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Summary Statement 

Fluorescent antisense probe and inactive form of Staphylococcus epidermidis 

Mini-III RNase with a fluorescent tag may be used together to visualize 

endogenous mRNAs in zebrafish embryos.   
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ABSTRACT 

Mini-III RNase (mR3), a member of RNase III endonuclease family, can bind to and cleave 

double-stranded RNAs (dsRNAs). Inactive mR3 protein without the α5β-α6 loop loses the 

dsRNA cleavage activity, but retains dsRNA binding activity. Here, we establish an inactive 

mR3-based, non-engineered mR3/dsRNA system for RNA tracking in zebrafish embryos. In 

vitro binding experiments show that, inactive Staphylococcus epidermidis mR3 (dSmR3) 

protein possesses the highest binding affinity with dsRNAs among mR3s from other related 

species, and its binding property is retained in zebrafish embryos. Combined with a 

fluorescein-labeled antisense RNA probe recognizing the target mRNAs, dSmR3 tagged with 

an NLS and a fluorescent protein could allow visualizing the dynamics of endogenous target 

mRNAs. The dSmR3/antisense probe dual-color system provides a new approach to track 

non-engineered RNAs in real-time, which would help understand how endogenous RNAs 

dynamically move during embryonic development. 
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INTRODUCTION 

Asymmetric localization of mRNAs within a cell can lead to their own unequal transmission 

to daughter cells or asymmetric distribution of their protein products, thus regulating cell 

behaviors (Johnstone and Lasko, 2001; King et al., 2005; Paquin and Chartrand, 2008; Yan 

et al., 2018). To visualize mRNA dynamics in real-time in living cultured cells or live organisms, 

an antisense RNA with a fluorophore or embedded RNA structure is usually combined with a 

recognizing reporter fluorescent protein or fluorophores for application (Paige et al., 2011). 

For example, multiple copies of MS2 19-nucleotide stem loop sequence (MS2 aptamers) 

derived from a single-stranded RNA bacteriophage can be inserted into the target gene, and 

the resulting mRNA in living cells or organisms could be visualized by the MCP coat protein 

fused to a fluorescent protein through binding to the MS2 aptamers (Bertrand et al., 1998; 

Campbell et al., 2015; Lionnet et al., 2011; Lucas et al., 2013; Park et al., 2014; Yoon et al., 

2016); the system consisting of the bacteriophage PBS sequence/the PP7 coat protein has 

also been utilized for monitoring in vivo transcription initiation and elongation on eukaryotic 

loci (Larson et al., 2011). A Spinach-like RNA aptamer fused to an mRNA could be visualized 

by insertion of a GFP-like fluorophore (Paige et al., 2011). The RNA-binding Pumilio 

homology domain (PUM-HD) of human PUMILIO1 has been utilized to visualize 

mitochondrial RNA in single living cells (Cheong and Hall, 2006; Ozawa et al., 2007; Wang 

et al., 2002). Endogenous RNAs without engineered tags may be visualized using 

complementary hybridization probes with fluorophores (so called “molecular beacons”) (Bratu 

et al., 2003; Tyagi and Kramer, 1996; Vargas et al., 2005). Recently, catalytically inactive 

members of CRISPR/Cas family, such as Cas9 and Cas13a, have also been used to track 

RNAs in cell lines (Abudayyeh et al., 2017; Abudayyeh et al., 2016; Nelles et al., 2016; Yang 

et al., 2019). The wide application of these RNA imaging technologies has been limited due 

to fussy, laborious design and engineering of RNA aptamers, molecular beacons or proteins. 
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Easier alternatives for tracking mRNAs are needed.  

Ribonuclease III (RNase III) is a class of ribonucleases that bind to and cleave dsRNAs 

(Court et al., 2013). Unlike other RNase IIIs that contain a dsRNA-binding domain and 

separate catalytic domain(s), Mini-III RNase (mR3), which was first identified in Bacillus 

subtilis and participated in the maturation of 23s ribosomal RNA, contains a catalytic domain 

but lacks recognizable dsRNA-binding domain (Redko et al., 2008). It has been shown that 

mR3s from different bacterial species could cleave long dsRNA with a certain degree of 

sequence specificity (Glow et al., 2016; Glow et al., 2015). Interestingly, deletion of the α5β-

α6 loop of Bacillus subtilis mR3 results in loss of catalytic activity and preservation of 

sequence-independent dsRNA-binding activity (Glow et al., 2015).  

Given that inactive mR3 is able to bind dsRNAs (Glow et al., 2015), we hypothesize that 

its fusion with a fluorescent reporter protein may be used to monitor dynamics of target 

mRNAs that form dsRNAs with exogenous complementary antisense oligonucleotides. In this 

study, we show that an inactive mR3 from Staphylococcus epidermidis (dSmR3) possesses 

higher binding affinity to dsRNA than those from other related species. Using nuclear 

localized dSmR3 protein and fluorescein-labeled antisense RNA probe, we established a new 

system for in vivo tracking of endogenous mRNAs, called mR3/dsRNA system. This new 

system provides an alternative to track movement of mRNAs in living embryos.  

 

RESULTS 

dSmR3 possesses high dsRNA-binding affinity in vitro  

We chose 12 mR3 genes annotated in 12 bacterial species of the fermicutes (Glow et al., 

2015) and synthesized them individually with addition of the Flag tag but with removal of the 

α5β-α6 loop required for catalytic activity (Table S1). The synthetic genes were cloned and 

expressed in E. coli (Fig. S1A). All of the expressed proteins were purified (Fig. S1A) and 
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used to test their substrate binding affinity by ELISA (Fig. 1A). As binding of mR3 to dsRNA 

depends on the structure of dsRNA rather than RNA sequence (Glow et al., 2016; Masliah et 

al., 2013; Tian et al., 2004), we synthesized two 100-bp dsRNAs with incorporation of biotin-

UTP, actb2-dsR-P1 and actb2-dsR-P2, which correspond to the P1 region within the coding 

sequence and the P2 region in the 3’ untranslated region (UTR) of the zebrafish actb2 gene 

(Fig. S1B), respectively. Two binding buffers with different iron concentrations were used and 

named as low salt buffer (LSB, 10 mM Tris-HCl pH 7.5, 5 mM NaCl, 1 mM MgCl2, 0.1 mg/mL 

BSA) (Glow et al., 2015) and high salt buffer (HSB, 20 mM HEPES-KOH pH 7.5, 140 mM 

KCl, 12 mM NaCl, 2 mM MgCl2, 5% glycerol). The ionic composition of HSB is much similar 

to the intracellular ion environment (Lang, 2007). ELISA screening results showed that, 

among the 12 tested mR3s, inactive mR3 derived from Staphylococcus epidermidis, dSmR3, 

possesses the highest binding affinity with actb2-dsR-P1 and actb2-dsR-P2 in either buffer 

(Fig. 1B-E), followed by inactive mR3 protein from Staphylococcus aureus (Sau). Therefore, 

we chose dSmR3 for subsequent experiments. 

Next, we constructed other different forms of dSmR3 protein and compared their binding 

affinity. To make dSepmR3 protein visible for RNA tracking, a flexible linker (linker 1) and a 

mCherry tag was fused to its C-terminal (Fig. 1F). To decrease the background signal in the 

cytosol, its N-terminal was fused with an NLS and the new version was then called dSmR3n. 

