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Abstract 

 

Size is a fundamental feature of living entities and is intimately tied to their function. Scaling 

laws, which can be traced to D’Arcy Thompson and Julian Huxley, have emerged as a 

powerful tool for studying regulation of the growth dynamics of organisms and their 

constituent parts. Yet throughout the 20th century, as scaling laws were established for single 

cells, quantitative studies of the coordinated growth of multicellular structures have lagged, 

largely due to technical challenges associated with imaging and image processing. Here, we 

present a supervised learning approach for quantifying the growth dynamics of germline cysts 

during oogenesis. Our analysis uncovers growth patterns induced by the groupwise 

developmental dynamics among connected cells, and differential growth rates of their 

organelles. We also identify inter-organelle volumetric scaling laws, finding that nurse cell 

growth is linear over several orders of magnitude. Our approach leverages the ever increasing 

quantity and quality of imaging data, and is readily amenable for studies of collective cell 

growth in other developmental contexts, including early mammalian embryogenesis and 

germline development.  

 

Keywords: supervised learning, developmental dynamics, multicellular clusters, allometry, 

oogenesis  

 

 

Summary Statement 

Diegmiller et al. present a new approach for automating 3D reconstructions of multicellular 

structures and highlight its utility by analyzing patterns of growth present during Drosophila 

oogenesis.  
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Introduction 

Uncovering the patterns and the mechanisms underlying the growth of organisms has been a 

longstanding goal in Biology. Propelled by D’Arcy Thompson’s and Julian Huxley’s seminal 

work over a century ago, scientists have since devised increasingly sophisticated methods to 

capture and analyze growth in its many forms and at scales that span a large dynamic range 

(Thompson (1917); Huxley (1932); Sharpe (2017)). In particular, numerous studies have 

focused on uncovering growth dynamics of cells and their substructures; cells are the primary 

building blocks of more complex structures, and the proper physical dimensions of a cell and 

relative sizes of its organelles are important for proper structure and function (Chan and 

Marshall (2010; 2013); Jorgensen et al.(2007); Neumann and Nurse (2007); Levy and Heald 

(2012); Marshall et al. (2012); Ginzberg et al. (2016)). Prior work, primarily focusing on X. 

laevis and C. elegans, has provided many of the established quantitative methods for 

characterizing size regulation and scaling in single cells, thus elucidating how these features 

regulate key biological processes, such as the cell cycle (Arata et al. (2015); Arata and Takagi 

(2019); Jevti´c and Levy (2015); Levy and Heald (2010); Masui and Wang(1998); Wang et 

al. (2016)).  

In contrast to studies of growth of individual cells, studies of coordinated growth in 

multicellular clusters have been slow to emerge (Macklin (2019)). A particularly important 

class of multicellular growth problems arises during the development of gametes: Across 

species, oocytes and sperm develop within clusters of connected cells, called germline cysts 

(Pepling et al. (2015); Matova and Cooley (2001); Woznica et al. (2016); Yamashita (2018)). 

These structures have a relatively few number of cells (several to tens) and are conserved, 

thus providing a highly tractable and and relevant system for studying the growth dynamics 

of cells in a multicellular context. With the ever-increasing power of modern technologies 

and emergence of machine learning, it has now become possible to systematically analyze 

large data sets, to extract three-dimensional measurements of cells and their substructures, 

and to identify the relationships characterizing the coordinated growth of these multicellular 

structures, and their underlying mechanisms (Sommer et al. (2011); Machado et al. (2019); 

Zhang et al. (2019); Tokuoka et al. (2020)).  

