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Abstract 

 
To investigate the role of mechanical constraints in morphogenesis and development, we 

develop a pipeline of techniques based on incompressible elastic sensors. These techniques 

combine the advantages of incompressible liquid droplets, which have been used as precise in 

situ shear stress sensors, and of elastic compressible beads, which are easier to tune and to 

use. Droplets of a polydimethylsiloxane (PDMS) mix, made fluorescent through specific 

covalent binding to a rhodamin dye, are produced by a microfluidics device. The elastomer 

rigidity after polymerization is adjusted to the tissue rigidity. Its mechanical properties are 

carefully calibrated in situ, for a sensor embedded in a cell aggregate submitted to uniaxial 

compression. Thelocal shear stress tensor is retrieved from the sensor shape, accurately 

reconstructed through an active contour method. In vitro, within cell aggregates, and in vivo, 

in the prechordal plate of the Zebrafish embryo during gastrulation,our pipeline of techniques 

demonstrates its efficiency to directly measure the three dimensional shear stress repartition 

within a tissue.  
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INTRODUCTION 

The cohesion and morphogenesis of living tissues require coordinated processes at the 

cellular scale, based on changes in cell number, size, shape, position and packing (Heisenberg 

and Bellaïche, 2013; Guirao et al., 2015). These rearrangements are possible because cells 

can generate and exert mechanical stresses on their surroundings, or conversely feel the 

stresses and transduce them into biological signals. The complete process is thus regulated 

under the dual control of genetics and mechanics, which mutually feedback on each other, 

and drive the growth and shape of tissues (Desprat et al., 2008). Hence, the impact of 

mechanics on tissue fate and organization is considerable, either for healthy organisms during 

embryo development (Krieg et al., 2008; Le Goff et al., 2013; Heisenberg and Bellaïche, 

2013; Hiramatsu et al., 2013; Hamada, 2015; Herrera-Perez and Karen, 2018), or in 

pathological conditions (Wells, 2013; Delarue et al., 2014b; Angeli and Stylianopoulos, 

2016). Quantitative studies about the role ofmechanical constraints in morphogenesis and 

development benefit from a precise and quantitative knowledge of the spatial distribution of 
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mechanical stresses, from the subcellular scale to the tissue scale, and of its temporal 

evolution.  

In the past decades numerous methods have been developed in order to achieve in situ stress 

measurements, using different and complementary techniques; for reviews see Sugimura et 

al. (2016); Campàs (2016); Roca-Cusachs et al. (2017); Gomez-Gonzalez et al. (2020). To 

summarize, these techniques can be classified into approximately four categories: (i) External 

contact manipulations, including micropipettes (Mitchison and Swann, 1954; Hochmuth, 

2000; Von Dassow et al., 2010; Guevorkian et al., 2010), microplates (Desprat et al., 2005; 

Mitrossilis et al., 2009; Tinevez et al., 2009; Mgharbel et al., 2009), AFM indentation (Butt et 

al., 2005; Elkin et al., 2007; Xiong et al., 2009; Franze, 2011; Lau et al., 2015), traction force 

microscopy (TFM) (Nier et al., 2016); (ii) Manipulations using light, comprising laser 

ablation (Rauzi et al., 2008; Bonnet et al., 2012; Porazinski et al., 2015) and optical tweezers 

(Neuman and Nagy, 2008; Bambardekar et al., 2015) - and also by extent magnetic tweezers 

(Hosu et al., 2003; Tanase et al., 2007; Mazuel et al., 2015); (iii) Non-contact optical 

imaging, in which one can find birefringence (Nienhaus et al., 2009; Schluck and Aegerter, 

2010) and stress inference (Chiou et al., 2012; Ishihara et al., 2013; Brodland et al., 2014; 

Roffay et al., 2021); and finally (iv) Embedded local sensors, from FRET at the molecular 

scale (Grashoff et al., 2010; Borghi et al., 2012) to microsensors at the cell scale (Campàs et 

al., 2014; Dolega et al., 2017; Mongera et al., 2018; Mohagheghian et al., 2018; Lee et al., 

2019; Träber et al., 2019).  

The latter technique based on microsensors is quantitative, barely perturbative, and suitable to 

monitor tissue stresses at the scale of a cell or a group of cells. Two main avenues have 

already been explored.  

The pioneer article (Campàs et al., 2014) has used incompressible liquid droplets to measure 

the shear stress tensor, which is the most important stress component to understand how 

anisotropic forces govern tissue morphogenesis. The droplet synthesis and manipulation, as 

well as the data analysis, is atour de force. Liquid microdroplets, made of fluorocarbon oil, 

have been injected in aggregates of mesenchymal cells, in living mandible explants. Coating 

the oil surface with a biocompatible surfactant enables the droplet insertion in the tissue. The 

mechanical stresses exerted by the surrounding cells modify the droplet shape, and the 

deviation from the average stress normal to the droplet surface can be calculated from its 

local curvature, according to Laplace’s law. Calibration of the liquid/tissuesurface tension 

enables direct measurements of the three-dimensional (3D) components and orientations of 

the shear stress tensor. The same group proposed an alternative use of liquid droplets as 

actuators to probe the tissue mechanical properties (instead of stress), and applied it to 

Zebrafish embryos (Mongera et al., 2018).  

Other groups have favored elastic beads because they are easier to produce, tune, calibrate, 

manipulate, insert in tissues, and analyze. The stress exerted on a solid sensor by surrounding 

cells can be deduced from its deformation, provided that the elastic moduli are determined 

through an independent calibration. Inspired by Matrigel pressure sensors (Monnier et al., 

2016), sensors have been prepared using polyacrylic acid (PAA) hydrogels (Dolega et al., 

2017; Lee et al., 2019; Träber et al., 2019), whose Young modulus can be tuned from 60 to 

4000 Pa (Lee et al., 2019), or alginate gels (Mohagheghian et al., 2018), and injected in cell 

aggregates or Zebrafish embryos. Water can flow in and out of an hydrogel, making it 

compressible. In principle this method yields access to the total stress, that is, simultaneously 

the compression stress (including osmotic pressure contributions) and shear stress. The rest 

state for each sensor without stress can be determined at the end of the experiment by lysing 

the cells; once the compression stress is determined, the shear stress can be estimated by 

substraction (Mohagheghian et al., 2018).  
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To combine the chemical and mechanical advantages of incompressible liquid droplets, 

namely fluorescence, functionalization, and accurate shear stress measurements, with the ease 

to tune and use compressible solid beads, we develop a pipeline of techniques based on 

incompressible solid beads of diameter comparable to the cell size. The material must exhibit 

a well-defined elastic behavior, with a Young modulus comparable to the one of the 

surrounding tissue (order of magnitude 3
1 0  Pa), in order to get a measurable deformation 

under physiological stresses, which expected order of magnitude is e.g. 2
1 0  Pa in zebrafish 

development (Mongera et al., 2018). Coating of the sensors surface is necessary to make 

them biocompatible and to make their insertion non-perturbative. To observe the sensor’s 

deformation and get a precise 3D reconstruction of its shape, a stable fluorescent labelling is 

also needed.  

Our choice fell on polydimethylsiloxane (PDMS), which is an elastic elastomer, with a 

Young modulus adjustable down to a few hundred Pa (Hobbie et al., 2008). Production of 

small droplets of PDMS polymerisable mixture, having a fixed diameter, can be easily 

controlled through a microfluidic device. We introduce a novel method to bind the elastomer 

to a fluorescent dye through covalent bonds, leading to a stable, homogeneous and high 

intensity fluorescence. Coating the PDMS with cell adhesion proteins should also be possible, 

as mentioned in the literature (Toworfe et al., 2004; Schneider et al., 2011). The sensors can 

be embedded in the tissue in a non-perturbative way, and their deformation followed over 

minutes or hours. For 3D image analysis, we implement an active contour method algorithm 

to determine the shapeof the deformed sensors. This method leads to direct and accurate 

measurements of the 3D components and orientations of the shear stress tensor. This 

contrasts with the use of compressible hydrogel sensors, which is mainly sensitive to the local 

pressure inside the tissue, and the shear stress is deduced by subtraction from the total stress. 

When only the shear stress measurement is required, using incompressible PDMS sensors is 

easier and more precise.  

The technique was successfully tested in two different systems, in vitro and in vivo. First, 

reconstituted cell aggregates were chosen as a tumor model, for which it is well known that 

mechanical constraints have a major influence on the organization and fate (Delarue et al., 

2014b; Northcott et al., 2018). Moreover, it is relatively easy to produce aggregates with 

embedded sensors, which makes it a privileged system to validate the method. Second, we 

investigated the distribution of mechanical constraints in the prechordal plate of the Zebrafish 

embryo during its development. Indeed, based on in vitro observation, it has been postulated 

that anisotropies and heterogeneities of mechanical stresses are present in the prechordal 

plate, and are of importance to guide its migration (Weber et al., 2012; Behrndt and 

Heisenberg, 2012). However, due to the lack of appropriate tools, the existence of such 

anisotropies could not be directly tested so far. The implantation of our mechanical sensors in 

this system could help to definitively decide between different models actually disputed.  