Since mR3 functions as homodimer (Redko et al., 2008), we constructed tandem dimer forms 

of dSmR3n, which contained two monomers linked directly or with different lengths of linker 

(linker 2) (Fig. 1F). Different forms of dSmR3n were expressed in E. coli and purified for 

binding affinity test (Fig. S1C). ELISA results showed that dSepmR3 tandem dimer proteins 

tended to have higher affinity with actb2-dsR-P1 than the monomer protein, and that insertion 

of the mCherry tag had no inhibitory effect on the dsRNA-binding ability (Fig. 1G, H). The 

variant dSmR3n-tdV1-mCherry (thereafter referred to as dSmR3nd-mCherry) had the highest 
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binding affinity for actb2-dsR-P1. Even if a 50-bp dsRNA (actb2-dsR-P4) (Fig. S1B) was used, 

dSmR3nd-mCherry still showed the highest binding affinity (Fig. 1I, J). Then, dSmR3nd-

mCherry was used for the following analyses.  

 

dSmR3 can bind to dsRNAs in zebrafish embryos 

We further tested the binding ability of dSmR3nd to dsRNA substrate in zebrafish embryos 

by RNA immunoprecipitation. An mRNA named ‘RSGM’ was in vitro transcribed. It consisted 

of Renilla luciferase coding sequence (Luc), 100-nt sense gfp and six copies of MS2 RNA 

aptamers (Fig. 2A, left). The RM mRNA was made by removing the sense gfp sequence from 

RSGM (Fig. 2A, right) and used as a control mRNA. Meanwhile, we synthesized three tandem 

copies of 100-nt antisense (as) gfp RNA, as-gfp (probe), which is complementary to the sense 

gfp in RSGM. The dSmR3nd-GFP fusion protein, which resembles dSmR3nd-mCherry 

except for fluorescent protein, was expressed in E. coli and purified. Then, one-cell stage 

embryos were first injected with RSGM or RM mRNA plus as-gfp, followed by injection with 

dSmR3nd-GFP protein. The embryos were harvested at 2.5 hpf and lysed for pulling down 

dsRNAs formed between RSGM and the as-gfp probe using GFP antibody. The 

immunoprecipitated dsRNA was used to detect Luc or as-gfp by qRT-PCR (Fig. 2B). 

Compared to co-injection of RM and as-gfp, co-injection of RSGM and as-gfp resulted in 

significant enrichment of both Luc and as-gfp in the dsRNA precipitate (Fig. 2C). This result 

suggests that, within live embryonic cells, an antisense RNA can form dsRNA with its target 

mRNA, which can be recognized and bound by dSmR3nd-GFP fusion protein.  

We asked whether the injected antisense RNA probes are stable in living embryos. To 

address this issue, as-gfp and actb2-as-P3 (3x100-nt sequence complementary to actb2-P3 

shown in Fig. S1B) RNA probes, each at 100 pg/embryo, were co-injected into one-cell stage 

embryos, and relative levels of probes were analyzed by qRT-PCR using intramolecularly 
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ligated RNA template at various time points during first 24 hours of development. As shown 

in Fig. 2D, 42-52% of input RNA were retained at 2.5 hpf and 6 hpf, and 21-25% were retained 

at 24 hpf. This result implies that exogenous antisense RNA probes in embryos are degraded 

only in part during early development and the undegraded probes could bind endogenous 

target mRNAs for several hours.  

Previous studies suggest that exogenous long dsRNAs (> 600 bp) induce degradation of 

target mRNAs as well as unrelated mRNAs and thus cause abnormal development in 

zebrafish embryos (Oates et al., 2000; Zhao et al., 2001). We wondered whether RSGM/as-

gfp dsRNA and dsRNA/dSmR3nd-GFP complex within embryonic cells affect the target 

mRNA stability and embryonic development. To address this question, we quantified RSGM 

mRNA levels by qRT-PCR analysis at 2.5 hpf following injections with RSGM mRNA, as-gfp 

probe and dSmR3nd-GFP protein in different combinations. Results showed that co-injection 

of dSmR3nd-GFP protein with RSGM mRNA had no obvious effect on RSGM mRNA level 

(Fig. 2E). In contrast, co-injection of as-gfp and RSGM mRNA resulted in a significant 

decrease of RSGM mRNA level, which could be alleviated by co-injection with dSmR3nd-

GFP protein (Fig. 2E). Furthermore, compared to actb2-as-P3 injection alone, its co-injection 

with 1 ng dSmR3nd-GFP protein could also compromise endogenous actb2 mRNA 

degradation at 2.5 hpf (Fig. 2F). Even at 4 hpf, dSmR3nd-GFP could mitigate antisense 

probe-induced actb2 mRNA degradation to a certain degree (Fig. 2G). These results imply 

that dSmR3nd-GFP protein bound to dsRNAs prevents dsRNA-induced mRNA degradation. 

Additionally, we found that over 75% of embryos injected with 300 pg actb2-as-P3 probe 

alone or together with 1 ng dSmR3nd-mCherry at the one-cell stage did not show any 

detectable morphological changes as observed at the shield stage and 24 hpf (Fig. 2H), 

indicating that these biomolecules within the tested dose ranges may not affect embryonic 

development.  
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Optimization of fluorescent RNA probes for binding to endogenous target mRNAs 

To establish an mR3-based RNA tracking system, it is necessary to use an in vivo trackable 

antisense RNA probe that can efficiently bind to endogenous target mRNAs. We tested whether 

fluorescein-UTP labeled antisense actb2 RNA probes would produce visible signals after 

binding to endogenous actb2 mRNAs. We synthesized antisense (as-) and sense (s-) probes 

derived from P1, P2 or P3 region of actb2 (Fig. S1B), each in three tandem repeats (3x), 

using fluorescein-UTPs. The antisense probes could be able to bind endogenous actb2 

mRNAs through sequence complementarity; in contrast, the sense probes should not do so 

and can thus serve as controls. These RNA probes were individually injected into one-cell 

stage embryos at a dose of 300 pg per embryo and fluorescence was observed at the 4-cell 

stage by confocal microscopy. As shown in Fig. 3A, the injected sense probes gave rise to 

powder-like (diffuse) signals with very few larger, brighter puncta in the cytosol, whereas 

injection with any antisense probe often generated many more puncta in the cytosol (Fig. 3A, 

B). Among different antisense probes, the actb2-as-P3 probe gave rise to the highest number 

of puncta. Currently, we don’t know why antisense probes produce some larger puncta. It is 

likely that three copies of the antisense sequence in one antisense probe molecule 

simultaneously associate with three target mRNAs and the aggregation results in 

conformational change of the probe molecule, which may bring fluorescein groups together 

for brighter fluorescence. To verify whether the puncta were dsRNAs, we performed 

immunofluorescence assay with dsRNA antibody after sense or antisense actb2-P3 probe 

injection. Results showed that over 50% of fluorescent puncta from antisense P3 probe were 

captured by dsRNA antibody and none of fluorescent puncta (very few) from sense P3 probe 

was immunostained by dsRNA antibody (Fig. 3C), which confirms that the antisense fluorescent 

probe is capable of binding to endogenous target mRNAs to form larger, visible puncta. However, 
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still a great proportion of antisense probe puncta were not recognized by dsRNA probes, and 

those puncta may represent probe aggregates with short complementary sequences that 

may not be bound by dsRNA antibody.  

To further confirm the targeting specificity of antisense probes, we chose another two 

maternally expressed genes, eomesa and ybx1, for which maternal and zygotic (MZ) mutants 

have been generated (Sun et al., 2018) (Shen W, unpublished data). In MZeomesa or 

MZybx1 embryos, mRNA levels of the mutant genes were extremely low when compared to 

wildtype embryos (Fig. 3D, E). We synthesized fluorescein-UTP labeled antisense probes, 

two for each gene (100 nt-long, see sequences in Table S2), and injected them into the one-

cell stage embryos (Fig. 3D, E). As expected, the antisense probes generally gave rise to 

significantly more fluorescent puncta in wildtype embryos than in MZ mutants at the 4-cell 

stage (Fig. 3D-F). Thus, fluorescent antisense probes could form dsRNAs with the target 

mRNAs in embryos with considerable specificity. 