Here we study collective growth during invertebrate oogenesis, during which a small number 

of connected support cells grow rapidly and significantly, while synthesizing the molecules 

and molecular machines required for supporting the oocyte’s growth and early embryonic life 

(Matova and Cooley (2001); Haglund et al. (2011); Lei and Spradling (2016)). To determine 

whether there are laws that govern the growth of clusters of connected cells, we focused on 

the Drosophila egg chamber, a powerful and relevant experimental system whose invariant 

structure allows identification and unique labeling of each cell in the cyst. An egg chamber 

comprises 16 germline cells enveloped by an epithelium (Fig. 1A) (Koch and King (1969); 

King (1970)). The germline cyst arises from a differentiated stem cell that undergoes four 

rounds of cell division with incomplete cytokinesis, leaving cells connected through 

stabilized intercellular bridges, or ring canals (King (1970); Mahajan-Miklos and Cooley 

(1994)). At  1-10 microns, ring canals allow for intercellular communication and transport – 

processes that are essential for oocyte development and growth (Cooley and Theurkauf 

(1994)). One of the two cells with four ring canals becomes the oocyte, while the remaining 

15 cells become supporting nurse cells (King (1970); Diegmiller et al. (2021)).  

Over the course of  3 days, the egg chamber grows by four orders of magnitude; however, 

that volume increase is not partitioned equally among its 16 cells (King (1970)). While the 

oocyte becomes transcriptionally quiescent, the nurse cells undergo  8-10 endoreplication 

cycles that significantly increase their ploidy, thus enabling them to synthesize the materials 
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necessary for future developmental events (Edgar and Orr-Weaver (2001); Fox and Duronio 

(2013); Navarro-Costa et al. (2001); Doherty et al. (2021)). Furthermore, studies have shown 

that within the nurse cell cluster itself, a hierarchy of cell sizes emerges (Brown and King 

(1964); Dapples and King (1970); Imran Alsous et al. (2017; 2018)). Nurse cell nuclear 

volumes increase with increasing ploidy, but the nurse cells also grow in concert with the 

oocyte; it is therefore unclear how the nuclei and cells scale during egg chamber 

development. Nucleolar size has been shown to correlate with ribosomal density, which is 

linked to cell growth rates (Rudra and Warner (2004); Uppaluri et al. (2016)); however, given 

the syncytial nature of these cell clusters and the ability of RNA and protein products to be 

exchanged within nurse cells and between nurse cells and the oocyte through ring canals, it is 

not clear whether each nurse cell nucleolus scales with the size of its own nucleus.  

We therefore sought to investigate the coordinated growth of germline cells and their 

substructures during Drosophila oogenesis, using a high-throughput, data-driven approach. 

This paper was largely inspired by the previous work of Dr. Charles Dapples and Dr. Robert 

King, who nearly fifty years ago analyzed the shapes and volumes of nuclei and nucleoli in 

developing egg chambers (Dapples and King (1970)). Motivated to overcome the limitations 

of 2D studies, researchers of the King lab at Northwestern University set out to generate 3D 

visualizations of these organelles (Charles C. Dapples, personal communication). Armed with 

cutting-edge electron microscopy equipment at the time, the researchers began by serially 

sectioning through an entire egg chambers, manually tracing each acquired electron 

micrograph onto graph paper, and mapping the locations of nucleolar regions. For each of the 

 50-100 micrographs obtained for each cell, this information was transferred to punch cards 

and fed into a computer, creating a 3D array of the nucleolar region. This laborious process 

required months to complete; furthermore, the resolving power of the micrographs limited the 

statistical power and scope of this study. Nonetheless, these efforts yielded the first insights 

into the unique 3D structure of this organelle (Fig. 1B).  

Technology has come far since, yet to obtain measurements of cell volumes, numerous 

studies still assume that cells are spherical objects, or rely on interpolation of circular areas 

across slices (Arata et al. (2015); Arata and Takagi (2019); Masui and Wang (1998); Wang et 

al. (2016)). The approach presented in this paper allowed us to determine the morphological 

features and to measure the volumes of cells and their organelles for each cell in egg 

chambers across several orders of magnitude, while circumventing these limitations. Our 

results shed light on several properties relating to the groupwise developmental dynamics of 

these multicellular clusters. More generally, this work establishes an automated pipeline for 

high-throughput data processing and systematic analysis that is unencumbered by large data 

sets and can be readily applied to characterize collective growth in a several multicellular 

systems, including early mammalian embryos and germline cysts.  