In both cases, in vitro and in vivo, we report here results concerning the spatial repartition of 

the shear stresses, providing clear demonstration of the usability and potential of these new 

sensors.  

 

Methods 

The above requirements can be summarized as follows: the sensors must have a size 

comparable to the cell size, and be easily fabricated and manipulated in large quantities; they 

must be biocompatible and conveniently embedded in living tissues; their rigidity has to be 

homogeneous and close to those of the tissues; they can be fluorescently labelled in a 

homogeneous and stable way; their 3D shape can be precisely reconstructed with minimal 
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effort; the effective shear modulus of the sensors can be reliably calibrated in situ; the shear 

stress tensor can be decoupled from compression stress and directly derived from the 3D 

sensor’s deformations by using linear elasticity; shear stresses of order of 2
1 0  Pa can be 

measured with 1 0  Pa sensitivity. To satisfy simultaneously all these constraints, we introduce 

the following pipeline of techniques.  

 

Microsensors fabrication 

The microsensors were made out of a silicon elastomer similar to usual PDMS. The 

polymerizable mix preparation is first dispersed into liquid droplets of about 3 0  μm  in size, 

thanks to a microfluidic circuit, and afterwards polymerized at 8 0 m1 C . Briefly, the main 

component of the elastomer is vinyl terminated polydimethylsiloxane, hereafter coined DMS. 

It is mixed with a polymeric hydrosilane (methylhydrosiloxane-dimethylsiloxane copolymer) 

that acts as a cross-linker via hydrosilylation of the vinyl ends of DMS (Fig. S1a). The ratio 

of cross-linker to DMS must be carefully controlled (
2

1 .6 0 1 0  
c r o s s D M S

m m


  ) to achieve the 

desired shear modulus after polymerisation. The hydrosilylation reaction is initiated using 

Karstedt’s catalyst (
3

4 .2 8 6 1 0  
c a ta l D M S

m m


  ). A divinylic inhibitor (diallyl maleate) is also 

added (
3

0 .8 5 7 1 1 0  
in h ib D M S

m m


  ) to slow down the reaction kinetics. The as-prepared 

mixture needs to be stored at 4 C and should be used within a few days least the cross-

linking reaction significantly moves forward.  

Dispersing the polymerizable mix into spherical droplets of homogeneous size is obtained 

through a custom-made microfluidic circuit, by a classical flow focusing method (Haejune, 

2007). The dispersed phase (polymer mix) meets the carrier phase (water) at a 4-channels 

crossing, and the resulting droplets suspension is collected at the output. The rectangular 

channel section is about 2
5 0 2 0  μm . The injecting pressures of both phases is finely tuned 

and regulated by a Fluigent controller, in order to get a steady-state dripping instability and a 

constant droplet diameter. This diameter may be tuned between 2 0  and 4 0  μm . It is stable 

for a given droplet batch: the diameter distribution of droplets is quite monodisperse within a 

same production (Fig. 1). The monodispersity is not necessary for shear stress measurements. 

In the present work, the monodispersity facilitates the calibration. Moreover, it allows to 

identify possible optical artefacts during image analysis (see Section Results): we discarded 

images of beads with a measured radius out of the expected range.  

The droplets polymerization into spherical elastic beads is achieved by baking the suspension 

at 8 0 C  during 3 h . The final gel is very soft. It sticks easily and irreversibly to any wall, 

including inert surfaces like teflon or silanized glass. Thus one must avoid the contact of the 

droplets with any solid surface during and after polymerization. To achieve this, the beaker 

containing the suspension is placed during baking on a turntable, rotating at about one turn 

per second. Since the gel is less dense than water, buoyancy makes the polymerized beads 

spontaneously concentrate at the center of the meniscus of the water free surface. Then, the 

concentrated suspension containing about 4
1 0  beads per m L  can be collected with a 

micropipette, aliquoted in Eppendorf tubes and immediately stored in a freezer at 2 0 C . 

The beads remain stable for weeks at this temperature, and are thawed before immediate use.  
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Fluorescent labelling 

In order to observe the sensors embedded in the tissue, a dye must be added to the elastomer. 

The objective is to get an homogeneous fluorescent signal, with high enough intensity, to be 

able to visualize the sensors with usual 3D fluorescent microscopy techniques (confocal, 

spinning-disk and 2-photon microscopies) and to precisely reconstruct their 3D shape. 

Several hydrophobic dyes did not lead to satisfying labelling: either the dye could not be 

homogeneously dispersed in the polymer mix (fluorescein diacetate), or it was partially 

released in the water solution surrounding the beads, so that the fluorescent signal rapidly 

decreased with time (Nile Red and Cryptolyte™). We also attempted to label the elastomer 

with quantum dots (QDs) dispersed in the mixture. However, despite some specific coating to 

make them hydrophobic, QDs remained partially aggregated and the dispersion was not 

complete.  

For efficient fluorescent labelling of the elastomer, two challenges needed to be overcome: 

the dye had to easily disperse into the polymerisable mix and, once dispersed and after 

curing, should not escape the meshwork of the gel and leak into the surroundings. Our 

strategy entailed attachment of the organic dye to the cross-linker via a parallel 

hydrosilylation reaction (Fig. S1b). The dye therefore needed to bear a vinyl terminal group. 

Isothiocyanate-bearing fluorophores can be conveniently modified through quantitative C-N 

bond formation. We selected Rhodamine B isothiocyanate because of its emission in the red 

and condensed it with allylamine to give a vinyl-terminated rhodamine B analogue (Fig. 

S1c). The compound was then added to DMS in a molar ratio of one fluorophore for 1,000 

DMS strands (see Supporting Information for details).  

Figure 2 shows some examples of bright field and fluorescent images of single sensors (a) 

suspended in water; (b) embedded in a CT26 reconstituted aggregate; (c) implanted in a 

Zebrafish embryo. Image (b2) is a 3D reconstruction obtainedwith ImageJ software, where 

the deformation from spherical shape is clearly visible. The fluorescent signal is 

homogeneous in the bead volume and the contrast is high enough to detect the sensor border 

(see section Active contour method). Moreover, we checked that the fluorescence in the 

elastomer remains stable over several days. Thus this labelling technique fulfills all the 

requirements for further quantitative image analysis.  

 

Strain-stress relationship 

When a bead is embedded in a tissue, it experiences mechanical forces exerted by its 

environment, which induce a deformation from its initial spherical shape, and makes it a 

sensor of local stresses. In the following we assume that the sensor is small enough, as 

compared to the length scale characterizing stress spatial variations, so that the stress tensor 

can be considered as homogeneous over the sensor’s volume. Thus, stress variations at a 

scale smaller than the sensor cannot be detected. We also assume that the elastomer shows an 

ideally elastic behavior, and that its deformation remains small enough ( 5 % ), so that linear 

elasticity applies. The local strain tensor   and stress tensor   are related through (Landau 

et al., 1986):  

  
1 1 2d c

E E

 
  

 
   (1) 
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Here 
 

1
3

c
tr 

   represents the isotropic part of   (traction stress tensor, i.e. the pressure 

is 
c

 ) and d c
     isthe deviator, also known as shear stress tensor; E  is the Young 

modulus, and   the Poisson’s ratio.  

The sensors are made out of a PDMS elastomer, which can be considered as incompressible 

in the range of physiological stresses (its compression modulus 
1 2

E
K





 is of the order of 

6
1 0  Pa). This justifies the approximation 12c , and thus Eq. 1 simplifies into 

1 d

E


 


 . Introducing the shear modulus 

2 2 3

E E



 


, one gets:  

 

  2
d

    (2) 

 

which we will use in the following.  

Under external stresses, and assuming small deformations, the sensor’s shape changes from a 

sphere of radius a  to an ellipsoid of half-axes ,
X Y

a a  and 
Z

a . In the system of principal 

coordinates  , ,X Y Z  of this ellipsoid, both the strain and stress tensors are diagonal, so that 

one can write:  

 

  
 

2 2
Xd

X X X X

a a

a
   


   (3) 

  2 0
d

X Y X Y
     (4) 

 

and similar relations for other stress components. Hence, provided that the shear modulus of 

the PDMS elastomer has been independently calibrated, the local shear stress tensor is fully 

determined by pointing the ellipsoid orientation and measuring the length of its half-axes. 

Note that the accuracy of the image analysis process allowed us to determine the ellipsoidal 

shape; but not small-scale deviations from it, related to possible variations of the stress tensor 

at a scale smaller than the sensor’s size.  

