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ABSTRACT 

Cell division, movement and differentiation contribute to pattern formation in developing 
tissues. This is the case in the vertebrate neural tube where neurons differentiate in a 
characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To 
investigate how progenitor proliferation and differentiation affect cell arrangement and 
growth of the neural tube, we use experimental measurements to develop a mechanical 
model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic 
nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict 
that tissue growth and the shape of lineage-related clones of cells differ with the rate of 
differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased 
in regions of low differentiation. This is consistent with experimental observations. The 
absence of directional signalling in the simulations indicates that global mechanical 
constraints are sufficient to explain the observed differences in anisotropy. This provides 
insight into how the tissue growth rate affects cell dynamics and growth anisotropy and 
opens up possibilities to study the coupling between mechanics, pattern formation and 
growth in the neural tube. vertex model, neural tube, computational modelling, tissue 
mechanics, epithelial mechanics 
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INTRODUCTION 

The mechanisms that control the arrangement of cells in developing tissues involve both 

molecular and mechanical processes that spatially and temporally coordinate the division, 

shape, displacement and differentiation of cells. A central challenge is to understand the 

interplay between tissue growth, pattern formation and the mechanical forces that act to shape 

tissues during development. 

Studies of several systems have begun to provide insight into how these processes are 

coordinated (Alt et al. (2017); Merkel and Manning (2017)). For example, in the Drosophila 

wing imaginal disc a combination of experimental observations, quantitative image analysis, 

and computational modelling have revealed the global patterns of mechanical tension that 

affect the final size and shape of the wing. These patterns result from spatial differences in 

proliferation, cell shape, division orientation and exchange of neighbouring cells 

(Shraiman (2005); Aegerter-Wilmsen et al. (2010); Aigouy et al. (2010); LeGoff 

et al. (2013); Mao et al. (2013); Guirao et al. (2015); Kursawe et al. (2015); Dye 

et al. (2017)), as well as external mechanical constraints, such as the attachment of the wing 

blade to the contracting wing hinge (Aigouy et al. (2010); Sugimura and Ishihara 

 (2013); Etournay et al. (2015); Ray et al. (2015)). Molecularly, wing morphogenesis is 

influenced by planar-polarity signalling, which influences the apical geometry of cells and 

the orientation of cell division (Aigouy et al. (2010); Mao et al. (2011)). 

Similar to imaginal discs, the vertebrate neural tube is a pseudostratified epithelium. 

During neurulation the neuroepithelium folds at the ventral midline and closes dorsally to 

form a cylindrical neural tube, with the apical surfaces of neural progenitors facing the 

interior lumen (Gilbert (2014)). The proliferation of neural progenitors contributes to growth 

of the neural tube along the anterioposterior and dorsoventral axes. Additionally, proliferating 

cells undergo interkinetic nuclear movement (IKNM) during which each cell’s nucleus 

translocates along the apicobasal axis in synchrony with cell cycle progression 

(Sauer (1935)). A direct consequence of IKNM is that the apicobasal shape, the apical surface 

of cells, and the interactions between neighbouring cells change in a highly dynamic manner 

(reviewed in (Strzyz et al. (2016))). 

At the same time as the neural tube grows, long range signals control patterning by 

regulating the expression of transcription factors within the tissue (reviewed in (Sagner 

et al. (2018))). The dynamics of this regulatory network results in the specification of 

molecularly distinct domains of progenitor subtypes arranged along the dorsoventral (DV) 

axis. Each progenitor domain gives rise to a distinct subtype of postmitotic neurons. As 

neurons are formed, they delaminate basally from the epithelium to the forming mantle zone. 

The delamination of newly born neurons contributes to the morphodynamics of the 

neuroepithelium, further reshaping the arrangement of cells within the neural tube. 