 

 

Results and Discussion 

Algorithm for automated egg chamber reconstruction 

Since live imaging is limited to a few hours, we set out to establish scaling relationships in 

Drosophila egg chambers for each of the 16 cells in the germline cyst using fixed samples 

with fluorescently labeled cell membranes, ring canals, nuclei, and nucleoli (Materials and 

Methods). While formaldehyde fixation may disturb the integrity of living materials, the egg 

chamber’s cells and substructures appeared largely unaffected (Fig. 2). Each cell in the cyst 

was uniquely identified using a supervised learning approach.For each of the 15 nurse cells, 
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the volumes of the cells, as well as their nuclei and nucleoli were measured, and their sizes 

reconstructed over  60 hours of oogenesis, namely, from Stages 3 to 10A (King (1957); 

Spradling (1993)). This supervised learning program yielded probabilistic pixel information 

based on minimal training (Sommer et al. (2011); Berg et al. (2019)). Once these probability 

maps were exported to MATLAB to isolate each feature within each egg chamber, we were 

able to uniquely identify each cell in the cyst, reconstruct its morphology, measure its 

volume, and extract those features for its nucleus as well. The unique identification of nurse 

cells was made possible through implementation of an assignment algorithm relating the 

identified cell-cell connections based on the positions of ring canals within the system. After 

identifying the oocyte, each cell in the egg chamber is identifiable by the number of its ring 

canals and which other cells it was connected to. The automated reassignment algorithm 

allowed each nurse cell to be distinctly labeled in a given egg chamber and compared with 

the same cell in other egg chambers across developmental stages (Kuhn (1955); Umeyama 

(1988)). This automated pipeline for image processing and reconstruction (Fig. 2), facilitates 

extraction of quantitative information regarding the temporal evolution and development of 

the connected network of cells.  

 

 

Linear scaling of nuclear and cell volumes 

Discovery of the emergent pattern of cell sizes within the nurse cell cluster was first enabled 

through measurements from 2D sections, and subsequently confirmed through painstaking 

manual measurements and 3D reconstructions (Brown and King (1964); Imran Alsous et al. 

(2017; 2018)). These studies formed the basis for interrogating features and dynamics of cell 

and organelle growth through the more advanced, higher throughput, and automated 

computational and image processing tools featured here.  

Previous works demonstrated that nuclear volumes correlate with distance from the oocyte – 

namely, that the number of ring canals between a nurse cell and the oocyte correlate with the 

nuclear volume of a cell (Brown and King (1964); Imran Alsous et al. (2017)). We first 

sought to verify this finding using the automated reconstructions and to expand its scope to 

total nurse cell volumes. We recovered a strong correlation between nurse cell volume rank 

and nuclear volume rank (Fig. S1A), thus validating the accuracy of the aforementioned 

approach and establishing an important link between previous manual reconstructions and the 

automated versions presented here.  

 

 

Nurse cell volume fractions remain constant during growth 

Previous work has also demonstrated that nurse cells exhibit differential growth, and that four 

groups of nurse cell sizes emerge, correlating with the cells’ distance from the oocyte. This 

pattern of cell sizes is already present in egg chambers that have exited the germarium, the 

stem cell niche (Brown and King (1964); Imran Alsous et al. (2017; 2018)); furthermore, 

once the pattern emerges from uniform initial conditions, it persists throughout oogenesis 

until the onset of nurse cell dumping, when the nurse cells’ volumes start to decrease 

markedly through rapid transport oftheir cytoplasmic contents to the oocyte (Theurkauf and 

Hazelrigg (1998); Imran Alsous et al. (2021)).  
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In addition to confirming these findings, we found that the volume fraction of each nurse cell 

in a given egg chamber between Stages 3 and 10A does not depend on developmental stage 

(Fig. S1B) (Jia et al. (2016); King (1957)). That is, the size of the eggchamber does not have 

predictive power for the relative nurse cell sizes. Instead, volume fractions appear to be 

conserved across developmental stages and are roughly uniform based on distance from the 

oocyte. In particular, there is a clear deviation for the four cells directly connected to the 

oocyte, while the other cells in the cyst appear to be more uniformly distributed. Given the 

nurse cells’ size hierarchy, conservation of relative nurse cell volume fractions across all 

measured samples implies that the observed size divergence of nurse cells based on distance 

from the oocyte must have occurred at a time point before the earliest egg chamber measured 

in this study (  Stage 3) (Jia et al. (2016); Imran Alsous et al. (2017); Doherty et al. (2021)).  