 

 

Cell culture and preparation of aggregates 

CT26 cells, stably transfected with Lifeact-GFP, were cultivated in T75 flasks at 3 7 C  in 5% 

2
C O , in DMEM culture medium completed with 10% (v/v) Foetal Bovine Serum and 1% 

antibiotics (penicillin-streptomycin), and passed every 3 days. For the preparation of 

aggregates, confluent cells were detached by using 5  m L  of buffer solution containing 0.05% 

trypsin. Incubation was limited to about 1 m in , in order to form cell leaflets and avoid 

complete cell dispersion. In parallel, elastomer microsensors were functionalized by adding 

1 m L  of fibronectin solution in PBS ( 5 0  μ g / m L ) to 1 m L  of freshly thawed bead 

suspension. The final suspension was left for incubation during 1 h  at 3 7 C , and then 

directly added to 10  m L  of detached cells suspension without further rinsing. Aggregates 

containing inserted beads were prepared in Petri dishes on which the cell and bead suspension 

was deposited, placed on an orbital agitator ( 5 0  ro ta tio n s / m in ) , and left to grow for at 

least 2 4  h  in an incubator at 3 7 C . To get spherical aggregates, it is suitable to let them 
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grow for at least 48  h . The diameter of the obtained aggregates lies between 1 0 0  and 

5 0 0  μm . Within few exceptions, they contain at most one bead per aggregate.  

 

Zebrafish preparation 

Embryos were obtained by natural spawning of Tg(-1.8 gsc:GFP)ml1 adult fishes (Doitsidou 

et al., 2002). All animal studies were approved by the Ethical Committee N 59 and the 

Ministére de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche under 

the file number APAFIS#15859-2018051710341011v3.  

Embryos were grown at 2 8 .5 C  until reaching shield stage (6 hours post fertilization). 

Embryos were then processed as explained in Boutillon et al. (2018). Using a large glass 

needle ( 3 5  μm  opening) mounted on a pneumatic microinjector (Narishige IM-11-2) under a 

fluorescence-stereo microscope, a sensor was inserted in the shield of an embryo, which 

expresses GFP in the Tg(-1.8 gsc:GFP)ml1 line. Transplanted embryos were then incubated 

at 2 8 .5 C  until reaching the desired stage between 60% and 85% of epiboly (6,5 to 8 hours 

post fertilization). Embryos were then selected for the presence of the sensor in the 

prechordal plate. In our hands, this represented about 50% of transplanted embryos. In the 

others, the sensor was either not in the prechordal plate or had been expelled out of the 

embryo. Selected embryos were mounted in 0,2% agarose in embryo medium on the glass 

coverslip of a MatTek Petri dish (Boutillon et al., 2018) and placed on an inverted TCS SP8 

confocal microscope (Leica SP8) equipped with an environmental chamber (Life Imaging 

Services) at 2 8 C  and a HC PL APO 40x/1.10 W CS2 objective (Leica). Imaging parameters 

were set to acquire the whole sensor ( z -stack) in less than 15 seconds, to minimize 

displacement due to the migrating neighboring cells.  

 

Image recording and analysis 

Microscopy 

To simultaneously image the tissue and the sensors embedded inside it, several techniques 

have been used:  

(i) Frequently, sensors in suspension in water were imaged with a spinning-disk microscope 

(Andor Revolution CSU X1, mounted on an Olympus IX 81 inverted microscope equiped 

with a 40x water immersion objective), in order to check their sphericity, and the good 

quality of their fluorescence (intensity and homogeneity) (Fig. 2a).  

(ii) 2-photon microscopy was used for the visualization of reconstituted cell aggregates. 

Experiments were carried out at the multiphoton facility of the ImagoSeine imaging platform 

(Institut Jacques Monod, Université de Paris). The aggregates were deposited in a Petri dish, 

in a chamber regulated at 3 7 C , and observed during a few hours under a 20x water 

immersion objective at the early stage of their adhesion to the bottom plate. For the rhodamin 

dye, the excitation laser was tuned at 840  nm   and the emitted light was collected through 

a dichroïc mirror at 585  nm  . Lifeact-GFP of CT26 cells was excited at 900  nm   and 

the fluorescence was collected at 585  nm  . Image stacks were recorded along the optical 

axis every 0 .5  μm , with a lateral resolution down to 0 .1  m / p ix e l  (Fig. 2b).  
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(iii) A confocal microscope (Leica SP8) was used to image the prechordal plate of the 

Zebrafish embryos. The sample was maintained at 2 8 CT  . Image stacks (40x water 

immersion objective) were recorded at regular time intervals ( 30  s to 1m in ) at different 

stages of the epiboly, comprised between 6 0  and 85% . Since the prechordal plate is 

migrating at a velocity up to 2   m / m in   , the acquisition time for a whole stack must be 

smaller than 1 5  s to avoid drift in the images. Hence images were recorded every 2  μm . The 

excitation laser was tuned at 498   and 550  nm  and the emitted light was collected 

between 507 537  nm  and 569 673  nm  (Fig. 2c).  

 

Active contour method 

 

A careful 3D reconstruction of the sensor’s shape was required to retrieve the orientation and 

half-axes of the deformed beads with a good accuracy. Indeed, the usual built-in applications 

for 3D reconstructions, such as ImageJ plugins, do not lead to a reliable and accurate enough 

profile: the result depends on specific choices of parameters for the filters and for the 

intensity thresholds, which involve the subjective appreciation of the operator. Hence, we 

implemented an active contour method, as follows (Kass et al., 1988; Caselles et al., 1993; 

Marquez-Neila et al., 2014; Bendaoud, 2017): the common principle of the different existing 

algorithms consists in considering a swelling (or shrinking) surface  ,s n  at the th
n  

iterative stage, parametrized by its local coordinates  1 2
,s s s . A function  E   is 

associated to this surface and, like an energy, is built to reach a minimum when the surface 

 ,s n  coïncides with the contour of the object. This pseudo-energy is the sum of three 

contributions:  

 

         g s c
E E E E       (5) 

 

The first term  g
E   is a gradient detection term:  

 

     
2

*
g

E g I ds


   ∬  (6) 

 

It represents the norm of the intensity gradient, convoluted by a gaussian filter g


, and 

integrated over the surface  . The minus sign ensures that  g
E   has a minimum when the 

intensity gradient on the surface   is maximal.  

 

The second term (surface energy)  s
E  , is analogous to a Helfrich energy (Helfrich, 1973):  

 

   s
E ds ds   ∬ ∬  (7) 

 

where   is a surface tension,   the local curvature of the surface  , and   a curvature 

stiffness. This term limits the roughness of the final contour.  

The last term (balloon energy)  b
E   is proportional to the volume V  limited by  , and 

forces the surface to swell or to shrink when iterating the process, according to the sign of the 

parameter  :  
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   b
E d V    (8) 

 

The details of the used Python code can be found in Souchaud (2020) and on the Github 

platform (see Data availability). Starting from a seed located inside the contour to be 

detected, and taking 0  , the volume delimited by   enlarges at each step n  of the 

algorithm, until  E   reaches a minimum, which defines the contour of the object. The 

principle of the method is illustrated in Figure 3a, and an example of contour determination 

for a micro-sensor is shown in Figure 3b. A movie (M1) showing the 3D reconstruction of a 

bead inserted in the prechordal plate of a Zebrafish embryo is available in Supporting 

Information. Consequently, the final contour position only depends on the choice of   and of 

two parameters 
1

  and 
1

  derived from   and  . In the algorithm,   is an integer and must 

be equal to 1  to ensure convergence. We have checked that tuning 
1

  and 
1

  in a large 

range (variations up to 100% ) changes the contour position by less than 0 .2   m . Thus the 

final accuracy Δ  on the contour determination is limited by the quality of the image rather 

than by the algorithm. It is about 0 .5   m , over a sensor radius of about 1 5   m .  

Once the 3D contour of the sensor has been determined from the images, a renormalization 

factor 0 .935r   must be applied to the sensor’s shape along the optical axis ( z ) direction. 

This factor takes into account a geometrical correction due to light refraction through the 

tissue/PDMS interface, which acts like a spherical diopter between two media of different 

optical indices (
1

1 .3 5 1 .4 0n   for the living tissue; 
2

1 .4 4n  for PDMS). The factor r  was 

calibrated in situ, by comparing the shape of hard non-deformable spherical sensors 

(
4

2 1 0     Pa) to their reconstructed image. Calibrations were performed both in cell 

aggregates and in zebrafish embryos, leading to the same value 0.935 0.02r   , which was 

retained in the following.  

With this active contour method, we estimate that we can detect a sensor deformation if the 

difference between two half axes is at least equal to threshold Δ 0 .5   m , which represents 

the accuracy of our measurements.  

 

Results 

Sensors mechanical calibration 

As shown in section Strain-stress relationship, determining in situ the local stress tensor 

requires to calibrate the sensors shear modulus  . Its value was determined by two methods, 

first at the macroscopic scale with a commercial rheometer, and secondly in situ at the 

sensor’s scale with a custom-made setup allowing uniaxial compression of aggregates.  