 We also investigated the effect of probe length and copy number as well as nucleotide 

modifications on in vivo targeting efficiency. We tested fluorescein-UTP labeled antisense 

probes targeting 3’UTR of endogenous actb2 mRNAs, P3, P6 and P8 (see Fig. S1B), which 

were different in length and modification (with or without 2’-F-dCTP and 2’-F-dUTP). Results 

showed that single copy 100 nt-long P3 probe and 50 nt-long P6 probes gave rise to more 

large fluorescent puncta than 30 nt-long P8 probe, and that 3xP3 probe containing three 

tandem copies produced more large puncta than 1xP3 probe (Fig. 3G, H). It was reported 

that 2’-Fluorine modification could increase the stability of RNA (Deleavey and Damha, 2012). 

However, we found that incorporation of 2’-F-dCTP and 2’-F-dUTP (2’-F) into fluorescent 

probes failed to produce more and brighter puncta (Fig. 3G, H), implying that these 

modifications may not improve the probe stability and accessibility to the target in zebrafish 

embryos. Besides, co-injection of P5, P6 and P7, all in single copy but each targeting different 
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sequences, could increase the puncta number (Fig. 3I), suggesting that several probes 

targeting the same target mRNA can be used together to increase the signals. 

 

Tracking of endogenous mRNAs with antisense probe and dSmR3nd protein 

As demonstrated above, fluorescein-labeled antisense probes can bind to endogenous target 

mRNAs to form dsRNAs and the dsRNAs can be bound by dSmR3 with a fluorescent protein 

tag. We next set out to develop a dual color-based RNA tracking system using fluorescein-

labeled antisense RNA probe and dSmR3nd-mCherry protein, which may increase the 

tracking specificity. To do this, one cell-stage embryos were first injected with fluorescein-

labeled antisense or sense actb2 3xP3 probe (300 pg per embryo) and then with dSmR3nd-

mCherry protein (1 ng per embryo). The injected embryos were observed at the 4-cell stage 

by confocal time-lapse imaging. As shown in Fig. 4A, dSmR3nd-mCherry was mainly 

accumulated in the nucleus because it contains an NLS (Fig. 1F). When actb2-as-P3 probe 

was co-injected (Fig. 4A, C, D; Fig. S2A, and Movie S1), large fluorescein-positive or 

dSmR3nd-mCherry-positive puncta were clearly seen in the cytosol; nearly 20% of probe-

positive puncta were also positive for dSmR3nd and approximately 60% of dSmR3nd-positive 

puncta were positive for the fluorescent probe. Importantly, the dual color-labeled puncta 

moved without color separation during a time window of several minutes, strongly suggesting 

that dSmR3nd-mCherry protein and antisense actb2-as-P3 probe were assembled in the 

same complex. When actb2-s-P3 probe was co-injected (Fig. 4A, C, D; and Fig. S2B, Movie 

S2), in contrast, we did not see large dSmR3nd-mCherry-positive puncta in the cytosol or 

large double positive puncta. Similar phenomena were observed when dSmR3nd-mCherry 

protein was co-injected with actb2 antisense or sense P5/6/7 probe mix (Fig. 4B, C, D; and 

Fig. S3, Movie S3, S4). These results suggest that dSmR3nd protein is capable of binding to 

some of the forming dsRNAs, allowing tracking of dynamics of endogenous mRNAs. The 
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dSmR3nd-mCherry-positive but probe-negative puncta in the cytosol may arise from 

aggregation of dSmR3nd-mCherry proteins that dissociate from the probes.  

As the cells divide fast during early development in the zebrafish embryo, the injected 

antisense probe would be diluted during cell cleavage, making it inefficient to track 

endogenous mRNAs in embryos at later stages. To tackle this problem, we tried to use a 

plasmid DNA that can continuously express an antisense probe in vivo under the control of 

the U6 promoter. We injected one-cell stage embryos with 1 ng purified dSmR3nd-mCherry 

protein and 20 pg plasmid DNA that could express actb2 sense or antisense 1xP3 probe and 

GFP marker (Fig. 4E, top left map). The plasmid-injected embryos developed normally as 

evidenced by normal morphology (Fig. 4F). As observed by confocal microscopy at the shield 

stage, puncta positive for dSmR3nd-mCherry were found in the cytosol in embryos with 

antisense probe expression (GFP-positive) but rarely seen in embryos with sense probe 

expression (Fig. 4G). We could continuously observe the nuclear export and movement in 

the cytosol of actb2 mRNAs represented by dSmR3nd-mCherry positive puncta (Fig. 4H; 

Movie S5). To confirm that puncta are dsRNAs, we injected embryos with a single plasmid 

that could simultaneously express dSmR3nd-mCherry as well as actb2 sense or antisense 

1xP3 probe (Fig. 4E, top right map) and collected embryos at the shield stage for 

immunofluorescence with mCherry and dsRNA antibodies. Immunofluorescence results 

showed that cytosolic puncta positive for dSmR3nd-mCherry were mostly also positive for 

dsRNA when antisense P3 probe (but not sense probe) was co-expressed (Fig. 4I, K). We 

further tested whether the mR3/dsRNA approach could be used to track endogenous chordin 

(chd) mRNAs that are specifically expressed in the zebrafish dorsal organizer at the onset of 

gastrulation (Schulte-Merker et al., 1997). When the chd antisense probe was co-expressed 

with dSmR3nd-mCherry from a single plasmid (Fig. 4E, bottom maps), puncta positive for 

mCherry and dsRNA, revealed by immunostaining, were detected in the cytosol of dorsal 
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cells in shield stage embryos (Fig. 4J, K). These results indicate that continuous supply of an 

antisense probe and dSmR3nd with a fluorescent protein tag could allow visualization of 

dynamics of an endogenous mRNA during gastrulation stages. 

The MCP/MS2 system has been successfully used for RNA tracking (Bertrand et al., 1998; 

Campbell et al., 2015; Lionnet et al., 2011; Lucas et al., 2013; Park et al., 2014; Yoon et al., 

2016). We wondered whether MCP/MS2-tracked RNA could also be followed by mR3/dsRNA 

labeling. To test this idea, we synthesize an antisense RNA probe (actb2 P3-MS2) consisting 

of actb2 3xP3 and six copies of MS2 aptamers without fluorescein labeling (Fig. 5A). The 

actb2 P3-MS2 probe was co-injected with purified dSmR3nd-mCherry and MCP-GFP 

proteins. dSmR3nd-mCherry could bind to dsRNAs forming between actb2 P3-MS2 probe 

and endogenous actb2 mRNA, and MCP-GFP could bind to the MS2 aptamers within the 

probe. Confocal microscopic live imaging detected dSmR3nd-mCherry positive as well as 

MCP-GFP positive puncta in the cytosol (Fig. 5B). More MCP-GFP positive signals were seen, 

which was expectable because MCP-GFP may bind to actb2 P3-MS2 probes that did not 

form dsRNA with endogenous actb2 mRNAs. Importantly, more than 60% of dSmR3nd-

mCherry positive puncta were co-localized with MCP-GFP positive puncta, which moved 

together over time (Fig. 5C, and Movie S6). This result suggests that tracking effectiveness 

of dsRNAs by dSmR3nd is somewhat comparable to that of MS2 by MCP. 

