

(2) We calculated the signal-to-noise ratio (SNR) of the
reconstruction results IR with respect to the ground truth IGT:

SNR ¼ 20 log
s2ðIRÞ

s2ðIR � IGT Þ
� �

:

Fig. 3. Comparison of DP with published algorithms. (A) Comparison for a single confocal stack of amnioserosa (AS) tissue during early Drosophila
dorsal closure, with auto-fluorescent yolk granules and gut cells. (B) Comparison for amnioserosa-lateral epidermis (LE) tissue interface and canthi during
late Drosophila dorsal closure, with faint tissue cell boundaries, subducting cells and the interface of two different tissue types. (C) Comparison for zebrafish
periderm (1 dpf), with large tissue gradient and second tissue layer underneath. Images on the left of A-C show vertical cuts at the red dashed lines, each
averaged over 10 pixels perpendicular to the line. (D) Pixel-wise intensity scatter plot of algorithm results against ground truth to check for distortion of
fluorescent gray value. (E) Root-mean-square errors of algorithm results relative to ground truth. (F) Signal-to-noise ratio of algorithm results with ground truth
as reference. (G) Log-scale plot of algorithm run time for three different stack sizes. In box-and-whisker plots, boxes show the median (red) with IQR, with
whiskers extending to the 5th and 95th percentiles. Scale bars: 20 µm.
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DP performed significantly better than both FSME and LZP
(Fig. 3F). Interestingly, even MIP performed better than FSME and
LZP, as all bright features, desired and undesired ones, are conserved
by MIP. FSME and LZP both create a smooth z-map with only one
selected plane per x-y pixel, whereas DP predicts a set of binary
masks which embed the tissue of interest. When more than one slice
is selected for a given x-y pixel, DP then uses MIP inside this
embedding to obtain the final 2D projection result. When the
structures of interest (in this case fluorescent cell boundaries) span
multiple z-slices, MIP and foremost DP yield better SNR results by
including relevant signal frommore than one slice. Owing to the non-
linear distortion of gray values, CSBD scored poorly (Fig. 3D).

(3) We assessed the run time of algorithms on exemplary stacks of
three different sizes (Fig. 3G).MIPwas very fast due its simplicity. DP
required about 1 s to predict a stack with dimension 8×640×512
pixels, when run on a graphics card (GPU), three times faster than
FSME and LZP.When run on theCPU,DP prediction took around ten
times longer than on the graphics card but was still within a practical
range. CSDB run times on a GPU were slightly longer than DP.

To demonstrate the option ofmask transfer to other simultaneously
recorded fluorescent channels, we performed dual-color imaging of
dorsal closure labeled for E-cadherin and filamentous actin. TheMIP
of the actin channel shows intracellular actin networks and actin-rich
filopodial cores (Fig. 4A). However, it is not possible to distinguish

Fig. 4. Mask transfer to project content from other fluorescent channels and tissue flattening. (A) MIP of dual-color confocal stack of Drosophila
embryo during mid-stage of dorsal closure with labeling via E-cadherin-tomato and actin-GFP. (B) Result of applying the masks, predicted by DP from
E-cadherin cell boundaries to the actin channel, showing mainly actin-rich filopodia at the apical surface of cells. (C) Applying the same masks with a z-offset
of 4 pixels/2 µm to the actin channel, showing contractile actin networks underneath the apical surface. (A′,B′,C′) Enlargements of A-C. Arrows indicate
filopodia (B’) and contractile actomyosin network (C’). (D) y-z cut of E-cadherin-tomato channel (at dashed line in A-C) with binary mask predicted by DP.
(E) y-z cut of actin channel with binary masks with z-offset. Arrows indicate cells at region with large curvature with distorted cell shape in projection. (F) DP
result of zebrafish periderm development (1 dpf). (G) x-z cut along white dashed line in F. The manifold predicted by DP is highlighted in yellow. (H) z-height
map calculated by averaging the positive indices of the manifolds at each x-y position. The z-map was subsequently smoothed with a mean filter with kernel
size 5×5 pixels. (I) Result of flattening algorithm applied in y direction. As highlighted, the flattening reveals the true shape and area of cells at positions with
large gradient. Arrows indicate cells with corrected shape compared with F due to flattening. Scale bars: 50 µm in A-C,G; 20 µm in A′-C′; 20 µm in y, 1.5 µm
in z in D,E; 50 µm in F,I.
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between apical actin, which is responsible for the contraction of apical
cell areas (Ma et al., 2009; Duque and Gorfinkiel, 2016), and actin
elsewhere in the cells.We next used DP to predict binary masks using
the cell boundary information captured in the E-cadherin channel and
then applied the masks to the actin channel (Fig. 4B,D). As
highlighted in Fig. 4B′, the predictedmasks include the apical surface
with actin networks and filopodia. A comparison between the DP and
MIP results shows additional pronounced actin structures at the basal
surface of cells visible inMIP, but not in DP (Fig. 4A′,B′). In order to
extract the basal actin, we shifted the binary masks by four pixels
(corresponding to 2 µm in the z-direction) (Fig. 4E), and then applied
them to the actin channel (Fig. 4C). DP thus allows us to not only
extract image content from other channels from the predicted 2D
manifolds, but also from other parallel planes, offset in the
z-direction.
If a curved cell sheet displays steep gradients, cell shapes and