 

Macroscopic rheometry 

A rheometer (ARES G2) was used to follow the evolution of the elastic moduli of the PDMS 

preparation during its gelification. The polymerizable mixture was introduced in either plate-

plate or cone-plate geometry, and maintained at a constant temperature 6 0 CT   or 

8 0 CT  , whilst the storage and loss moduli G   and G   were measured every 15  m in , in 

the range 0 .1 h z 1 0  h zf  . A typical gelification curve is shown in Figure S2: after a 

transient increase during about one hour, G   gradually tends towards a plateau, which final 
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value is reached after 12  h  at 60 CT  , or 3  h  at 8 0 CT  . The same behavior is 

observed for G  . 

At any given stage of gelification, G   was found independent of the excitation frequency f , 

and G   increased approximately linearly with f , which corresponds to a Kelvin-Voigt 

behavior. Moreover, at the end of the gelification plateau, the ratio /G G   was found of the 

order of 1 0  at 1 0  h zf   for a standard gel composition. Thus, when the PDMS gel is 

submitted to a static (or very slowly varying) stress, it may be considered as a purely elastic 

solid, and it is legitimate to confound its static shear modulus   with its storage modulus G   

extrapolated at 0  h zf  .  

At the end of the polymerization plateau, G   does not evolve any more, and its value is 

retained in the following as the value of the shear modulus 
b

  for bulk polymerized PDMS. 

This value strongly depends on the mixture composition. It is close to 5 0 0  Pa for 

0 .0 1 6 0  
c ro s s D M S

m m , but reaches 1000  Pa for 0 .0 1 7 0  
c ro s s D M S

m m . We noticed that the final 

value of 
b

  depends also, but in a lesser extent, on the crosslinker and inhibitor 

concentrations, and on the temperature set for gelification. However, once fully polymerized, 

the shear modulus 
b

  of the elastomer remains constant and does not depend on the 

operating temperature.  

To compare the shear modulus 
d

  of small spherical sensors to the one of bulk PDMS 
b

 , 

we used a dispersion of the polymerizable mixture in water: a small amount of this mixture 

was added to water and vigorously shaken for a few seconds to makea coarse emulsion. The 

suspension was left to buoy up at room temperature, during a timelapse  , and centrifugated 

until complete droplets coalescence. The supernatent was then sampled, and baked in the 

rheometer in the same conditions as bulk PDMS,i.e. at 8 0 CT   during 3  h . The evolution 

of G’ during polymerization was similar to the one of the bulk, but the final plateau value 
d

  

was always found smaller that the bulk value 
b

  measured for the non-emulsified mix having 

the same composition . The ratio /
d b

   reached a stable plateau value 0 .43  when 

2 4  h . We interpreted this observation by assuming that a small amount of a mix 

component, likely the crosslinker, may diffuse out of the DMS emulsion droplets and 

dissolve in the surrounding water. As seen above, a small variation of the crosslinker 

concentration is enough to induce a significant change in the final mechanical properties of 

the gel. Since the microsensors are made from small droplets suspended in water before 

polymerization, this effect has to be considered for a proper calibration of their mechanical 

properties. In practice, we decided to measure 
b

  with the rheometer for every batch of bulk 

mix polymer used to make microsensors, and then to apply a constant corrective factor in 

order to get an estimate of the final shear modulus 
d

  of the spherical elastic sensors: 

0 .4 3  
d b

  .  

 

In situ calibration in aggregates 

At the microsensor’s length scale, one expects that capillary effects, due to the non-zero 

surface tension 1 0  m N / m
c

   between the tissue and the PDMS sensor of radius 

1 5   ma  , might affect its global mechanical response (Style et al., 2017; Bico et al., 2018). 

Indeed, the contribution of the Laplace term 6 5 0  
c

a


 Pa is comparable to the macroscopic 
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shear modulus 
d

  of the PDMS dispersion. This means that the relationship between the 

applied external stress and the deformation of the sensor involves both the shear stress 

modulus 
d

  and the surface tension 
c

 . For small deformations, it has been shown that one 

can take into account this elasto-capillary contribution by introducing an effective elastic 

constant 
e

  (Carbonaro et al., 2020):  

 

  2
d

e
    (9) 

with  

  c

e d
K

a


    (10) 

 

K  is a dimensionless constant of order unity. We thus performed an in situ calibration on a 

sensor embedded in a tissue, in order to directly measure 
e

 .  

For this calibration, we used a custom-made uniaxial rheometer, allowing to apply either a 

controlled force, or a controlled deformation to a cell aggregate (Desprat et al., 2005; 2006; 

Mitrossilis et al., 2010). To summarize, the cell aggregate may be squeezed between two 

glass plates, a rigid one and a flexible one acting like a cantilever. The plates are actuated by 

two piezoelectric stages. A feedback loop maintains the extremity of the flexible plate, on the 

aggregate side, at a fixed position, whileits other extremity is free to relax with time. This 

allows to record the evolution of the force  F t  exerted on the aggregate, at constant 

aggregate’s deformation.  F t  is calculated from the flexible plate’s deflection, knowing its 

rigidity 8 1 .2   / mk n N  .  

Practically, we selected a CT26 aggregate of diameter comprised between 1 0 0  and 2 0 0   m , 

containing a sensor localized close to the aggregate center, and we seized it between the two 

plates of the rheometer (Figure 4a). We then applied a step motion to the rigid plate to 

squeeze the aggregate, while the flexible plate extremity close to the aggregate was regulated 

at constant position. From this initial instant we recorded the relaxation of the flexible plate’s 

deflection during 1 5 to 30  min, and thus the time evolution  F t , while the aggregate 

deformation remained constant. Simultaneously, we imaged the shape of the sensor in its 

median plane (Figure 4b). Two or three successive squeezings and relaxations were operated 

on the same aggregate. From these relaxations we inferred at any time t  the force  F t  

exerted on the aggregate, and the deformations  zz
t  and  rr

t  of the sensor, respectively 

in the compression direction and perpendicular to it.  

As detailed in the appendix, we developed a model to establish the relationship between the 

sensor’s deformation  , and the average stress in the equatorial plane of the aggregate, 

defined as:  

 

 

   
 

2

1

a

F t
t

R



  (11) 

 

 

 

This model predicts:  
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1 2 1

2

1 2 1

2

3 1 1

1
2

3 1 1
2

1
2

e

a z z a g

e

r r a g

R R R

R

R R R

R


  


 

 
    

 

 
   

 

 (12) 

 

Here 
1

R  represents the equatorial radius of the aggregate, 
2

R  its curvature radius in the 

observation plane (Fig. 4
1

b ), and 
a g

  is the surface tension between the aggregate and the 

culture medium (not to be confused with the sensor/aggregate surface tension 
c

 ). Eq. (12) is 

valid under the following approximations: (i) the aggregate is supposed spherical at rest and 

the z  axis is a cylindrical symmetry axis at any time; (ii) the sensor does not perturbate the 

stress distribution in the aggregate; (iii) the sensor is approximately at the center of the 

aggregate; (iv) the component  zz
t  is assumed to be homogeneous in any plane 

perpendicular to the main compression axis.  

Figure S3 shows an example of the time evolution of    ,
a zz

t t   and  rr
t , immediately 

after a compression step on an aggregate. Figure 4c reports the relationship between the 

sensor deformations    ,
zz rr

t t   and the average stress  a
t  for the same set of data. 

During the first 30 s, both the average stress and the sensor deformation relax rapidly with 

time (yellow points on Figure S2 and Figure 4c). It is likely that this regime is dominated by 

rapid relaxation processes, such as cytoplasm viscoelasticity, intercellular adhesion 

remodelling and T1 processes, and that the stress components are heterogeneous in the 

aggregate during this timelapse. On the other hand, at longer time, the relaxation slows down 

and one expects that hypothesis (iv) of our model, namely in plane spatial homogeneity of 

z z
 , becomes verified. In this regime (red and blue points on Figure S2 and Figure 4c), 

 a
igm a t  linearly varies with  zz

t , according to the model prediction given by Eq. (12) . 

Hence, from the linear fits shown in figure 4c, one can extract the values of the effective 

shear modulus 7 9 0 1 6 0  
e

   Pa and of the aggregate surface tension 9 2  m N / m
a g

    for 

this particular experiment. Note that we experimentally measure 2
z z r r

   at any time, 

which is consistent with the sensor’s incompressibility and with the cylindrical symmetry 

assumptions.  