 

DISCUSSION 

In this study, we have established a real-time RNA tracking system by taking advantage of 

high dsRNA-binding ability of inactive mini-III RNase from Staphylococcus epidermidis, 

dSmR3. This mR3/dsRNA system consists of two parts: tandem repeat dSmR3 with an NLS 

and a fluorescent protein tag, which binds to dsRNAs, and fluorescein-labeled antisense RNA 

probe, which binds to and forms dsRNA with endogenous mRNAs. We have demonstrated 
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that this new system can be used to visualize dynamics of endogenous, non-engineered 

maternal or zygotic mRNAs in zebrafish embryos. The MCP/MS2 RNA tracking system 

usually needs to generate transgenic line to engineer MS2 aptamers into the target mRNA, 

which may take half a year in the zebrafish. In contrast, the mR3/dsRNA system has no need 

of time-consuming mRNA engineering, making it easier to track any target mRNAs in live 

cells or organisms.  

Theoretically, fluorescent RNA probes alone could be used to in vivo track target mRNAs. 

However, this approach is practically troublesome because too much long dsRNAs can 

induce non-specific mRNA degradation and ultimately cause cell death in organisms (Oates 

et al., 2000; Zhao et al., 2001). We have demonstrated that injection of antisense probes into 

embryos indeed results in a significant decrease of target mRNA levels, but this effect could 

be prevented by co-injection of dSmR3nd (Fig. 2E-G). Therefore, it is recommended that 

antisense probe and dSmR3nd should be combined for in vivo mRNA tracking. We note that 

the antisense probe sequence may influence the target recognizing efficiency (Fig. 3B, F). To 

track a specific mRNA, therefore, several antisense RNA probes need to be tested first. 

Binding of antisense probes to the 5’UTR or the coding region of the target mRNA is expected 

to affect translation, therefore, it would be better to design probes targeting the 3’UTR of a 

target mRNA. However, some regions of the 3’UTR may also be involved in translation, 

location or other processes of an mRNA; thus, probes targeting different regions should be 

tested. Given that exogenous antisense RNA probes may be quickly exhausted due to 

degradation and cell proliferation-caused dilution, in vitro synthesized RNA probes can only 

be used to track endogenous mRNAs for a short time during embryonic development. 

However, continuous supply of antisense RNA probes as well as dSmR3nd protein can be 

achieved by promoter-driven gene expression. It is very important that, whatever a synthetic 

antisense probe or transgenic antisense probe is used, a sense probe should be included as 
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a control to evaluate the tracking specificity; and if possible, wild-type and mutant 

organisms/cells should be compared. 

Natural dsRNAs, like dsRNAs formed between miRNAs and their target mRNAs, exist in 

live organisms. However, endogenous functional dsRNAs are usually destroyed or protected 

by endogenous dsRNA-binding proteins such as Dicer and Adar (Saunders and Barber, 

2003), which might make them inaccessible to mR3 protein. We observed that dSmR3nd 

protein scarcely gave rise to puncta in the cytosol in the absence of exogenous antisense 

probes (Fig. 4), which suggests that its tracking specificity is not compromised by natural 

dsRNAs. As we demonstrated in case of actb2 mRNA tracking, 30 nt-long antisense probes 

are inefficient for mR3-based tracking compared to 100 nt- or 50 nt-long probes (Fig. 3G, H). 

Since most of endogenous dsRNAs are short, like miRNAs, which are 20-25 nt in length, they 

may not be efficiently bound by mR3 protein. We suggest that the mR3/dsRNA system should 

avoid using short probes. 

It is worth noting that the number of tracked mRNA molecules (puncta) by mR3/dsRNA 

labeling was not as high as expected, which may be due to inefficient binding between 

antisense probe and complementary target mRNA or between mR3 protein and dsRNAs.  

This imperfection currently makes it less effective to track an mRNA that is present in small 

amount in cells. This prototype of the system leaves space for future improvements. For 

instance, its tracking efficiency could be improved by increasing dsRNA-binding ability of 

dSmR3 via mutagenesis, by optimizing the antisense RNA probe, or by using better imaging 

equipment; the specificity may be improved by using a longer antisense probe or a probe 

consisting of several sequences targeting different regions of the target mRNA. 
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MATERIALS AND METHODS 

 

Zebrafish strain 

Zebrafish Tüebingen strain was used in this study. ybx1tsu3d5i mutant line was described as 

before (Sun et al., 2018) and eomesatsu007 mutant line was generated by Cas9 technology for 

another project (Shen W et al., unpublished data). Embryos were raised at 28.5°C in 

Holtfreter’s buffer and staged according to previous description (Kimmel et al., 1995). Ethical 

approval was obtained from the Animal Care and Use Committee of Tsinghua University. 

 

Protein expression and purification 

The mR3 genes from 12 bacterial strains were synthesized by GenScript (see Table S1 for 

protein sequences of their inactive forms). The coding sequence of each mR3 gene was 

cloned into pET30b vector with 6x-His tag to the C-terminal and flag tag to the N-terminal by 

enzymatic assemble method (Gibson et al., 2009). The plasmid was transformed into E. coli 

BL21 (DE3) competent cells. Expression and purification of inactive mR3 proteins were 

performed essentially as described by Glow et al.(Glow et al., 2015). Briefly, protein 

expression was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) when the 

bacteria were grown to mid-long stage, followed by growth at 16C for at least 16 h. The 

bacterial cells were collected by centrifugation at 5,000 g for 10 min and suspended with L0 

buffer (50 mM sodium phosphate dibasic, pH 8.0, 300 mM NaCl, 10 mM imidazole) with fresh 

addition of 10 mM 2-mercaptoethanol and 1 mM phenylmethylsulfonyl fluoride (PMSF). The 

cells were lysed by sonication for 30 min with a 3 s on/5 s off cycle. Insoluble materials were 

removed by centrifugation at 14,000 g for 1 h at 4C. The supernatant was incubated with Ni-

NTA agarose (Qiagen, 30210) for at least 2 h at 4C with gentle rotation. The protein-agarose 

complex was washed with L1 buffer (L0 buffer supplemented with 2 M NaCl) and L2 buffer 
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(L0 buffer supplemented with 20 mM imidazole) in order for several times. Finally, the protein 

was eluted with elution buffer (L0 buffer supplemented with 250 mM imidazole). 

Proteins for ELISA were applied to dialysis buffer (20 mM Tris-HCL, pH 8.0, 200 mM 

KCL, 10 mM MgCl2) and concentrated by ultrafiltration (Merck Millipore). For in vivo injection, 

the eluted protein was further purified with iron exchange chromatography and size exclusion 

chromatography (GE Healthcare). The fractions containing desired proteins were 

concentrated by ultrafiltration. The concentration of proteins was measured with BCA protein 

assay kit (Beyotime, P0012). The purified proteins were used to run SDS-PAGE gel to 

determine the homogeneity. 

 

Probe, mRNA and dsRNA synthesis 

Antisense sequences each was cloned into pXT7 vector which has the T7 promoter to the 

upstream and the SP6 promoter to the downstream. Primers used for probe synthesis were 

listed in Table S2. The plasmid was linearized by restriction endonuclease and transcribed 

with MEGAscript™ T7 Transcription Kit (Invirtrogen, AM1334) or MEGAscript™ SP6 

Transcription Kit (Invirtrogen, AM1330) following the manufacturer’s instruction. To generate 

biotin-labeled probes, in vitro transcription system was adjusted to contain 1.5 µL biotin-UTP 

(Roche, 11388908910), NTPs (7.5 mM ATP, CTP, GTP and 1.875 mM UTP), transcription 

buffer and RNA polymerase. To obtain fluorescent probe, fluorescein RNA labelling mix was 

used. For fluorescent 2’-Fluorine labeled probes, DuraScribe® T7 Transcription Kit (Epicenter, 

No. DS010925), which includes 2’-dCTP and 2’-F-dUTP, was used according to the 

manufacturer’s manual with supplement of fluorescein-UTP. To obtain mRNA for translation, 

mMESSAGE mMACHINE™ SP6 Transcription Kit (Invirtrogen, AM1340) was used following 

the manufacturer’s instruction. The in vitro transcribed probes or mRNAs were treated with 

DNase I to digest DNA template and cleaned up with mirVana miRNA Isolation Kit (Invitrogen, 
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AM1561, for probe purification) or RNeasy Mini Kit (QIAGEN, for mRNA purification) following 

the manufacturer’s instruction. 