 

 

Nurse cell nuclei and nucleoli grow isometrically 

We next explored the total growth rates of nucleolar and nuclear regions within developing 

egg chambers. Starting from early  Stage 3 egg chambers, we found that nurse cell nuclear 

and nucleolar volumes scale at the same rates with respect to each other through 

developmental time. (Figs 3A,B) (Jia et al. (2016)). This observation is consistent with that 

made half a century ago by Dapples and King (Dapples and King (1970)). Across various 

stages of oogenesis, the relationship between nuclear and nucleolar size within each nurse 

cell remains consistent, scales isometrically with cell size, and is independent of distance 

from the oocyte or location in the cell lineage tree. Taken together, these data suggest that 

nurse cell nuclear volumes change at constant rates across developmental stages.  

 

 

Oocyte growth diverges from nurse cell growth 

While relative nurse cell growth remains constant throughout development, oocyte volume 

does not follow this trend. During the early stages of oogenesis (  Stages 3 through 7-8), the 

oocyte grows roughly isometrically with the rest of the cells in thecyst; however, when the 

total egg chamber reaches a volume of roughly 
5 3

1 0 m , oocyte growth begins to diverge, 

becoming much larger than the other cells in the developing cyst (Fig. 4).  

We found that while nurse cells as a whole appear to have one rate of growth throughout 

oogenesis relative to the entire egg chamber (Fig. S1C), two distinct growth rates exist for the 

oocyte. This sharp increase in growth rate relative to the growth of the egg chamber occurs 

around Stage 9, when developmental processes such as yolk uptake take place (Spradling 

(1993); Jia et al. (2016)). This developmental checkpoint appears to split oocyte growth into 

two distinct phases: Early, isometric growth relative to the nurse cells, and later, divergent 

growth, where the oocyte grows at around twice the rate as the nurse cells.  

 

 

Contextualizing analysis and applications to other systems 

The work presented here highlights the utility and feasibility of automated reconstruction 

algorithms in quantifying developmental processes. The key strength of this approach is its 

flexibility: Given either stacks of fixed images or movies of developing multicellular 
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structures, a minimal amount of training on images is required before one is able to uniquely 

identify each cell within a given system, make quantitative measurements at varying scales, 

and glean insights into developmental trajectories. Wedemonstrate this approach here by 

quantifying the relative growth rates of oocyte, nurse cells, and their subparts in the 

Drosophila egg chamber, thus uncovering properties of their growth dynamics.  

A key aspect of this analysis was comparing the growth rates of nucleoli and nuclei across 

development and within the nurse cell cluster. During oogenesis, ribosomal RNA are rapidly 

synthesized in nurse cell nucleoli (Jorgensen et al. (2007); Uppaluri et al. (2016)). As 

ribosomes are required for protein translation, an increase in the number of ribosomes 

promotes an increase in cell growth, as occurs in the nurse cells (Rudra and Warner (2004)). 

Since nurse cell nucleoli and nuclei grow at roughly the same rates, ribosomal density is most 

likely constant throughout Drosophila oogenesis. This observation implies that nurse cell 

growth rates are constant across developmental stages, consistent with our other findings. 

Nuclear and nucleolar sizes also scale with cell size (Fig. 3A). This relationship has been 

observed in a range of organisms and cell types, and implies that nuclear size is most likely 

regulated by cytoplasmic volume and contents (Gregory (2005); Levy and Heald (2012)).  

A key feature of nucleoli in nurse cells is their “lava lamp” morphology, with the nucleolus 

loosely wrapped by the surrounding DNA (Fig. 3A, inset) (Dapples and King (1970)). This 

unusual structure is a departure from the more familiar dense, olive pit-like region observed 

in other cell types (Jorgensen et al. (2007); Neumann and Nurse (2007); Windner et al. 