 

Two gels of slightly different compositions have been tested. Within our experimental 

accuracy, no significant difference can be detected between the value of 
e

 , averaged over 

N  assays in different aggregates, and the value of 
d

  measured at the macroscopic scale for 

a coarse emulsion made out of the same gel (see Table 1). These results do not allow us to 

isolate the contribution of capillary effects in the effective shear modulus 
e

 , according to 

Eq. 10. Either this contribution is smaller than expected, or the determination of 
d

  and 
e

  is 

not accurate enough to measure the difference between them. In the following, we will take 

d
  as the reference value for the effective elastic shear modulus of the sensors.  
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From the uniaxial compression of aggregates we can also infer the surface tension 
a g

  

between the aggregate and the culture medium. The values range from 3  to 12  m N / m  for 

different aggregates. Although the dispersion is important, the order of magnitude 

corresponds to the expected one.  

 

Stress distribution in cell aggregates 

13 aggregates, containing deformable sensors located at different positions, were imaged with 

a 2-photon microscope. We analysed the shape of 17 sensors. To compare the results, we 

define a dimensionless position /
c a

r r R  as the ratio of the distance
c

r  from the aggregate 

center to the sensor center, over the distance 
a

R  from the aggregate center to the aggregate 

edge in the direction of the sensor. This definition takes into account the fact that the 

aggregate might be not spherical but slightly ellipsoidal.  

The results are gathered in Fig. 5a. Each sensor is set at its reduced position r , and is 

represented by an ellipse showing its deformation projected in the  ,x y  plane of the image. 

Since the actual deformations are small ( 1 0 % ) , they were multiplied by a factor 4 on the 

scheme to be visible. The main components of the associated shear stress are represented as 

red bars of length proportional to the stress amplitude. In most cases, one of the main axes 

remains close to the O z  optical axis, which justifies the projection in the  ,x y  plane.  

By looking at the stress orientation and amplitude, one retrieves several pieces of 

information:  

First, the in-plane main axes of the sensors are mostly aligned along the radial and orthoradial 

directions of the aggregate referential. Fig. 5b represents the distribution of angles between 

the radial direction and the sensor’slonger axis direction (blue: sensors showing a difference 

in half axes larger than the estimated accuracy threshold 0 .5   m ; red: other sensors). This 

distribution is non-uniform and indicates that the sensors are principally compressed in the 

orthoradial direction.  

Second, the component 
z z

 , represented by a color code in Fig. 5a, is always positive and 

ranges between 0  and 250  Pa (see Discussion).  

Third, the stress amplitude σ  varies from the center to the edge of the aggregate. σ  is 

defined as the norm of the stress deviator:  

 

        
1 / 2

2 2 2
d d d

X X Y Y Z Z
    σ  (13) 

 

The histogram of σ  is represented in Fig. 5c versus the normalized distance r . Despite the 

uncertainty, we observe a significant trend for σ  to increase with r . Given the accuracy of 

our measurements, the maximum of σ  seen in Fig. 5c might not be significant. More data 

would be necessary to improve the statistics.  

In principle the evolution of this stress map can be followed in time. We were able to image 

the spreading of some aggregates deposited on the bottom plate of the Petri dish, during a few 

hours, by taking stacks every 15 min. In most cases, the axes orientations and half-lengths of 

the sensors remained stable with time, within experimental accuracy. Longer recordings 

would be necessary to see an evolution, and to follow the aggregate spreading process until 

its term.  
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Stress distribution in the prechordal plate of zebrafish embryos 

In vivo, the spatial distribution of mechanical stresses, their inhomogeneities and their local 

anisotropy play a determinant role in the morphogenesis process, since they directly influence 

cell polarization and migration. For instance, it was established in vitro that Xenopus 

prechordal plate cells can be polarized by application of a mechanical stress of a few Pa 

(Weber et al., 2012). The prechordal plate (PPl) is a group of cells, that are the first ones to 

internalize on the dorsal side of the embryo, at the onset of gastrulation. During gastrulation, 

they migrate in direction of the animal pole, followed by notochord precursors (Kimmel et 

al., 1995; Solnica-Krezel et al., 1995). Based on this observation, it was proposed that 

migration of the PPl is guided in vivo by the existence of stress anisotropies within the tissue, 

used by cells as directional cues (Weber et al., 2012; Behrndt and Heisenberg, 2012). Our 

sensors are well suited to measure the 3D stress anisotropy andto map the stress in the PPl. 

Conversely, the PPl appeared as a good model to demonstrate their in vivo capabilities.  

The prechordal plate and the notochord cells are labelled in the Tg(gsc:GFP) line, which was 

used in these experiments. Sensors were implanted in the PPl of seven different embryos. As 

an example, Fig. S4 shows a mesoscale view of the PPl containing a sensor, and enlarged 

images on the same sensor presenting a visible deformation. Some sensors could be followed 

over time, by taking images every 30 s or 60 s. An overview of the full dataset is shown in 

Supporting Information, Figure S5. We report here a selection of 12 measurements, at 

different stages of gastrulation, from 6 0  to 85%  of epiboly. The common effective shear 

modulus of all the sensors was 4 3 0  
d

  Pa. To analyze the stress spatial distribution, the PPl 

was divided into 9 zones (front/middle/rear and left/center/right), as shown in figure 6e. For 

legibility, the projection of the shear stresses in the PPl  ,x y  plane is drawn as an ellipse for 

each sensor, while the projection along the perpendicular axis z  (confounded with the 

observation axis) is represented by a color code. In the PPl plane, x  is the direction of the PPl 

progression and y  the perpendicular one. All the stress components lie in a range comprised 

between 6 0  and 60   Pa, with approximately equal distribution between positive and 

negative values.  

From figure 6e, no evident correlation emerges between the sensor location in one of the 9 

zones of the PPl and the stress orientation and amplitude in the same zone. However, in Fig. 

6f, the value of the shear stress amplitude σ , averaged over the left/center/right zones and 

over the different epiboly stages, is compared at the front ( 3N  ) and at the middle ( 7N  ) 

of the plate. The difference is significant and is a first indication that stress gradients exist in 

the PPl.  

Concerning the time evolution of the stress, we were able to follow the stress components for 

7 sensors, during 1 5  to 30  m in , at different stages of epiboly. They did not show any 

significant changes, except for one event which we describe in detail in Supporting 

Information, Fig S6 and S7.  

 

 

Discussion 

In both experiments, in vitro and in vivo, we have demonstrated that our pipeline of 

techniques, based on the use of PDMS elastic microsensors embedded in living tissues, can 

be used to locally determine the amplitudes and orientations of the shear stress components, 

to map them across the tissue, and to retrieve their temporal evolution.  

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



In vitro, for freely spreading cell aggregates, the order of magnitude of the shear stress 

amplitude typically lies between 1 0  and 1 0 0  Pa, consistently with other measurements in 

similar systems (Lucio et al., 2017; Lee et al., 2019; Mohagheghian et al., 2018). Moreover, 

Fig. 5c shows that the deviator stress amplitude   increases from the aggregate center to its 

edge, and that the stress component along the orthoradial direction is larger than along the 

radial one. On the other hand, according to our observations, the optical axis O z  

systematically coincides with one of the main shear stress axis, with a positive value of the 

shear (extension). A possible explanation would be that, besides the applied geometrical 

correction due to light refraction, light diffusion in the tissue may also affect the quality of 

the image, especially at large depth inside the tissue ( 1 0 0   m ). If this is the case, the 

systematic elongation of the sensor in the z  direction could be an artefact related to the 

imaging method. Fortunately, this does not affect our conclusions concerning the 

radial/orthoradial privileged orientations in the  ,x y  plane, nor the variations of the stress 

amplitudewith reduced distance r .  

It is interesting to compare these results with those reported in the literature. In the pioneering 

work by (Delarue et al., 2014a), after submitting reconstituted cell aggregates to an external 

pressure, it is observed that the cell density increases from the aggregate periphery to its 

center. The model developed in that paper attempts to correlate this density increase to the 

local cell polarization: the cell elongation evolves, on average, from the radial direction near 

the center to the orthoradialdirection close to the aggregate boundary. Actually, this differs 

from our own observations: our sensors are mainly oriented in the radial direction at the 

aggregate periphery, and the cell polarization is expected to be in the same direction, 

following the stress anisotropy. Besides the fact that the cell lines are different in the two 

experiments (BC52 vs CT26), one should keep in mind that an important external pressure is 

intentionally applied in Delarue et al. (2014a) in order to modify theaggregate organization 

and the cell growth conditions.  

In another paper (Lee et al., 2019), hydrogel sensors are embedded in spherical aggregates 

made of HS-5 fibroblasts. In this paper two components of the full stress tensor   were 

measured vs the distance to the aggregate center, respectively in the radial and orthoradial 

directions in the observation plane. Both their amplitudes are comprised between 400  and 

1500   Pa. Their average value represents the isotropic part of the stress: it is negative and 

thus corresponds to a compression. The difference between the two components, which is the 

local shear stress, is of the order of 100   Pa, comparable to their measurements accuracy. 