To obtain dsRNA, the reaction system containing 1 µg of complementary single stranded 

RNA (ssRNA, sense and antisense) and 80 mM KCl was annealed at 70C for 5 min and 

placed at 37C overnight. After synthesis, NaCl was added to a final concentration of 1.5 M, 

KCl to 20 mM, then added RNase A (Fermentas, EN0531) to digest the remaining ssRNA for 

15 min at 37C. The synthesized dsRNA was precipitated with phenol-chloroform-isopropa nol 

at -80C for several hours and centrifuged at 14,000 g for 30min, washed with 75% ethanol, 

dried and dissolved in nuclease free water. 

ELISA 

Flag antibody (MBL-3L) was diluted with antibody coating buffer (carbonate buffer, pH 9.6) to 

1 µg/mL to cover the 96-well plate at 4C overnight. The coated plate was washed with PBST 

(PBS supplied with 1‰ Tween-20) to remove the unbound antibody. Purified inactive mR3 

proteins were firstly diluted with storage buffer (50 mM Tris-HCl, pH 8.0, 300 mM NaCl)(Glow 

et al., 2015), followed by dilution with PBST to reaction concentration (0.8 µM for monomer 

proteins, 0.4 µM for dimer proteins). The diluted proteins were covered to antibody coated 

plate to incubate for 2 h at room temperature, followed by washing with PBST. Biotin-labeled 

dsRNAs were diluted with LSB (10 mM Tris-HCl pH 7.5, 5 mM NaCl, 1 mM MgCl2, 0.1 mg/mL 

BSA) or HSB (20 mM HEPES-KOH pH 7.5, 140 mM KCl, 12 mM NaCl, 2 mM MgCl2, 5% 

glycerol) to 0.02 µM to bind with coated inactive mR3 proteins for 1 hour at 37C, followed by 

washing with PBST and incubating with Streptavidin-HRP antibody (Abcam, ab7403) at 4C 

overnight. After incubation and wash, the plate was stained with TMB Chromogen Solution 

(Beyotime, P0209) at 28.5C. After sufficient color development, the staining reaction was 

stopped with 2 M H2SO4. The staining result was read out by microplate reader (EnSpire, 

PerkinElmer) at 450 nm. 
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RNA immunoprecipitation 

RNA immunoprecipitation was carried out as previously described (Niranjanakumari et al., 

2002) with minor modifications. One-cell stage embryos were injected with RSGM mRNA, 

antisense gfp probe and dSmR3nd-GFP protein and were dechorionated with pronase at the 

256-cell stage, followed by fixation with 1% formaldehyde (Sigma-Aldrich, F8775-25ML) in 

Holtfreter’s buffer for 10 min at room temperature. After fixation, glycine was added to a final 

concentration of 80 mM and incubated for 5 min at room temperature to quench the crosslink. 

Embryos were transferred to centrifuge tube and washed with ice-cold PBS buffer with slight 

pipetting to remove the yolk, followed by centrifugation at 800 g for 3 min to pellet cells. 

Samples were resuspended with 2 mL RIPA buffer (10 mM Tris-HCl, pH7.5, 1% Nonidet P-

40, 0.5% sodium deoxycholate, 0.05% SDS, 1 mM EDTA, 150 mM NaCl) containing 

RNaseOUT inhibitor (Invitrogen, 10777019) and protease inhibitor (Roche), and lysed by 

sonication for 2 min with a 9.9 s on/9.9 s off cycle. Insoluble material was removed by 

centrifugation at 14,000 g for 10 min at 4°C. 100 µL of the supernatant was saved for input. 

Protein A-Sepharose beads (Life Technologies) were pre-washed with RIPA buffer twice 

and pelleted by centrifugation at 800 g for 3 min. Beads were resuspended with 400 µL RIPA 

buffer and incubated with GFP antibody (Abcam, ab290) for 2 h at 4°C, followed by washing 

with RIPA buffer containing RNaseOUT inhibitor and protease inhibitor. Beads-antibody pellet 

was resuspended the with 400 µL embryo lysate and incubated with gentle rotation at 4°C 

overnight. The beads were pelleted with centrifugation at 800 g for 4 min, washed with RIPA 

buffer containing Tween-20 for 5 times, resuspended in elution buffer (50 mM Tris-HCl, pH7.0, 

5 mM EDTA, 10 mM DTT, 1% SDS) and incubated at 70°C for 45 min to reverse formaldehyde 

crosslink. RNA was extracted with TRIzol reagent (Thermo Fisher Scientific) following the 

manufacturer’s instruction. Purified RNA was reversely transcribed into cDNA using random 
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primers and GoScriptTM reverse transcription mix (Promega, A2790) and quantified with 

qPCR. 

 

qRT-PCR 

Total RNA was extracted with RNeasy Mini kit (Qiagen) from embryos at desired stages and 

reversely transcribed into cDNA with GoScriptTM reverse transcription mix according to the 

manufacturer’s instructions. For quantifying remaining probes in embryos (Fig. 2D), purified 

RNAs were intramolecularly ligated using RNA ligase to form circular RNAs. Primers used 

for qRT-PCR were listed in Table S2. 

 

Immunofluorescence 

Immunofluorescence was performed as before (Wu et al., 2018) using the following 

antibodies: anti-dsRNA (Merck millipore, MABE1134), anti-mCherry (EASYBIO, BE2027), 

anti-GFP (Abcam, ab13970). 

 

Embryo imaging and image processing 

For live imaging, embryos developed to desired stages were embedded in 0.8% low melting 

agarose for observation and imaged by Nikon A1Rsi laser scanning confocal microscopy.  

The excitation light wavelengths were 488 nm and 561 nm. Scanning mode was chosen as 

“line wise” to avoid emission crosstalk. The acquired images were processed with Imaris 

9.0.1 (Bitplane) software and photoshop CC. Desired information (dsRNA number, Pearson’s 

correlation and fluorescent intensity) were analyzed with NIS-element software or Imaris 

9.0.1 (Bitplane) software. 
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Statistical analysis 

An average from multiple samples was presented as mean ± S.E.M., significance between 

groups were analyzed with Welch’s t-test. 
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Figures 

 

Fig. 1. Screening of inactive mR3 proteins with high dsRNA-binding affinity. (A) Scheme 

of ELISA to compare relative binding affinity of inactive mR3 proteins with biotin-labeled 

dsRNA. (B-E) Relative binding affinity of inactive mR3 proteins with actb2-dsR-P1 or actb2-

dsR-P2 in LSB or HSB buffer. mR3 origins: Bacillus subtilis (Bsu), Lactococcus lactis (Lla), 

Staphylococcus aureus (Sau), Staphylococcus epidermidis (Sep), Listeria innocua (Lin), 

Bacillus cereus (Bce), Bacillus licheniformis (Bli), Ruminiclostridium thermocellum (Rth), 

Caldicellulosiruptor kristjanssonii (Ckr), Caldanaerobacter subterraneus (Csb), 
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Fusobacterium nucleatum (Fnu), Thermotoga maritima (Tma). GST served as the control 

protein. (F) Illustration of different forms of dSmR3. Full name of dSmR3nd: dead form of 

Sep-mR3 with nuclear localization signal in dimer. (G-J) Relative binding affinity of different 

dSmR3 forms. mCherry served as the control protein. The concentration of monomer protein 

used in ELISA is 0.8 µM, dimer protein is 0.4 µM, dsRNA is 0.02 µM. All values are 

represented with mean ± S.D. with three repetitive wells. 
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Fig. 2. In vivo binding of dSmR3 with dsRNA and effect on target mRNA stability in 

zebrafish embryo. (A) Illustration of RSGM and RM mRNA compositions. (B) Scheme of 

RNA immunoprecipitation. 300 pg RSGM or RM mRNA plus 350 pg as-gfp probe as well as 

1 ng dSmR3nd-GFP protein were sequentially injected into one-cell stage embryos. The 

dose was the amount per embryo. Approximately 2,100 embryos each group were collected 

at the 256-cell stage for analysis. (C) qRT-PCR analysis of Luc (left) or as-gfp RNA (right) 

levels using dsRNA precipitate. (D) Degradation dynamics of injected antisense probes. 