(2019)). Given the nurse cells’ ploidy and high biosynthetic capacity, such morphology may 

allow for a relatively higher surface area to volume ratio than the more compactly packed 

configuration – a hypothesis that can betested by applying the pipeline developed here to flies 

with mutations in rRNA structural gene locus, such as bobbed (bb), which is known to cause 

delayed development, with oogenesis progressing at significantly reduced rates (Kay and 

Jacobs-Lorena (1987)).  

A striking feature of Drosophila oogenesis is the rapid growth of the egg chamber around 

Stage 9, which correlates with the uptake of yolk by the oocyte (Fig. 4), and cannot be 

accounted for by the isometric growth rates of the nurse cells (King (1970); Bownes (1982); 

Spradling (1993); Jia et al. (2016)). Indeed, while the oocyte and the nurse cells reside within 

a shared cytoplasm, they exhibit strikingly different nuclear behaviors and sizes (Fig. 1A). 

Future work is required to investigate the factors that control the scaling of nuclei in the egg 

chamber, both temporally throughout oogenesis, and spatially within the network. Notably, 

the egg chamber’s functionally and morphologically different nuclei are reminiscent of the 

macro- andmicronuclei that reside within the same cell in the protozoan Tetrahymena 

thermophila, where differences in nuclear size and behavior have been attributed to 

differences in nuclear pore complexes (Levy and Heald (2012)).  

Lastly, the presented approach can be adapted to developmental systems where the structure 

of intercellular connections is known and invariant, such as the tardigrade Dactylobiotus 

parthenogeneticus and the Argentine ant Linepithema humile (Poprawa et al. (2015); Eastin 

et al. (2020)). The key adjustment would only be in the application of the assignment 

algorithm that uniquely identifies each cell (Umeyama (1988)). As in Drosophila, the known 

matrix of connections between uniquely identifiable cells would need to be compared with 

that of each reconstructed sample, allowing for the proper identification and analysis of 

multicellular growth in a variety of developmental contexts.  
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Materials and Methods 

Fly stocks 

 

Fibrillarin-RFP flies were used in all studies as a marker for nucleolar regions within each 

nurse cell (Falahati and Wieschaus (2017)). The flies were maintained with standard 

cornmeal, molasses, and yeast media.  

 

 

Antibody staining 

Ovaries were fixed in 4% paraformaldehyde in 0.1% Tween-20 in PBS for 20 minutes at 

room temperature on a nutator. After washing in 0.1% Tween in PBS, the ovaries were then 

blocked for two hours in blocking solution (1% BSA in PBS) before adding the primary 

antibody rabbit anti-Phosphotyrosine (1:500) and rocked overnight at 4 C overnight. The 

following secondary antibodies and additional stains were then used: donkey anti-rabbit 

Alexa-Fluor 647 nm (1:400) (Invitrogen), Alexa Fluor 488 phalloidin (1:1000) (Invitrogen), 

and DAPI (250 ng/mL).  

 

 

Mounting and imaging 

Dissected ovaries were mounted in a 1:1 mixture of RapiClear 1.47 (SUNJin Lab) and Aqua-

Poly/Mount (Polysciences). Imaging was performed on a Leica SP5 confocal microscope 

using a 63x/1.3 NA oil objective. Three dimensional stacks were acquired using 405, 488, 

546, and 647 nm in series with 3x line averaging. Stacks acquired were usually between 70-

120 z-slices of 16-bit, 1024 x 1024 images. Each image was isometric in the x and y 

directions, tuned to best match the necessarily larger z-length. Most acquired images were 

246 nm in x and y, and 250 nm in z. Calibration of volume measurements was performed 

using 1.8 micron diameter spherical beads to confirm accuracy of measurements in all three 

directions.  

 

 

Image processing and supervised learning 

Raw image stacks were pre-processed using FIJI to isolate individual egg chambers within 

each stack. The channels for each egg chamber were then split and recombined to create three 

stacks: a stack containing nuclear and nucleolar data, a stack containing ring canal data, and a 

stack containing cell membrane data. Multiple representative stacks for each type of data 

were uploaded into the Pixel Classification module for training within ilastik, a freely 

accessible semi-supervised machine learning program (Sommer et al. (2011); Berg et al. 