This order of magnitude is similar to ours. Moreover, they observe that both stress 

components increase from the aggregate edge, to reach a maximum value, and then decrease 

again towards the aggregate center. Although the two experiments give access to different 

quantities (total stress in their case, shear stress in ours), the behaviors observed in both 

situations are consistent.  

In vivo, in the prechordal plate of the Zebrafish embryo, we were able to measure both the 

amplitude and orientation of the main stress components at different stages of epiboly. The 

retrieved values are of the expected order of magnitude, 2
1 0  Pa, and the sensitivity is of order 

of 1
1 0  Pa. The shear stress amplitude appears larger at the center of the PPl than at its front, 

which supports the hypothesis that stress gradientsexist in the PPl and might play an active 

role in the PPl migration. A systematic survey of the stress amplitude and orientation in the 

different PPl regions is needed to confirm this hypothesis. Concerning time evolution, we 

could follow the stresses only on a short time interval as compared to the gastrulation 

characteristic time. This might explain why we observed only one event exhibiting a 

measurable time evolution. Similar events have to be identified before discussing their 

possible relevance in the full migration process. Another important issue, which was not 
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investigated here, concerns the stress distribution in the direction orthogonal to the PPl plane. 

Indeed, one suspects that the friction of the PPl over the neurectoderm might play an 

important role in the migration process (Smutny et al., 2017). Thus, further investigations 

will also have to include the vertical position of the sensor inside the PPl as one of the 

relevant parameters of the problem.  

To conclude, we have assembled a pipeline of techniques which meets all the requirements to 

quantitatively map in 3D and in real time the local shear stresses in living tissues, with a 

sensitivity of order of 1 0  Pa. In complement to existing techniques, it appears as a valuable 

tool to investigate the role of mechanical constraints in morphogenesis and development. 

 

 

Acknowledgements 

We acknowledge Alain Richert, Gaëtan Mary, Magid Badaoui, Alain Ponton and Sandra 

Lerouge for their assistance and advices in experimental handling, Héléne Delanoé-Ayari for 

critical reading of the manuscript, and Mathieu Roché and Julien Dervaux for fruitful 

discussions. We acknowledge the ImagoSeine facility, at Institut Jacques Monod, especially 

Xavier Baudin and Orestis Faklaris, and the Polytechnique Bioimaging Facility, for 

assistance with live imaging on their equipments. 

 

 

Competing interests 

The authors declare no competing interests. 

 

 

Contribution 

A.S, F. Gr. and F. Ga. designed the experiments, with the help of G.C., A.A., A.B, N.D.; A.S. 

carried out the experiments and data analysis, together with A.B. for the Zebrafish part under 

the supervision of N. D.; G.C. supervised the chemistry of fluorescent labelling; A.A. 

conducted the uniaxial rheometry; F. Ga. did the appendix calculations; C.N. inspired the 

scientific process and methodology; F. Gr. and F. Ga. supervised the work; A.S, F. Gr. and F. 

Ga. wrote the manuscript. All authors have read,corrected and approved the manuscript. 

 

 

Funding 

This work was made possible through a fellowship of the Ecole Doctorale EDPIF (AS), and a 

grant from the Domaine d’Intéret Majeur program (complex systems) of the Ile-de-France 

region. Part of it was also supported by the labex <<Who Am I?>>, labex ANR-11-LABX- 

0071, and the Université de Paris, Idex ANR-18-IDEX-0001 funded by the French 

Government through its <<Investments for the Future>> program. The ImagoSeine facility is 

a member of the France BioImaging infrastructure and is supported by Agence Nationale de 

la Recherche (ANR-10-INSB-04). The Polytechnique Bioimaging Facility is partly supported 

by Région Ile-de-France (interDIM) and Agence Nationale de la Recherche (ANR-11-EQPX-

0029 Morphoscope2, ANR-10-INBS-04 France BioImaging) 

 

 

Data availability 

The python code used for active contour detection is available here: 

https://github.com/scikit-image/scikit-image/blob/main/skimage/segmentation/  

morphsnakes.py. 
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An example of contour determination can be found here:  

https://github.com/Alex-code-lab/3D_contour_detection_and_fit_by_an_ellipsoid.  

 

5. Appendix: Expression of the local stresses in an aggregate 

submitted to an uniaxial compression 

In this section we describe a model to calculate all the components of the stress tensor at any 

point of an aggregate submitted to an uniaxial compression, from which we derive the 

expression of the deformation of an elastic incompressible sensor embedded in the aggregate.  

 

Notations 

We assume that the aggregate, initially spherical, is squeezed between two plates applying on 

it a force 
z

F F e  , and that the problem respects the cylindrical symmetry around axis O z . 

The notations are explicited in Fig. 7. We use cylindrical coordinates  , , ,M r z O  is the 

aggregate center.  R z  is the radius of the curve generating the aggregate cylindrical surface. 

The principal radii of curvature are:  

 
 

R
R

co s 

  

  
1

 

d R
R

sin d 
   (14) 

with ta n  
d R

d z
   .  

In the particular case of a circular profile, which is a non-necessary but sufficient 

approximation for most situations, one has:  
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2

1 2 2
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Rc o s

R R z R R z R







 

  

 
    

 

 
(15) 

  

where 
1

R  is the equatorial radius.  

The local stress tensor is written as:  

  

r r r r z

r z

r z z z z



  



  

   

  

 

 
  

 
 

 (16) 
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Mechanical equilibrium 

In the absence of external volumic force, the mechanical equilibrium condition is written: 

 d iv 0  , i.e. in cylindrical coordinates: 

 

  

 
1 1

0

2 1
0

1 1
0

rr r r z

r r

r z

r

zr z z z

r z

r r r z

r r r z

r r r z





  





 
 



  




 




 
    

  

  
   

  

 
   

  

 (17) 

  

 

Due to the cylindrical symmetry, all the stress components are independent on the azimutal 

angle  . Furthermore 0
r z 

   . Thus the above equations simplify into:  

 

  

  

 
1

0

1
0

r r r z

r r

r z z z

r z

r r z

r r z



 
 

 


 
   

 

 
  

 

 (18) 

 

We can also write the mechanical equilibrium condition at the aggregate surface, i.e. for 

 r R z . By equilibrating the local stresses at the boundary with the external pressure 
a

p  

outside the aggregate and the Laplace pressure, one finds in projection along the r  and z  

axes at any point  ,M R z  of the surface:  

 

 tan  
 

zr

rr zr zz

ta n


   


  

1 1

a a g
p

R R




 
    

 
 

 (19) 

 

We recall that 
a g

  represents the surface tension between the aggregate and the external 

medium.   

Finally, following Norotte et al. (2008), the global balance of forces exerted on the aggregate, 

in a plane perpendicular to O z , at coordinate z , can be expressed as:  

   
2

2 2 cos  
zz ag a

rdr R z F R p          (20) 

 

Expression of  ,r z  

We assume in the following that the expressions of the components    , , ,
zz rr

r z r z   and 

 ,r z


  can be approximated by a Taylor expansion to order 2
r , according to:  

  

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



  

     

     

     

2

0 0

2

1 1

2

2 2

,

,

,

z z

r r

r z z b z r

r z z b z r

r z z b z r


 

 

 

  

  

  

 (21) 

  

 

The functions  i
z  and  i

b z  ( 0 ,1, 2i  ) account for the z -dependence of the stress 

components. As shown below, they can be explicitly calculated from Eqs. (18) to (20). Note 

that  i
z  is positive in case of a compression.  

From equation (18) one derives the expression of 
r z

 :  

 

       

3

0 0
,

2 4
r z

r r
r z z b z    (22) 

where the prime stands for the z -derivative.  

Introducing the expression of 
r z

  (Eq.(22)) in Eq. (18) yields:  

 

  

 
   

    

   

2 1

1 1 2

3

0 0

2

0
2 4

z z
b z r b z b z r

r

r r
z b z

 




  

   

 (23) 

 

  

 

Since the components of   must not diverge in 0r  , necessarily    2 1
z z  . There 

remains:  

    
 

 

2

0

1 2 0
3

2 4

z r
b z b z b z

 
    

 

Because we limit the Taylor development to order 2
r  for 

r r
  and 

1
, b


  and 

2
b  do not 

depend on r . Consequently  0
0b z   and thus  0

b z A z B  , where A  and B  are two 

constants. Moreover, by z  to z  symmetry, 
z z

  must be an even function of z , which 

implies 0A  . Therefore:  

 

   0
b z B  (24) 

 

Here B  is a constant independent of z , but it may depend on time t  if the stresses in the 

aggregate evolve with time.  