Previous studies of the neural tube indicated that patterning and growth are tightly 

coordinated. Cell death is negligible and the rate of progenitor proliferation is spatially 

uniform throughout the epithelium (Kicheva et al. (2014)). However, the rates of terminal 

neuronal differentiation vary depending on progenitor identity. Most notably, starting at 

mouse embryonic day E9.5, motor neuron progenitors (pMN) differentiate at a significantly 

faster rate than other progenitor subtypes (Ericson et al. (1996); Kicheva et al. (2014)). This 

difference in the rates of terminal differentiation correlated with a difference in clone shape in 

lineage tracing experiments (Kicheva et al. (2014), Fig. 1A). In particular, while the AP 
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spread of clones in all domains was similar, their DV spread was not. Clones in all but the 

pMN domain were more elongated along the DV axis compared to the AP axis. By contrast, 

clones in the pMN domain have an average AP/DV ratio of ~ 1 indicating equal growth in 

DV and AP directions. This raises the question of what mechanisms operate to ensure 

equivalent AP growth across the tissue, while at the same time allowing for cell-type specific 

differences in DV growth rates. 

To address this, we developed computational tools to simulate the growth of the 

neuroepithelium and investigate the role of different mechanisms in the morphodynamics of 

the tissue. We made use of a representation of the apical 2D surface of the epithelium by 

employing a vertex model formalism (Nagai and Honda (2001); Farhadifar 

et al. (2007); Smith et al. (2011); Fletcher et al. (2013)). Vertex models have been used 

successfully to describe mechanical and molecular influences that determine the tissue 

growth and form of several epithelia (e.g. Farhadifar et al. (2007); Landsberg 

et al. (2009); Aegerter-Wilmsen et al. (2010); Wartlick et al. (2011); Trichas 

et al. (2012); Salbreux et al. (2012) and others) and we chose this approach to test whether 

the experimentally observed variations in clone shape could be explained by the mechanics of 

the neuroepithelium. In these models each cell is represented as a polygon, the vertices and 

edges of which are shared between adjacent cells. The dynamics of a cell are described by the 

movement of its vertices, which are controlled by adhesive/tensile, contractile and repelling 

forces in and between cells. 

To take account of the 3D configuration of the neural tube, we incorporated the effects of 

IKNM into the simulation framework. Using experimental data from the mouse neural tube, 

we then established model parameters for which simulations match in vivo observations. We 

used the resulting model to explore clonal shape within the neuroepithelium and the effect of 

spatially varying the differentiation rate within the tissue. Strikingly, we found that the 

increased differentiation rate of pMN progenitors is sufficient to explain the different shape 

of clones within the pMN domain. This indicates that the differences in clonal shape arise 

from differences in progenitor differentiation rates and global mechanical constraints, and do 

not require polarised molecular signalling mechanisms. Simulations of the developing 

neuroepithelium using this model can contribute to our understanding of how tissue 

patterning and growth are controlled and coordinated. 

Results 

Cell geometry in the mouse neuroepithelium 

To construct a mechanical model of neural tube growth we first measured key features of 

neural progenitor organisation in the mouse embryonic neural tube. To this end, we imaged 

the apical tight junctions of the neural tube at forelimb level of E10.5 and E11.5 mouse 

embryos (Fig. 1B, top). The images were segmented, vertices and edges defined using 

‘Packing Analyzer v2.0’ (Aigouy et al. (2010)) (Methods, Fig. 1B, bottom). 

Images from the dorsal half of the neural tube comprise the progenitors of dorsal 

interneuron subtypes, and we refer to this region as the pD domain. Images from the ventral 

half of the neural tube contain motor neuron and intermediate progenitor subtypes and we 

term this the pMN region (Methods). From the segmented images we determined the 

distributions of cell areas, cell perimeters, number of neighbours per cell, and cell elongation 

(Fig. 1C). Cells in all samples had on average 6 neighbours as expected (Graustein 
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 (1931); Classen et al. (2005); Gibson et al. (2006)), with a standard deviation of ~ 1.5. There 

were some differences in the mean and variance of cell areas and perimeters in the samples 

(Fig. 1C), which were most noticeable at E10.5, when the rate of neuronal differentiation is 

highest in the pMN (Kicheva et al. (2014)). Nevertheless, the average area of cells assayed in 

this way was consistent with previous measurements (Kicheva et al. (2014)). Also, consistent 

with Lewis’s Law, the relative average area of cells increases linearly with the number of cell 

neighbours (Fig. S.1, Kokic et al.  (2019)). Using these data we set out to develop an in silico 

model of the neuroepithelium. 