areas are distorted in z-projections (Fig. 4F,G). By processing the
binary masks, DP extracts the local z-height of the target tissue
(Fig. 4H, Movie 2). Based on the z-height map, we implemented an
flattening algorithm that successfully straightens the regions of the
zebrafish embryo with high gradients in x, revealing true cell sizes
and shapes (Fig. 4I). Our approach is, in this respect, similar
to previously reported unrolling and cartographic approaches
(Heemskerk and Streichan, 2015).
So far, we have focused on the projection of individual confocal

stacks. When evaluating time-lapse recordings of developing
embryos, time consistency of the projection method becomes
important, i.e. the differences between consecutive frames reflect
only real morphological changes and do not show projection
artifacts as flickering or missing values. We applied DP to time-
lapse recordings of dorsal closure (Movie 1). Even though the stacks
were predicted one-by-one, and no information was propagated
between consecutive time points, the results were time consistent,
demonstrated by the stable position of tissue edges (Movie 1). DP
robustly detects time persistent image features, of both low and high
spatial frequencies and is thus not perturbed by time-varying noise
or decreasing fluorescent intensity due to photobleaching. To
further improve time consistency and to eliminate flickering
artifacts that occasionally occurred, we added the option to
average the binary masks using rolling-window mean filtering of
voxels over multiple frames. Consecutively, the filtered masks are
again binarized and used for projection, yielding improved
projection results (Movie 1).

Conclusions
DP uses a convolutional neural network to selectively extract and
project image content from curved 2D manifolds embedded in 3D
confocal stacks. DP detects complex features that are in each
application specified by user-annotated training, which makes it
possible to mask even highly fluorescent artifacts while faithfully
detecting weakly fluorescent structures of interest. DP could extract
and project image content from dynamic curved tissue sheets in both
Drosophila and zebrafish embryos while masking background
content and noise. Image processing with DP greatly simplifies the
segmentation and tracking of individual cells in subsequent
processing steps. Original fluorescence intensity values in the
selected manifold are strictly preserved for quantitative analysis. DP
significantly outperformed the alternative algorithms we tested and
created time-consistent results for time-lapsed recordings. DP is
substantially faster than most published algorithms. Owing to its
universal architecture, DP is not limited to the analysis of epithelial
tissues but can be applied to extract any 2D manifold from 3D data

when properly trained for the features of the target manifold. For
high-content imaging pipelines, DP can rapidly and robustly
compress data from stacks to single images to save storage space
without losing information from the target manifolds. Deep learning
algorithms such as DeepProjection constitute a major leap in the
capability to process large amounts of imaging data and will enable
researchers to rapidly mine data and rigorously quantify complex
morphogenetic processes.