The actb2-as-P3 and as-gfp probes were injected, each at 100 pg per embryo, at 1-cell 

stage. About 40 embryos were collected at desired stages. Total RNA was intramolecularly 

ligated prior to qRT-PCR detection. (E-G) qRT-PCR analysis of exogenous Luc (E) or 

endogenous acb2 (F, G) levels. One-cell embryos were injected with indicated materials 

and harvested at desired stages for analysis. Injection doses (per embryo): dSmR3nd-GFP 

protein, 1 ng; antisense RNA probes, 100 pg or 230 pg. (H) Normal development of 
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embryos injected with 300 pg actb2-as-P3 alone or together with 1 ng dSmR3nd-mCherry 

(dSmR3nd-mC). Embryos were injected at the one-cell stage and imaged at the shield 

stage and 24 hpf. The ratio of embryos with representative morphology was indicated. 

Scale bars, 100 µm. Significance levels: **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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Fig. 3. Targeting of endogenous mRNA by fluorescein-labeled antisense probes. (A, B) 

Detection of fluorescent puncta by different actb2 probes. One-cell stage embryos were 

injected with 300 pg of indicated fluorescein-labeled probe and fixed at the 4-cell stage for 

confocal microscopic imaging. Representative images were animal-pole views (A) with the 

cell border demarcated by white-dashed line and magnification of the indicated area in the 

inset. The number of puncta (B) was calculated by NIS-element software under the same 

setting parameters. Each dot represented a single embryo. Ne, number of observed embryos. 

(C) actb2 probe-induced puncta are mainly dsRNA-positive. Embryos were injected at the 

one-cell stage with 300 pg fluorescein-labeled sense or antisense actb2 P3 probe and fixed 

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



at the 4-cell stage for immunostaining with dsRNA antibody. (D, E) eomesa (D) or ybx1 (E) 

antisense probe-induced puncta in wildtype or MZ mutants. Top, relative position and length 

of ISH probes and fluorescein-labeled antisense probes to the target mRNA. Bottom, ISH 

pictures and fluorescent confocal images with magnification of the indicated area in the inset. 

All were animal-pole views at the 4-cell stage. (F) Number of fluorescent puncta formed in 

WT or MZeomesa or MZybx1 embryos. (G-I) Intensity (G) or number (H, I) of fluorescent 

puncta induced by indicated actb2 antisense probes. One-cell stage embryos were injected 

with 300 pg of indicated single probes or probe mix (100 pg each) and observed at the 4-cell 

stages. Scale bars in (A, D, E): 100 m; in C: 10 m. In (B, F-I), each dot indicated one 

embryo; Ne, number of observed embryos. Statistical significance: ns, nonsignificant; *, p < 

0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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Fig. 4. Tracking of endogenous mRNAs by dSmR3/antisense dual-color system. (A, B) 

in vivo tracking of maternal actb2 mRNA using dsmR3nd-mCherry together with single 

fluorescent actb2 probe (A) or mixed probes (B). One-cell stage embryos were injected with 

1 ng dSmR3nd-mcherry protein and 300 pg probe (for probes mix, 100 pg each) and imaged 

by confocal microscopy at the 4-cell stage. The boxed area was enlarged in the inset. N, 
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nucleus. Scale bars, 10 µm (5 µm in insets). (C) Total numbers of fluorescent probe puncta 

(F+), dSmR3 puncta (M+) and dSmR3/probe double positive puncta (D+) in the cytosol. Data 

were obtained from single views as exemplified in (A, B). (D) Ratios of dual color (co-

localization) labeling. DP/Pr ratio: number of dual color puncta/number of probe positive 

puncta; DP/dSmR ratio: number of dual color puncta/number of dSmR3nd-mCherry positive 

puncta. The number of embryos used for statistics were 3 (s-P3, 12 live imaging time points), 

1 (as-P3, 7 time points), 8 (s-P5/6/7, 34 time points) and 2 (as-P5/6/7, 14 time points). (E) 

Illustration of plasmids used for tracking of mRNAs at later stages. Tol2, Tol2 transposon 

LTRs. U6, ef1a and CMV represented promoters. (F) Normal morphology of embryos injected 

with plasmids for RNA imaging. One-cell stage embryos were injected with plasmid 

pU6:actb2-1xP3;CMV:dSmR3nd-mCherry (20 pg per embryo) and observed at indicated 

stage. Scale bar, 100 µm.  (G, H) Tracking of actb2 mRNA at the shield stage. One-cell stage 

embryos were injected with 1 ng dSmR3nd-mCherry protein and 20 pg pU6:actb2-

1xP3;ef1:GFP plasmid DNA and observed by confocal microscopy at 6 hpf. (G) Example of 

single embryos with multiple cells. Arrows indicated dSmR3nd-mCherry positive puncta in 

the cytosol. N, nucleus. Scale bar, 10 µm. (H) Time-lapse live images of a single cell. Scale 

bar, 5 µm (1 µm in inset). See also Movie S5. (I-K) Tracking of actb2 (I) and chd (J) mRNAs 

by promoter-driven expression of RNA probes and dSmR3nd-mCherry. One-cell stage 

embryos were injected with indicated plasmids, each at 20 pg per embryo, and collected at 

the shield stage for immunostaining with mCherry and dsRNA antibodies together with DAPI 

staining. Confocal images were shown in (I, J) and the number of mCherry/dsRNA double 

positive puncta in the cytosol was calculated (K). Note that, in (J), the weaker dsRNA signal 

in the mCherry-positive nucleus in the top panel in (J) compared to that in the bottom panel 

might be due to those cells in different phases of the cell cycle. Scale bars, 10 µm. Nc, number 

of observed cells. **, p < 0.01.  
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Fig. 5. Dynamic tracking of endogenous actb2 mRNA simultaneously using 

mR3/dsRNA and MCP/MS2 systems. (A) Schematic model of mRNA tracking with the two 

systems. The antisense actb2 3xP3-MS2 probe contains 3xP3, which is complementary to 

and forms dsRNA with 3’UTR, and 6 repeats of MS2 aptamer, which can be recognized by 

MCP-GFP fusion protein. (B) Time-lapse live images of dual color-labeled RNA puncta. One-

cell stage embryos were injected with 1 ng dSmR3nd-mCherry protein, 1 ng MCP-GFP 

protein and 300 pg antisense actb2 3xP3 MS2 probe and observed by confocal microscopy 

at the 4-cell stage. N, nucleus. Scale bars, 10 µm (2 µm in insets). See also Movie S6. (C) 

Number of fluorescent puncta (left) and ratio of co-localized puncta (right). Five embryos at 

15 live imaging time points were used for calculation. DP/M, number of double positive 

puncta/number of MCP-GFP positive puncta; DP/mR, number of double positive 

puncta/number of dSmR3nd-mCherry positive puncta. 
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Supplementary Information 

Fig. S1. Purified mR3 proteins and sequence information of actb2 probes. (A) 
Examination of in vitro expressed and purified inactive mR3 proteins of different origins by 
Coomassie bright blue staining. Origins: Bacillus subtilis (Bsu), Lactococcus lactis (Lla), 
Staphylococcus aureus (Sau), Staphylococcus epidermidis (Sep), Listeria innocua (Lin), 
Bacillus cereus (Bce), Bacillus licheniformis (Bli), Ruminiclostridium thermocellum (Rth), 
Caldicellulosiruptor kristjanssonii (Ckr), Caldanaerobacter subterraneus (Csb), 
Fusobacterium nucleatum (Fnu), Thermotoga maritima (Tma). GST served as the control 
protein. MW, molecular weight markers. (B) Relative position, length and sequence of 
different antisense probes targeting to actb2 mRNA. For making actb2-dsR-P1, actb2-dsR-
P2 or actb2-dsR-P4 dsRNA, sense and antisense RNAs corresponding to the same region 
were synthesized and annealed in vitro. (C) Coomassie bright blue staining of different forms 
of dSmR3n protein. mCherry served as the control protein. 