A vertex model of the neuroepithelium including interkinetic nuclear movement 

We constructed a 2D vertex model of the apical surface of the neural tube in which cells 

are represented as polygons. The behaviour of each cell is governed by the movement of its 

vertices that follow a deterministic overdamped motion given the energetic contributions of 

cell elasticity, junctional forces arising from cortical contractility and the effect of cell-cell 

adhesion and cortical tension (Kafer et al.  (2007);  Lecuit et al.  (2007); Farhadifar 

et al. (2007); Hilgenfeldt et al.  (2008); Landsberg et al. (2009); Aegerter-Wilmsen 

et al. (2010); Fletcher et al. (2014); Honda and Nagai (2015); Alt et al. (2017)). For the 

purposes of the simulation we developed custom Python code using an Euler method to solve 

the movement equation of each vertex, Eqn (3). 

Topologically, the neural tube is a cylinder that grows at different rates along its 

anteroposterior and dorsoventral axes (Fig. 2A). Our analysis focuses on a region along the 

AP axis at the forelimb level. This region is relatively small compared to the entire length of 

the AP axis and is distant from the influence of the rostral and caudal limits of the neural 

tube. To take this into account and to avoid artefacts from introducing external boundary 

conditions, we used periodic boundary conditions in the AP axis by simulating the neural 

tube as a torus. Growth results in the circumferential and radial increase in the size of the 

torus over time. For visualisation we unwrapped the torus by cutting along both DV and AP 

axes to allow simulations to be rendered in 2D (Fig. 2A, bottom). 

To describe the behaviour of neural progenitors within the simulation, a detailed 

description of cell growth, division and differentiation is required. Upon neuronal 

differentiation, cells lose their apical attachments and are extruded basally from the 

epithelium (Fig. 2B, left). During each cell cycle, progenitors in the neuroepithelium undergo 

IKNM, in which their nuclei and the bulk cell volume translocate along the apical-basal axis 

of the neuroepithelium. Mitosis occurs at the apical surface of the epithelium. Nuclei move 

basally in G1 and undergo S-phase towards the base of the epithelium. During the G2-phase, 

nuclei migrate back to the apical surface for mitosis. A consequence of IKNM is that the 

apical area of cells, corresponding to the surface represented in the simulations, is affected by 

the cell cycle stage. When cells enter mitosis, they round up at the apical surface. This 

expands their apical area and compresses neighbouring cells. As a consequence, cells are 

likely to achieve their largest apical surface area in late G2 and M phase, and their smallest 

surface area in S-phase. The measured duration of cell cycle phases (Kicheva et al. (2014)) 

(Table 1), can therefore be used to derive an approximation for the temporal changes in apical 

surface area of cells caused by IKNM. 

To accommodate the effect of IKNM in our simulations we introduced a time-dependent 

target area function,  0A t , (Eqn (1)), which describes the desired apical area of cell. This 
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function depends on the age of the cell and the cell-cycle phase and was constructed to 

account for the measured cell cycle dynamics: 

        20

0 0

1
1 1 ,

2
A t t t g t t         (1) 

where g  is the growth rate of the cell   (for each cell this is chosen randomly from a 

normal distribution with a mean equal to the inverse of the life span of a cell (1/780 mins) 

and a variance of 20 %  of the mean), 0t is the moment when the cell   is born, Tt is the total 

time of the cell cycle and  0t t   represents the apical-basal position and depends on the 

phase of the cell-cycle by a piece-wise linear function incorporating the dynamics of the cell-

cycle:  
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where 1Gt , St  and 2Gt  are the respective cell cycle phase durations and 0t t t  . The position 

of a cell body along the apicobasal axis (see scheme in Fig. 2B, right) is given by the function 

 t  where apical is 1 and basal is 0 . The function  t  is defined by four different 

straight lines which correspond to each cell-cyclephase (Fig. 2C). In G1, the nuclear 

movement is from apical to basal and takes 1Gt  time and thus decreases linearly with time at 

rate 
1

1
G

t

t
  . During S-phase, the nucleus stays basal for time St , and  t  is set to 0 . Basal 

to apical migration occurs during G2, over the period 2Gt , and is represented by the increasing 

function 
 1

2

G S

G

t t t

t

 
 . During mitosis, the function takes value1. The functional form of 

 0A t  is the product of a term which grows linearly in time, as we assume the volume of the 

cell does, and a term which interpolates between 1/2 and 1, as the cell moves from the basal 

to the apical surface, with a higher rate of increase as it approaches the latter surface. 