At this stage an additional relation between  1
b z  and  2

b z  is required to close the equation 

system (18) to (20) and complete the calculation. In the following, we will assume for 

simplicity that the stress projection in any plane orthogonal to O z  is isotropic, which means 

   , ,
rr

r z r z


   and thus    1 2
b z b z . This most simple hypothesis can be partially 

justified by geometrical arguments, related to the incompressibility of the material, which we 

will not develop here. Other assumptions remain possible, but we have checked, after 
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performing the whole calculation in different cases, that the result is not modified except for 

some minor numerical factors. Under this assumption,Eq. (23) simplifies into:  

 

     
 0

1 2

4

z
b z b z


 


  (25) 

 

The integral of Eq. (20) may be calculated using Eq. (21), which leads to:  

 

   
 

 

 
 

2

0 2

2 co s   1

2

a g

a

zF
z p B R z

R z R z

 



     (26) 

 

Eqs. (24), (25) and (26) are sufficient to calculate all the components of the stress tensor, at 

any point of a cylindrical aggregate of generator  R z . For instance, one finds for  ,
zz

r z :  

 

 

  
 

 

 
2

2 co s  
,

a g

zz a

zF
r z p

R z R z

 



     

2 21

2
B R z B r   (27) 

 

The only remaining free parameter in Eq. (27) is the constant B , the value of which will be 

discussed at the end of this section.  

The other components  ,
zr

r z  and    , ,
rr

r z r z


   can also be written after some long 

but straightforward calculations, using Eqs. (21), (22) and the boundary condition Eq. (19) to 

calculate  1
z .  

In the following, we only focus on the case of an aggregate with a circular profile, i.e. 

2
R R c s t  , and we write down the stress components in its equatorial plane 0z  . In this 

plane, 
1

R R

  and 0  , which leads to:  

 

 

  
2

1 1

2
, 0

a g

zz a

F
r p

R R





   

2

2 2

1 1 2

1

1
1

2

r
B R B R

R

 
   

 

 (28) 

 

 

   
1 2

1 1
, 0 , 0 ...

r r a a g
r r p

R R


  
 

     
 

2 2

1 1

2 2

2 1 2 1 1

1 1
1

2 2 4

a gR B RF r

R R R R R





    
        

    

 

(29) 

 

 

   , 0 0
rz

r   (30) 
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4. Deformation of a sensor embedded in the aggregate 

We consider an elastic incompressible sensor, spherical at rest, embedded in the aggregate, of 

effective shear modulus 
e

 . We assume that the mechanical properties of the sensor and of 

the aggregate are similar, and that the sensor diameter is small compared to the aggregate’s 

one, so that the sensor inclusion does not perturbate the stress distribution in the aggregate. 

Due to incompressibility, only shear deformations of the sensor are admitted, and the strain-

stress tensors relationship reduces to (see Eq. (2)):  

 

   
1

2
3

d

e
tr       I  (31) 

 

In the following, we assume that the stress is homogeneous over the sensor size. We also 

assume for simplicity that it is located in the equatorial plane 0z  , although the calculations 

could in principle be performed for any position in the aggregate. We introduce 
2

1

a

F

R



  as 

the average stress exerted by the force F  on the equatorial plane. Using Eqs. (28) and (29), 

one finds:  
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    

   
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2

2 1 2 22
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2

2 1 2

1

2 4 1

2
2 1

r
R R R

RB R

r
R R

R

  
    

  
  

   
   

 (32) 

 

Equivalently, in Eq. (32) one can replace 
z z

  by 2
r r

 , since incompressibility implies 

2

zz

rr 


    .  

At the aggregate center ( 0 ,   0r z  ), Eq. (32) simplifies into:  

 

 

 

1 2 1

2

3 0 1 1

1
2

e zz

a a g

r

R R R

R

 
 

  
    

 

2

1 1 2

1 2

2

2 2

B R R R

R R

 
  

 

 
(33) 

 

At the aggregate edge (
1
,   0r R z  ), one has:  

   

2

1

1

2 1

1 1
3

2
a e zz a g

B R
r R

R R
   

 
      

 

 (34) 

 

Choice of the value of B  

In this model, B  has a homogeneous value over the volume of the sensor, but it may vary 

over time. Indeed, in the experiment one applies to the rigid plate at 0t   a displacement 

step, which imprints a constant deformation to the aggregate. Immediately after the step, the 

stress in the aggregate is inhomogeneous, but it rapidly evolves, within a few minutes, 
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through different relaxation mechanisms, to become homogeneous again at the end of 

relaxation.  B t  is therefore a function of time which must relax towards zero at infinite 

time. To interpret our data concerning  a
  , we discard the first instants of the relaxation, 

and we only consider the long time limit, for which we expect the stresses to be 

homogeneous again, allowing usto make the approximation 0B  . Within this assumption, 

Eq. (33) exactly reduces to Eq. (12) used in the main text. To comfort this assumption, we 

also performed the data analysis by taking a non-zero value for B , leading to parabolic 

variations for 
z z

  as a function of r . Assuming for instance that 
z z

  vanishes at the 

aggregate edge (
1
,   0r R z  ), from Fig. (4c) one retrieves 6 7 0  

e
  Pa, instead of 

7 9 0  
e

  Pa in the case 0B  . Considering all other sources of uncertainty, the results do not 

appear significantly different.  
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Figures 

 

 

 

 

Figure 1. Distribution of microsphere’s radii for three different batches obtained with a microfluidic 

device. 

 

 

 

 

Figure 2. Images of three sensors in different situations: (a) suspended in water; (b) embedded in a CT26 

reconstituted aggregate (green); (c) implanted in a zebrafish embryo (green). (a1) and (c1) are bright field 

images. (a2) is obtained with a spinning-disk, (b1) with a 2-photon and (c2) with a confocal microscope; 

(b2) is a 3D reconstruction obtained with ImageJ software. The insets represent the intensity profile 

through the sensor’s diameter 
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Figure 3. Determination of the sensor’s contour; (a) Principle of the active contour method: the initial 

seed (red) progressively swells (green, purple), until it reaches the contour of the object (cyan), which 

minimizes its pseudo-energy (see text). (b) Example of contour determination for a sensor inserted in an 

aggregate (same color code as (a)). 
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Figure 4. In situ calibration of a sensor shear modulus in an aggregate. Principle (a1, b1): a CT26 cell 

aggregate, initially spherical and containing a sensor at its center, is squeezed between two glass plates. 

The images (a2, b2) are analyzed to extractthe sensor main strains 
z z

 and 
r r

. (c) Variations of the 

average stress  
a

t  vs  
zz

t  (red crosses) and  
rr

t  (blue crosses) during the relaxation of a 

squeezed aggregate. Yellow points are recorded during the first 30  s of the relaxation. The shear 

modulus 
e

 of the sensor can be extracted from the slopes of the straight lines (Eq.12). 
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Figure 5. (a) Stress distribution map in CT26 aggregates, from 17 sensors inserted in 13 different 

aggregates. Each sensor is set at its normalized position /r R
c a

r . Its shape projected in the  ,x y  

plane is represented by an ellipse (the ellipticity is multiplied by a factor 4 to make it more visible). The 

main shear stress components in the  ,x y  plane are shown as red bars, while the projection of the 

stress in the z  direction is represented by a color code. Note that the apparent elongation of the sensors 

in the z direction ( 0 
Z Z

) might be an artefact related to the imaging method (see Discussion) . (b) 

Distribution of angles between the radial direction and the sensor longer axis direction (blue: sensors 

showing a difference in half axes larger than the estimated accuracy 0 .5   mμ ; red: other sensors). The 

sensors are principally compressed in the orthoradial direction. (c) Histogram of the shear stress 

amplitude σ  versus normalized distance to the center r . The error bars represent the standard 

deviation . 

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

 

Figure 6. Measurements of the shear stresses in the zebrafish prechordal plate (PPl) during epiboly. (a-d): 

Ectoderm, prechordal plate (PPl) and notochord precursors (Noto) movements during gastrulation. (a,c) 

Bright fields and fluorescence images of a zebrafish Tg(gsc:GFP) embryo at 60% epiboly. Prechordal 

plate and notochord cells, expressing GFP in this transgenic line, are highlighted by the white dashed line. 

Red dashed line marks the margin of the embryo. (b,d) Schematics of corresponding pictures showing 

morphogenetic movements of the different tissues during gastrulation. Crossed arrows indicate animal-

vegetal (A-V), left-right (L-R) and dorsal-ventral (D-V) embryonic axes of respective view. Panels a, b, c 

and d have been inspired by Smutny et al. (2017). (e) Mapping of shear stresses in the PPl at different 

epiboly stages (12 measurements on 7 different embryos). The projection on the  ,x y  plane of the main 

shear stresses is drawn as an ellipse, while the projection along the axis z  normal to the PPl (and 

confounded with the optical axis) is represented by a color code. (f) Comparison of the shear stress 

amplitude σ , averaged at the front ( 3N ) and in the middle ( 7N ) of the PPl. The error bars 

represent the standard deviation . 
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Figure 7. Scheme of a squeezed aggregate, assumed to respect cylindrical symmetry around O z . The 

current point M is identified by its coordinates  , ,r z  where   is the azimutal angle;  R z  is the 

radius of the curve generating the aggregate cylindrical surface; R


 and R  are the principal curvature 

radii; 
1

R  is the equatorial value of  R z ; F  is the force exerted by the plates on the aggregate. 