MATERIALS AND METHODS
Preparation and imaging of Drosophila embryos
Cell junctions were labeled with either DE-cadherin-GFP or DE-cadherin-
mTomato (labeling Drosophila E-cadherin, which is concentrated in cell-
cell junctions), both knock-in lines under control of the endogenous
promoter (Huang et al., 2009). F-actin was labeled with the GFP-moesin
actin-binding domain, expressed under the control of the spaghetti squash
promoter in the sGMCA line (Kiehart et al., 2000). All stocks were
maintained at room temperature or 25°C on standard cornmeal/molasses fly
food or in embryo collection cages with a grape juice agar plate and yeast
paste. Embryos were collected either 2-4 h after egg lays and aged overnight
at 16°C or from overnight egg lays at 25°C. To remove the chorion, embryos
were incubated in a 50% bleach solution for 1.25 min and then rinsed
extensively with deionized water. Pre-dorsal closure stage embryos were
selected using a reflected-light dissecting microscope. Embryos were
prepared for imaging, as described previously (Kiehart et al., 1994, 2006).
Images were acquired usingMicro-Manager 2.0 software (Open Imaging) to
control a Zeiss Axiovert 200 M microscope equipped with a Yokogawa
CSU-W1 spinning disk confocal head (Solamere Technology Group), a
Hamamatsu Orca Fusion BT camera and a Zeiss 40X LD LCI Plan-
Apochromat 1.2NA multi-immersion objective (glycerin). Owing to the
curvature of the embryo, we imaged multiple z planes for each embryo at
each time point to view the dorsal opening. We recorded eight z-slice stacks
with 1 µm step size for single color, and 14 z-slice stacks with 0.5 µm step
size for dual-color movies. Stacks were acquired every 15 s throughout the
duration of closure with a 100 ms exposure per slice for GFP and a 150 ms
exposure per slice for mTomato.

Zebrafish husbandry and sample preparation for live imaging
Zebrafish of the Ekkwill strain were maintained between 26 and 28.5°Cwith
a 14:10 h light:dark cycle. Fish between 3-6 months were used for
experiments. Transgenic krt4:lyn-EGFP fish have been described
previously (Lee et al., 2014). Male and female fish were set up for mating
in tanks with dividers. The dividers were removed in the morning for timed
mating. Embryos were collected in E3 medium and screened at 1 dpf for
expression of GFP in the periderm (krt4-lynGFP). The positive embryos
were transferred to a dish with E3 medium and tricaine (Sigma E10521-50G)
at 0.01% concentration. The embryos were dechorionated with forceps and
mounted in fluorinated ethylene propylene (FEP) tubes according to
published protocols (Weber et al., 2014). The FEP tubes were coated with
3% methlycellulose and embryos were mounted in 0.1% agarose with
0.01% tricaine to immobilize them during imaging. The tube was then
placed in a 60 mm culture dish with an agarose bed, held in place with 1%
agarose and immersed in E3 medium. Images were acquired with LASX
software on a Leica SP8 confocal microscope using an HC Fluotar
L 25×/0.95NA W VISIR water-immersion objective at 0.75 or 1× zoom.
Image stacks with 40-60 slices were acquired every 15 min with a z-step size
of 2 µm.Work with zebrafish was approved by the Institutional Animal Care
and Use Committee at Duke University.

Convolutional neural network architecture
DP uses an encoder-decoder convolutional neural network (Fig. 1B),
inspired by the U-Net architecture (Falk et al., 2019). The left branch of
the neural network extracts high-dimensional features by pairs of 3D
convolutions with kernel size 3×3×3, each followed by Scaled Exponential
Linear Units (SELU) activation. Between each double-convolutional layer,
the content is down-sampled bymax-pooling with kernel size 1×2×2 in only
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the x and y directions. The number of convolution kernels further doubles in
each layer. This multi-layer structure ensures the efficient extraction of both
high-frequency features (such as bright cell boundary pixels) and low-
frequency image features (such as whole cells in a tissue context). After
feature extraction, the feature map is decoded and upscaled again to the
initial stack dimensions using up-convolutions with kernel size 1×2×2
alternating with 3D convolutions with kernel size 3×3×3. To preserve the
spatial resolution of shapes and boundaries, the input of each decoding layer
is concatenated with the output of the corresponding encoding layer. After
the last up-convolution layer, the output is scaled between 0 and 1 with
sigmoid activation, yielding binary masks (Fig. 1C).