Implemented in this way, the target area of a cell, which describes the desired apical area 

of cell, takes account of both cell growth during the cell cycle and the position of the cell 

body along the apicobasal axis. It results in the apical area slowly reducing during G1, 

corresponding to the cell body moving towards the basal surface at the same time as the cell 

is growing, then increasing slowly during S phase, rapidly expanding during G2, as the cell 

returns to the apical surface for division, and growing slowly during mitosis (Fig. 2C, 

bottom). In simulations we use the dorsal cell cycle phase times, indicated in Table 1, where 
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St  is 1/3 and 2Gt  is 2/3 of the S+G2 proportion time. Note that the target area given above is 

in nondimensional units. For the nondimensionalisation, see Materials and Methods, Vertex 

Model Implementation. 

Division occurs when the cell is in M-phase ( 1 2G S Gt t t t   ) and the volume of the cell 

exceeds a critical value, cA . As a cell undergoes division two new vertices are created to form 

a new edge. One of these vertices is chosen as the midpoint of a randomly selected edge of 

the dividing cell with probability proportional to the edge length. The other vertex is the 

midpoint of the opposite edge, and if the cell has an odd number of sides, the second edge is 

the closer mid edge. The newly generated sister cells then commence the next cell cycle. 

In the neural tube, newly generated neurons lose their apical attachments and delaminate 

basally (Fig. 2B, left). Hence, neuronal differentiation leads to the loss of cells from the plane 

of the neuroepithelium. In the simulation, this is achieved by identifying cells committing to 

differentiation, suppressing growth in these cells by assigning their target area equal to zero 

and allowing their area to decrease. As a cell’s area drops, some of its edges become small 

and disappear under certain T1 transition conditions (see below), which ultimately results in 

elimination of the cell. At the stage of development we are modelling, cells differentiate 

predominantly within the pMN domain. In simulations, we select cells to differentiate with a 

fixed probability per unit time. 

The combined effect of cell growth, division and differentiation results in cells moving 

relative to each other, producing local remodelling of the epithelium and rearrangements of 

neighbouring cells. In the simulations these topological rearrangements occur through T1 

transitions. During a T1 transition an edge shorter than a prescribed length (chosen to be 3% 

of the average edge length in the tissue) is eliminated and a new edge of length newl  expands 

perpendicular to the old edge (values given in Table 2). However, if the rearrangement results 

in the formation of a two-sided cell, the cell is removed from the epithelium. 

Simulation parameter estimation 

We next used the experimental data to identify model parameters for which simulations 

match in vivo observations. The dynamics of the simulations are determined by the 

Hamiltonian (Eqn (4)) that takes into account the energetic contributions of different cellular 

mechanical properties. The minima of this Hamiltonian can be described using two 

dimensionless parameters: 

 
3

0 2K A


  and 

0KA


   , where 0A  denotes the average of the 

target area, 0A , during the cell cycle (Farhadifar et al. (2007)). This average value was 

obtained as the mean value of the target area across all cells at the end of 12 simulations and 

was 1.25 nondimensional units. In the standard implementation of the model this leads to a 

phase diagram describing four different parameter regions where the tissue has different 

biophysical properties, (Supplemental Material II and (Farhadifar et al. (2007); Magno 

et al. (2015))). 

Similar to some previous studies (Canela-Xandri et al. (2011); Kursawe et al. (2018)), the 

target area term of the Hamiltonian we use includes a cell-cycle dependent component. 

However, since vertex movement is substantially faster than the cell cycle, the same phase 
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diagram remains applicable (for more details of the derivation of the phase diagram see 

Supplemental Material II). 

We focus our attention on the region of the phase diagram exhibiting epithelial properties 

(Regions II and III in Fig. SM2); this is given by the following relation between normalised 

tension and contractility parameters, (Magno et al. (2015)): 

2

6 3

1

4

2 3 3
.