Development: doi:10.1242/dev.190728: Supplementary information
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Fig. S2. Time lapse imaging of maternal actb2 mRNAs tracked with dSmR3nd-mCherry 
protein and single fluorescent probe. One-cell stage embryos were injected with 1 ng 
dSmR3nd-mCherry protein as well as 300 pg fluorescein-labeled actb2-as-P3 (A) or actb2-
s-P3 probe (B) and imaged under a confocal microscopy at the 4-cell stage. N, nucleus. 
Insets showed magnification of indicated areas. Note that double positive puncta were seen 
only in the presence of actb2-as-P3. Scale bars, 10 µm (5 µm in insets). See also Movie S1 
and S2.  

Development: doi:10.1242/dev.190728: Supplementary information
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Fig. S3. Time lapse imaging of maternal actb2 mRNAs with dSmR3nd-mCherry protein 
and three short fluorescent probes. One-cell stage embryos were injected with 1 ng 
dSmR3nd-mCherry protein as well as fluorescein-labeled actb2-as-P5/6/7 (A) or (B) actb2-
s-P5/6/7 probe mix (100 pg each per embryo) and imaged under a confocal microscopy at 
the 4-cell stage. N, nucleus. Insets showed magnification of indicated areas. Note that double 
positive puncta were seen only in the presence of actb2-as-P5/P6/P7. Scale bars, 10 µm (5 
µm in insets). See also Movie S3 and S4. 

Development: doi:10.1242/dev.190728: Supplementary information
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Movie 1. Dynamics of maternal actb2 mRNAs tracked with dSmR3nd-mCherry protein 
and single antisense fluorescent probe. 
One-cell stage embryos were injected with 1 ng dSmR3nd-mCherry protein and 300 pg 
fluorescein-labeled actb2 antisense P3 probe and imaged at the 4-cell stage. Dual-color 
dSmR3nd/antisense probe puncta represented endogenous actb2 mRNAs. The video was 
presented by a z-projection. Scale bar, 10 µm. 

Movie 2. Dynamics of maternal actb2 mRNAs couldn’t be tracked with dSmR3nd-
mCherry protein and single sense fluorescent probe. 
One-cell stage embryos were injected with 1 ng dSmR3nd-mCherry protein and 300 pg 
fluorescein-labeled actb2 sense P3 probe. Live imaging was taken at the 4-cell stage. 
dSmR3/sense probe puncta were hardly observed. The video was presented by a z-
projection. Scale bar, 10 µm. 

Development: doi:10.1242/dev.190728: Supplementary information
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http://movie.biologists.com/video/10.1242/dev.190728/video-2


Movie 3. Dynamics of maternal actb2 mRNAs tracked with dSmR3nd-mCherry protein 
and three antisense fluorescent probes. 
One-cell stage embryos were injected with 1 ng dSmR3nd-mCherry protein and fluorescein-
labeled actb2 P5/6/7 probe mix (100 pg each per embryo) and imaged at the 4-cell stage. 
Dual-color dSmR3nd/antisense probes puncta represented endogenous actb2 mRNA. The 
video was presented by a z-projection. Scale bar, 10 µm. 

Movie 4. Dynamics of maternal actb2 mRNAs couldn’t be tracked with dSmR3nd-
mCherry protein and three sense fluorescent probes. 
One-cell stage embryos were injected with 1 ng dSmR3nd-mCherry protein and fluorescein-
labeled actb2 P5/6/7 probe mix (100 pg each per embryo) and imaged at the 4-cell stage. 
dSmR3/sense probe puncta are hard to be observe. The video was presented by a z-
projection. Scale bar, 10 µm. 

Development: doi:10.1242/dev.190728: Supplementary information
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http://movie.biologists.com/video/10.1242/dev.190728/video-4


Movie 5. Dynamics of zygotic actb2 mRNAs tracked with dSmR3nd-mCherry protein 
and continuously expressed antisense probe. 
One-cell stage embryos were injected with 1 ng in vitro purified dSmR3nd-mCherry protein 
and 20 pg pU6:actb2-1xP3;ef1α:GFP plasmid DNA and imaged at the shield stage. 
dSmR3nd-mCherry signal could be observed to move dynamically in the cytosol, which 
represented actb2 mRNA. The video was represented by a single z-plane. Scale bar, 10 µm. 

Movie 6. Dynamics of actb2 mRNAs simultaneously imaged with mR3/dsRNA and 
MCP/MS2 systems.  
One-cell stage embryos were injected with 1 ng dSmR3nd-mCherry protein, 1 ng MCP-GFP 
protein and 300 pg antisense actb2 3xP3 MS2 probe and imaged at the 4-cell stage. The 
video was presented by a z-projection. Scale bars, 15 µm. 

Development: doi:10.1242/dev.190728: Supplementary information
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http://movie.biologists.com/video/10.1242/dev.190728/video-6


Table S1. Protein sequences of inactive mR3 originated from twelve bacterial strains 

Species Sequence of recombinant inactive mR3a Deletedb 

Bacillus subtilis 
(Bsu) 

MDYKDDDDKMLEFDTIKDSKQLNGLALAYIGDAIFEVYVR
HHLLKQGFTKPNDLHKKSSRIVSAKSQAEILFFLQNQSFFTE
EEEAVLKRGRNAVQTYRYSTAFEALLGYLFLEKKEERLSQL
VAEAIQFGTSGRKTNESATLEHHHHHH* 

K86-D95 

Lactococcus 
lactis (Lla) 

MDYKDDDDKMVNKQQAELLNGIALAYIGDAIYEVFVREY
LLDKGLTKPAMLQKNATKFVSAKAQAKIISAMDEIDFLTEC
ELTYFKRGRNAVVTYRISTGFEAVVGILHLTQQKERLQEFW
DFCLKTIEADLVLEHHHHHH* 

H83-D92 

Staphylococcus 
aureus (Sau) 

MDYKDDDDKMDNQQDNHIKLLNPLTLAYMGDAVLDQYV
RTYIVLKLKSKPNKLHQMSKKYVSAKSQAQTLEYLMEQE
WFTDEEMDILKRGRNAVQTYRKSSAIEAVIGFLYLEKKEER
LEALLNEIITIVNERLEHHHHHH* 

K85-D94 

Staphylococcus 
epidermidis 
(Sep) 

MDYKDDDDKMAKHMNVKLLNPLTLAYMGDAVLDQHVRE
YIVLKLQSKPHRLHQVSKSYVSAKSQAKTLEYLLDIDWFTD
EELSVLKRGRNAIQTYRKSSALEAVIGFLYLDHQSERLENLL
ETIVRIVDERLEHHHHHH* 

K83-D92 

Lsteria innocua 
(Lin) 