 

Table 1. Comparison of the average value 
e

μ , measured in situ, and 
d

, measured for a coarse emulsion 

of the same gel. Experiments have been performed on two gels having slightly different compositions.  

 

 
e

  (Pa)  
d

  (Pa)  

Gel 1  730   250 ( 9N  )  710   150   

Gel 2  320   100 ( 3N  )  410   70   
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Electronic Supporting Information 

Chemicals. 
Vinyl terminated polydimethylsiloxane (CAS n° 68083-19-2, 200 cSt, ref DMS-V22, MW=9400 g/mol) and 
(45-55% methylhydrosiloxane)-dimethylsiloxane copolymer, trimethylsiloxane terminated (CAS n° 
68037-59-2, 10-55 cSt, ref HMS-501, MW=900-1200 g/mol) were purchased from Gelest. Karstedt’s 
catalyst (Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex solution in xylene, Pt ~2%, CAS 
N° 68478-92-2), diallyl maleate (93%, CAS N° 999-21-3), rhodamine B isothiocyanate (mixed isomers, 
CAS N° 36877-69-7) and allylamine (98%, CAS N° 107-11-9) were purchased from Sigma Aldrich. All 
chemicals were used as received without further purification. 

PDMS precursor mix. 
In a typical reaction, 30 g DMS were inserted into a 50 mL falcon centrifugal tube. The remaining 
components of the polymerizable mix were subsequently added directly into the tube while controlling 
the added mass on a scale so as to avoid losses on glassware. The mixture was homogenised using a 
vortex mixer after each addition for at least 60 s. 24 mg diallyl maleate (3.82.10-2 eq per DMS strand), 
128 mg of Karstedt’s catalyst solution (4.13.10-3 eq Pt per DMS strand) and 459 mg hydrosilane cross-
linker (1.37.10-1 eq per DMS strand) were added sequentially. It is essential that the cross-linker be 
added last to avoid the reaction starting in uncontrolled conditions. The as-prepared mixture needs to 
be stored at 4°C and should be used within a few days least the cross-linking reaction significantly moves 
forward. The mix can then be used as a feedstock for microdroplet fabrication or be directly cured at 
80°C for 3 hours in a stove. 

Synthesis of the vinyl-terminated Rhodamine B analog. 
A 0.93 mM stock solution of rhodamine B isothocyanate was prepared by dissolving 5.0 mg in 10 mL of 
chloroform. A 58 mM stock solution of allylamine was prepared by dissolving 50 mg in 15 mL of 
chloroform. In a 20 mL scintillation vial, 3.0 µmoles of RhB-ITC (3.22 mL stock) were mixed with 3.3 
µmoles allylamine (1.1 eq., 93 µL). The reaction mixture was diluted up to 15 mL using chloroform and 
was left to stir overnight in the sealed vial. The obtained vinyl-terminated rhodamine B analogue solution 
can be used straight away for labelling of DMS. The scale reaction is described at a scale suited for 
fluorescent labelling of 30 g of DMS-V22 at a ratio of one fluorescent label for 1,000 DMS strands. 

Fluorescent labelling of PDMS. 
The above-described 200 µM vinyl-terminated Rhodamine B analogue solution was added to 30 g of 
DMS in a 50 mL Falcon centrifugal tube. The mix was first homogenised using a vortex mixer. It was 
subsequently shaken using an ultrasonic horn for 4 min under a fumehood. During the ultrasonication, 
the tube was nested in an ice bath to avoid overheating the mixture. To eliminate the remaining 
chloroform, the mix was then transferred to an Erlenmeyer flask and stirred using a magnetic bar for 2 
hrs under the hood. The fluorophore-doped DMS could then be used in the same way as plain DMS for 
the preparation of a polymerizable mix (the contribution of the fluorophore to the mass was neglected 
when calculating the needed mass of the other components). 

Development: doi:10.1242/dev.199765: Supplementary information 
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Fig. S1. Schematics of the gel meshwork: (a) Plain PDMS, (b) fluorescently labelled PDMS. (c) The vinyl-
terminated rhodamine B analogue is obtained from the condensation of RITC and allylamine. 
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Fig. S2. Storage modulus G’(t) of the polymerization mixture measured as a function of time, at fixed 
frequency f = 0.1Hz and fixed temperature T= 60°C, in a cone-plate geometry. Here G’ tends towards 
an asymptotic value G’f ≈ 400 Pa after 17h. The red line represents the fit based on Flory’s theory of 
gelification, as described in detail in Alexandre Souchaud’s PhD thesis (Souchaud, 2020) and in P.J. 
Flory, Molecular Size Distribution in Three Dimensional Polymers. 1- Gelation, JACS 63: 3083 (1941).  
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Fig. S3. Evolution of εzz, εrr and σa as a function of time after a compression step of the aggregate 
(same data and same color code as in Figure 4). During the first 30 s (yellow points), both the average 
stress and the sensor deformation relax rapidly, due to quick intercellular and intracellular relaxation 
processes. In this regime it is likely that the stresses are not homogeneous in the aggregate. Later (red 
and blue points), the relaxation becomes slower. One then assumes that σzz is homogenous in a plane 
orthogonal to the symmetry axis, so that the model developed in the appendix applies. 

Development: doi:10.1242/dev.199765: Supplementary information 

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Fig. S4. Raw images of a sensor implanted in the PPl of a Zebrafish embryo; a) and b) Overview of the 
sensor inside the embryo ; a) Bright field, b) Superimposition of the fluorescence images of the sensor 
(rhodamin labelled) and of the PPl cells (GFP transfected); c) to e) : zoom on the sensor ; c) bright field ; 
d) GFP channel; e) Rhodamin channel; f) Sensor contour determined by the active contour method. The
xyz coordinate system is identical to the one shown in Fig. 6e. 
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Fig. S5. Overview of the dataset acquired on zebrafish embryos. Each circle represents a stack of 
images, collected at a given stage of epiboly. Red-filled circles highlight data featured in Fig. 6, selected 
to have maximum spread over the progression of epiboly. The time series featured in Fig. 7 is highlighted 
by a blue frame (bead 3, n=30). 
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Example of time evolution: 

a)

b)

Fig. S6. a) Time evolution of the main components σXX, σYY and σZZ of the shear stress tensor exerted 
on a sensor located in the central zone of the PPl of a zebrafish embryo. Each principal axis X, Y, Z is 
color-labelled according to its nearest axis x, y or z of the PPl referential. Dashed lines are guides for 
the eye ; b) Plot of the evolution of the three half-axes length aX, aY and aZ for a deformed sensor (same 
sequence and same color code as in a) ), together with the radius R of a sphere having the same 
volume (black crosses). R is stable with time, as compared to the variations of the half-axes. 
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Amongst the 7 sensors inserted in the PPl, and migrating with it, that we could follow with time, one 
exhibited a visible evolution. This sensor was imaged during 15 min, at the stage 70 - 75% of epiboly. In 

Fig. S6a, the three main components XX, YY and ZZ of the shear stress exerted on the sensor are plotted 
versus time. Within 15 minutes, the stress amplitude along the principal axis closest to the z axis (blue) 
changes from positive (extension) to negative (compression). In the same time interval, the stress along 
the axis closest to the y axis follows the opposite evolution (yellow), and so does, to a lesser extent, the 
component close to x axis (red). Their directions remain stable except for some small fluctuations.  

We argue that this event cannot be an experimental artifact related to image analysis uncertainty. 
Indeed, we have plotted in Fig. S6b the evolution of the three half-axes aX, aY and aZ of the deformed 
sensor, together with the radius R= (aX aY aZ)1/3 of the sphere of same volume. It shows that R is stable 
with time, as compared to the variations of the half-axes. Thus, the sensor volume remains constant 
during this sequence, while its shape changes, and consequently so does the shear stress exerted on it.  

This evolution takes place within a few minutes at this stage of epiboly. Its duration is short as compared 
to the gastrulation characteristic time, which might explain why it has been observed only once, out of 
7 assays. Of course, we do not have enough information to allow any biological interpretation of this 
single event. Nevertheless, its occurrence suggests that the pipeline enables to follow the time evolution 
of the shear stress tensor during the prechordal plate migration.  
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Movie 1. Example of reconstruction of the 3D shape of a bead by the active contour method. 
Rotating view of a bead inserted in the Zebrafish prechordal plate. Red: raw 3D image from 
confocal stacks. Green: contour calculated by the active contour method. Blue: best fit by an ellipsoid. 
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http://movie.biologists.com/video/10.1242/dev.199765/video-1
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