(2019)). For each type of data, training was performed by manually identifying pixels that 

belong to each class of interest. Based on a minimal number of these examples, the program 

then developed probabilities for each pixel ofa stack to belong to each of these classes. Due 

to the morphological and volumetric differences between early- and late-stage egg chambers, 

two sets of training data were used to more accurately identify the relevant features for each 
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class of samples. Each classifier was trained to identify the relevant features for all three 

stacks, yielding an output matrix of probabilities across all three dimensions.  

 

 

Egg chamber reconstruction 

The processed stacks, containing information about the probability of each pixel in the image 

to belong to either the cell membrane, ring canal, nucleus, nucleolus, or image background, 

were imported into MATLAB for final object identification, post-processing, and data 

quantification. Cell membrane probability maps were used to identify the areas of lowest 

probability lying inside the egg chamber, which were used as seeds for the watershed 

transformation. After applying this transformation and applying a Gaussian smoothing kernel 

based on the size of the image being analyzed, this process yielded the sixteen objects most 

likely to be the cells within the developing cyst and assign each object a unique identifier. 

Applying a simple probability threshold (usually taken to be 0.5, or 50% certainty for a given 

pixel to have come from a certain class) allowed for the ring canals, nuclear, and nucleolar 

regions to all be identified within the cluster. As each ring canal connected two cells in the 

cluster, each necessarily touched the boundary of the connected cells. Exploiting this fact 

allowed for an adjacency matrix to be built that contained information about which cells are 

connected. This was done by creating an n -by- n  matrix A , where n  is the number of cells, 

where for each pair of connected nurse cells i  and j , 
i j

A  and 
j i

A  were set to 1 . Connections 

between the oocyte and nurse cells were instead weighted by a factor of 2 .  

Identifying the oocyte required the segmentation of the nucleus and nucleolus of each cell in 

the cluster. Since the nuclei and nucleoli of each cell were classified in a previous step, this 

was performed by identifying the location of each nucleolar region and identifying which cell 

each region was within. Because the oocyte is transcriptionally quiescent throughout these 

stages of oogenesis (Edgar and Orr-Weaver (2001); Fox and Duronio (2013)), nuclear 

staining in this cell appears less intense, allowing it to be identified as the oocyte. Once the 

oocyte was properly identified, all nurse cells and their respective organelles could be 

uniquely identified due to the bilateral symmetry of connections within the cell cluster. This 

was done by applying a graph matching algorithm in which the cell-cell connections 

identified through ring canals were compared to the known adjacency matrix of the uniquely 

labeled cyst and re-allocated (Kuhn (1955); Umeyama (1988)). This matrix reallocation 

process is based on the Hungarian algorithm, an optimization algorithm applied in this 

context to find the best configuration for assigning label j  from the known adjacency matrix 

to object i  from the sample adjacencymatrix for all labels and objects. For each sample, this 

automatic segmentation and identification algorithm produced a set of objects from which 

quantitative data was obtained for further statistical analyses. Once each nurse cell was 

uniquely defined,volumes were measured by calculating the number of voxels within each 

object of interest and scaling by the voxel size in all three dimensions, thus approximating 

each volume as the sum of many small rectangular prisms. A subset of these samples were 

compared with egg chambers reconstructed manually in Imaris to confirm the absence of 

systematic biases in volume measurements or segmentation.  

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



Statistical analysis 

Simple linear regression was performed using standard functions in MATLAB, assuming that 

the relationship between two properties, x  and y , could be best represented as 

ln  ( ) ln  ( ) ln  ( )y m x b  . Rearranging these relationships yields the relationship m
y b x , 

which shows that the slope of the regression, m , is the scaling factor between the two 

properties. 
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Figures 

 

 
 

Figure 1. Schematic of Drosophila egg chamber development. (A) The Drosophila ovariole comprises a 

germarium and several egg chambers arranged from youngest (left) to oldest (right). The egg chamber is 

formed in the germarium where a differentiated stem cell undergoes four rounds of divisions to give rise 

to a 16-cell cyst, whose cells are connected through ring canals. The cells’ stereotypic connectivity is 

illustrated as a network of nodes (cells) and edges (ring canals); one cell (pink) is specified as the oocyte, 

while the other 15 become endoreplicating nurse cells. Over time, the egg chamber grows by several 

orders of magnitude, with the oocyte eventually occupying a large fraction of the egg chamber volume. 