MDYKDDDDKMAEVKDYKQLNGLALAYMGDAVYEKFIRE
YLLAAGKTKPNQLHKTATKFVSAKGQAVALKAMIAEGFLT
DEEDRIAKRGRNAPGTYSMSTSFEAVLGYLYLAGDMERLQ
EWMEKALEIVEKGVENNLEHHHHHH* 

K83-D92 

Bacillus cereus 
(Bce) 

MDYKDDDDKMVIDAKQLNSLALAYMGDAVYEQYIRYHLL
QKGTVRPNQLHRLGTSFVSAKAQAKVVYHLLETAFLTEEE
EAVLRRGRNAVQTYRYSTAFEALLGYHYLLNNSERLEELVY
KAIDVLEVKEGGTSILEHHHHHH* 

N81-D90 

Bacillus 
licheniformis 
(Bli) 

MDYKDDDDKMVNLETIKDAKQLNGLALAYMGDAVLEVY
VRHHLLKQGMTRPNDLHRQSRRYVSAKSQASMLFALEEQ
KFFTEEEQAVLRRGRNAVQTYRYSTAFEAVIGYLFLENRED
RLNELIKVALEKRDGREEVKLEHHHHHH* 

K86-D95 

Ruminiclostridiu
m thermocellum 
(Rth) 

MDYKDDDDKMVWEFFDKITGEFNYKPDEVSQLSPLVLAYI
GDAVYEVFIRTMLVSGGNVPVHVLHKRSIAYVKAKAQSDIV
HRIMPLLTEEELNIVRRGRNAITDYRYATGFESLLGFLYLKK
DYDRLMDILRMAVSQNLEHHHHHH* 

K94-D103 

Caldicellulosiru
ptor 
kristjanssonii 
(Ckr) 

MDYKDDDDKMDILKTYLKESEDRLLSPLVYAYIGDAVYEL
FVRNKIIAENPDLTPYLYYLRTTMYVKASSQAMAIKKLYEE
LDEDEKRIVKRGRNALSDYKYATALEALIGYLYLANNIERL
NYILSQTYDIITEEYSNAKNSCQLEHHHHHH* 

K88-K97 

Caldanaerobact
er subterraneus 
(Csb) 

MDYKDDDDKMEKDKMILVKEKGVLDLSPLVLAFIGDAVYS
LYVRTKIVEKGNMKLAHLNEQTVKYVKASSQARSLERIYD
LLTEEEKEIVRRGRNAVKEYKYATAFEALVGYLYLLERFDRL
YFLLSLSMEYTEELEHHHHHH* 

K88-S97 

Fusobacterium 
nucleatum (Fnu) 

MDYKDDDDKMDNVDFSKDIRDYSGLELAFLGDAIWELEIR
KYYLQFGYNIPTLNKYVKAKVNAKYQSLIYKKIINDLDEEF
KVIGKRAKNSVMEYKEATALEAIIGAMYLLKKEEEIKKIINI

N83-T92 

Development: doi:10.1242/dev.190728: Supplementary information
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VIKGELEHHHHHH* 

Thermotoga 
maritima (Tma) 

MDYKDDDDKMEKLFRFEAEPEKLPPAVLAYLGDAVLELIFR
SRFTGDYRMSVIHERVKEHTSKHGQAWMLENIWNLLDERE
QEIVKRAMNSDPTYRKSTGFEALIGYLFLKREFDRIEELLRV
VMDLESLRKKNPGGSAQE 

K83-N90 

a, Flag tag sequence was indicated in red characters.  
b, The deleted α5β-α6 loop region that is required for ribonuclease activity. 

Development: doi:10.1242/dev.190728: Supplementary information
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Table S2. Primers for cloning probes and RT-PCR analysis 

Target/Gene Forward primer (5’ to 3’) Reverse primer (5’ to 3’) 

actb2 P1 TCGATTCTCGAGGTCGACGGAA
CAGGGCCTCTGGGCA 

GGGGCGGCCGCGGATCCGAAGAA
GCTGCTTCCTCCTCCTCCCT 

actb2 P2 ATCGATTCTCGAGGTCGACCAG
TGTACAGGTTGGCCCC 

GGGGCGGCCGCGGATCCGAAGAA
CCATTCAAGATGTAAAGGT-3' 

actb2 P3 TCGAGGTCGACAGATCTTACAT
AATTTACATACAATACTAC-3' 

GGGGCGGCCGCGGATCCGAAGAA
GTTTGTTAAATGCATTGTTC-3' 

actb2 P4 
ACATTGCCGTCACCTTCACCGT
TCCAGTTTTTAGATCCTGAGTC
AAGCGC 

GCGCTTGACTCAGGATCTAAAAAC
TGGAACGGTGAAGGTGACGGCAAT
GT 

actb2 P5 
GGAATGACTAAAGAAAACAAA
ACATGGAGTCCTCAGATGCATT
GTAGAAC 

GTTCTACAATGCATCTGAGGACTCC
ATGTTTTGTTTTCTTTAGTCATTCC 

actb2 P6 
TACATAATTTACATACAATACTA
CAATGTTAAGTATGCTCCCAATT
ACTG 

CAGTAATTGGGAGCATACTTAACAT
TGTAGTATTGTATGTAAATTATGTA- 

actb2 P7 
GTTCCAGTTTTTAGATCCTGAG
TCAAGCGCCAAAAATAACAAA
AGCCATG 

CATGGCTTTTGTTATTTTTGGCGCT
TGACTCAGGATCTAAAAACTGGAA
C 

actb2 P8 TACATAATTTACATACAATACTA
CAATGTT 

AACATTGTAGTATTGTATGTAAATT
ATGTA 

Ybx P1 TCGAGGTCGACAGATCTGTCGA
AATGCATTTTTGCAAG 

GGGGCGGCCGCGGATCCCATCCGG
CCGGTTTTGTCAAG 

Ybx P2 TCGAGGTCGACAGATCTCCTCT
GTAGTAGTTCTGCCT 

GGGGCGGCCGCGGATCCACTCACA
AAGAGGAGAGATG 

Eomesa P1 TCGAGGTCGACAGATCTCAAAT
CAATGGCATGCTTTTAAG 

GGGGCGGCCGCGGATCCAGTGCCA
AAGCTTAGCTGTG 

Eomesa P2 TCGAGGTCGACAGATCTGTTGT
GGTCGATCTTGAGCTG 

GGGGCGGCCGCGGATCCCGAAGCT
AAAACACAGACCT 

gfp TCGATTCTCGAGGTCGACCTTC
ATGTGGTCGGGGTAG 

GGGGCGGCCGCGGATCCCATCTGC
ACCACCGGCAAG 

ybx1_ISH CACCATACTTCGTGCGGAG CATCTGCTGTTTCCCCAAAC-3' 
eomesa_ISH CCAGCAGGAGTCAGTTTG GGTCTTGGAAGAAGGGCTG 
renilla 
luciferase_RT CATGGCCTCGTGAAATCCC GAGAACTCGCTCAACGAACG

actb2_RT ATGGATGATGAAATTGCCGCAC ACCATCACCAGAGTCCATCACG 
gapdh_RT CAAGCTTACTGGTATGGCCTTC TGCTGTAACCGAACTCATTGTC 

gfp_RT CTTCATGTGGTCGGGGTAGCGG
CTGAA CATCTGCACCACCGGCAA 

actb2 P3_cRT GAGGCAAATAAGTTTCGG TATGAAGGCTGCCCAGTAA 
gfp_cRT CGTAGGTCAGGGTGGTCAC GCGTGCAGTGCTTCAGCC' 

The sequence in red overlapped the cloning vector pXT7 for cloning by Gibson assembly. P, antisense 
probes; ISH, in situ hybridization probe; RT, RT-PCR primer. cRT, primers for RT-PCR using circular 
RNAs. 

Development: doi:10.1242/dev.190728: Supplementary information
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