Training data generation and CNN model training
The ground truth (GT) used for training was created manually by human
experts cutting out unwanted content (yolk granules, noise background,
blurry out-of-focus cell boundaries and off-target tissue layers) of each
image slice and keeping only the structure of interest (target epithelial tissue
with sharp and distinctive tissue boundaries) with the freehand selection tool
in Fiji/ImageJ (Schindelin et al., 2012) (Fig. 1F). This manual annotation
procesure requires about 5-10 min per stack and only needs to be performed
once. We selected not only the cell boundaries, but extended tissue regions
containing whole cells. The masked stacks were binarized by clipping
all remaining parts to 1. Our training dataset contained stacks of varying
image quality and three different labeling strategies, with different image
resolution, recorded with different microscopes (160 stacks for Drosophila,
20 stacks for zebrafish). As annotation of training data is a time consuming
effort, we confirmed that a smaller training dataset of 5-10 is sufficient to
obtain good result if the dataset is uniform, e.g. one fly line recorded on one
microscope (Fig. S2; see supplementary Materials and Methods). We
further tested whether this simple model can be directly transferred to
distinct types of dorsal-closure data not contained in the small training
dataset, from a different fly line recorded on a different microscope. We
achieved only slightly inferior performance compared with both the
generalist model (160 stacks of diverse conditions) and a simple model (five
stacks) trained on the new data type. Furthermore, performance on new data
types can be improved with reduced annotation effort by adapting an
existing model towards new data types by training with a small additional
training dataset.

The training dataset was augmented sixfold by randomly flipping and
adjusting brightness and contrast. We aimed for fully binary masks with
sharp and straight edges and contiguous regions. For training, we chose a
log-cosh-Tversky loss function that yields sharp and distinctive mask edges
(Nasalwai et al., 2021). This loss function can be tuned to punish false
positives (high α, low β) or false negatives (low α, high β), and is identical to
the common Dice loss for α=β=0.5. We found optimal training results for
α=0.3 and β=0.7.We trained two separate networks, one forDrosophila and
one for zebrafish, in each case for 50 epochs with learning rate 1e-5, stack
patches of (512×512) pixels in x, y and batch size 12 on a workstation with a
NVidia GTX 1080 Ti GPU.

Uniaxial flattening of curved tissue sheets
To uniaxially flatten curved tissue sheets, unique z-height maps are created
by averaging the positive z-indices of the binary masks predicted by DP.
Then the z-height maps are smoothed by 2D averaging with a kernel size of
3×3 pixels (Fig. 4H). The gradient tensor α (i, j ) of the z-height maps then
yields the local curvature in x and y. This makes it possible to locally correct
the distortion for individual cells using an affine transformation with a
gradient tensor of the z-height map averaged over the proximity of each cell
(not shown here). Alternatively, the tissue can be flattened in only one
direction. This is particularly useful for tube-like tissues. First, a marker line
at position k is defined manually. Then, the curved tissue is cut in one-pixel
wide stripes, straightened, stitched back together and the stripes aligned at
the previously defined marker line k. The unidirectional transformation map
T (i, j ) for each pixel (i, j ) can thus be defined as:

Txði; jÞ ¼
Xi

n¼k

i� k

ji� kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ axðn; jÞ2

q� �
� ði� kÞ:

DeepProjection code, hardware requirements and
data availability
DeepProjection is implemented in Python 3.8 using standard free packages:
numpy 1.19 for scientific computing, pytorch 1.7.1 (with cuda 11.0) for
deep learning, albumentations 0.5.2 for data augmentation (other versions
might also work, but not guaranteed). The DeepProjection repository
(https://github.com/danihae/DeepProjection/) contains the DP code and
Jupyter notebooks with detailed instructions for training, prediction and
flattening. Additionally, we created a graphical user interface for prediction
and batch processing (Fig. S3). Training data, trained DPmodels and the test
data used for benchmarking for Drosophila dorsal closure and Danio
periderm development are available from the Dryad Digital Repository
(Haertter et al., 2022): dryad.x0k6djhnf. The DeepProjection package is
further available on Python Package Index (PyPI) (https://pypi.org/project/
deepprojection/).

DeepProjection was trained on a workstation with 32 GB onboard
memory and NVIDIA GeForce 1080 Ti withWindows 10 operating system.
Training and prediction were also successfully tested on regular desktop
computers and laptops without dedicated GPU with Windows 10 and
Ubuntu 20.04 operating system.
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