During this time, nurse cell nuclear and nucleolar volumes grow as the nurse cells undergo several rounds 

of DNA replication. (B) An early 3D model of a Stage 9 nurse cell nucleolus reconstructed from thick 

cardboard, depicting its intricate morphology (reproduced with permission from Dapples and King 

(1970)). 
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Figure 2. Pipeline for automated egg chamber reconstruction. Fixed stacks of images were stained for cell 

membrane, ring canals, DNA, and nucleoli. From here, training in ilastik was performed, where each 

pixel in a given stack was assigned a list of probabilities for being a member of each of these classes 

(colorbar shows probability in the interval  0,1  within slice for each respective feature). These 

probabilities were then exported to MATLAB, where cell membrane data were used to identify the 16 

cells of the cyst. Using the ring canals to identify adjacent cells, each cell identified in MATLAB can be 

mapped one-to-one to a unique label using the known adjacencies of the invariant Drosophila egg 

chamber. 
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Figure 3. Subcellular scaling relationships in Drosophila oogenesis. (A) Nucleolar and total nuclear 

volumes as a function of nurse cell volume shows that these organelles grow isometrically with respect to 

one another (
2

0 .8 2R   for nucleoli and 
2

0 .9 4R   for total nuclear regions). Inset is a projection of a 

3D rendered nucleus, with DNA in blue and nucleolar region in red. (B) Total nucleolar volume as a 

function of total nuclear volume exhibits the same isometric relationship (
2

0 .8 0R  ), thus 

recapitulating previous results (Dapples and King (1970)). Inset is a reconstructed egg chamber with the 

full nuclear regions of each nurse cell. For both plots, 600n  nurse cells or 40n  egg chambers. All 

slopes are given as mean   s. d. 

 
D

ev
el

o
pm

en
t •

 A
cc

ep
te

d 
m

an
us

cr
ip

t



 

 

Figure 4. Divergent growth in the oocyte during oogenesis Oocyte volume and total nurse cell volume as a 

function of total egg chamber volume across developmental stages highlights the divergence of oocyte 

growth rate at a stage of oogenesis. As depicted in the schematics, this increase in the rate of growth of the 

oocyte relative to the growth rate of the entire egg chamber appears to come from external sources, most 

likely due to the onset of vitellogenesis around this stage of development. Early and late stage nurse cell 

growth rates relative to the egg chamber have a correlation of 
2

0 .9 9 9R   and 
2

0 .9 9 8R  , 

respectively. Early and late stage oocyte relative growth rates have a correlation of 
2

0 .9 7R   and 
2

0 .9 9R  , respectively. Here, 40n  total egg chambers. All slopes are given as mean   s. d. 
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Fig. S1.  Size divergences in the nurse cells and oocyte. (A) A plot of nuclear volume rank against cell 
volume rank shows the emergence of groups based on distance from the oocyte, and also demonstrates the 
deviation of the cells closest to the oocyte (n=40, R2=0.976, error bars are s. d.). (B) Total nurse cell volume 
fraction (excludes the volume of the oocyte) as a function of egg chamber volume shows that across 
developmental stages, the cells closest to the oocyte are larger than the rest of the nurse cells, but this 
difference does not change through time (n=600 nurse cells from 40 egg chambers). (C) Volume fraction of cells 
against egg chamber volume highlights the onset of oocyte size divergence as the egg chamber progresses 
through oogenesis (n=640 cells from 40 egg chambers). All colors are based on proximity to oocyte, as denoted by 
the tree inset in (A) (gray depicts oocyte). 

Development: doi:10.1242/dev.199663: Supplementary information
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