8 3
4 23

  
     (2) 

To narrow down the region of parameter space, ( ,  ), relevant for neural tube 

simulations, we systematically screened parameter sets to identify those that generated cell 

geometries comparable to experimental data. We compared experimental and simulated 

empirical cumulative distribution functions (ECDF) of area, perimeter, number of cell sides, 

and cell elongation (defined in Experimental data) and valuesof standard deviation of area 

and perimeter. We used experimental data from E11.5 dorsal neural tubes compared to the 

ECDF obtained from vertex model simulations with different combinations of   and . 

Assessing the match between experimental and simulation data indicated a diagonal region in 

parameter space for which all the measured features of the in silico cell geometries closely 

matched those observed in vivo (Fig. 3A). The shape of this region is similar to previously 

published vertex model simulations (Kursawe et al. (2018)). Moreover, the agreement with 

experimental data was better in the model with IKNM (Fig. 3A), compared to a standard 

model formulation without IKNM in which the target area is constant over time (Fig. S.2). 

Therefore, in subsequent simulations we used the model with IKNM and 6 parameter sets 

selected from different locations from within the region of parameter space representing the 

best agreement with experimental data. 

Simulating anisotropic tissue growth 

We next turned our attention to the overall tissue growth. Our previous experimental 

studies (Kicheva et al. (2014)) indicated that the tissue grows asymmetrically in DV and AP 

directions. During the period under consideration, the dorsoventral length of the tissue 

increased more than the anteroposterior length. This effect was reflected in the shape of 

clones of lineage-related cells, such that the mean ratio of AP to DV spread of the clones 

outside of pMN domain was ~ 0.3  (Kicheva et al. (2014)). 

In the simulations, expansion along dorsoventral and anteroposterior axes is resisted by 

drag forces that have coefficients, and , respectively. A difference between these two 

coefficients generates different rates of dorsoventral and anteroposterior tissue growth and 

consequently alters the tissue AP/DV aspect ratio (Fig. S.3, Supplemental Material I), 

imitating the effect of physical constraints on in vivo tissue expansion. For all 6 selected ,   

parameter sets, we identified a range of values of   and   that were consistent with both 

the experimentally observed AP/DV aspect ratio and reduction of the DV length of the pMN 

domain (Fig. 3B and Fig. S.3A). Within this range of dimensionless values, the values 

~ 0.02 and ~ 1 matched closely the AP/DV ratio of  0.3 (Fig. S.3B) and were used in 

further analysis. 
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To test the effect of these asymmetric forces, we examined the shape of clones in 

simulations by tracking lineage-related cells in silico. For this, simulations were started from 

a field of 100 cells and run for 30 hours of biological time to allow the simulation to 

equilibrate. Following this initialisation period, the progeny of individual cells were tracked 

for a further simulated 48h. This corresponds to an average of 3-4 cell divisions, mimicking 

the experimental conditions in which the in vivo clonal data were generated. Similar to the 

experimental data, in silico lineage-related cells (clones) tended to form coherent groups and 

the shape of clones was similar between experiments and simulations (Fig. 3C,D). For all 6 

parameter sets, cells within a clone tended to spread more along the DV axis compared to the 

AP axis to give an in silico AP to DV aspect ratio of ~ 0.3  (Fig. 3D), similar to clones in the 

mouse neural tube (Kicheva et al. (2014)). Thus with the identified parameters, there was a 

good correspondence between the behaviour of cells in the simulation and those in the real 

neuroepithelium. 

The rate of neuronal differentiation affects the shape of progenitor clones 

Clones in the pD domain have a lower AP/DV aspect ratio than clones in the pMN 

domain. Having established a simulation framework and identified parameters that mimic 

neuroepithelial behaviour we set out to address what could account for the difference in clone 

shape between domains. Progenitors within the pMN differentiate at a substantially higher 

rate than other progenitors at this stage of development (Kicheva et al. (2014)) raising the 

possibility that this accounts for the difference in clone shape. 

We implemented a pMN domain in simulations by defining a region of tissue with an 

appropriate differentiation rate. Following the initialisation period, a pMN domain 

comprising 30%  of DV length of the neural tube was introduced by imposing a 

differentiation rate of 0.1 1h  on cells in this region, corresponding to the maximum 

differentiation rate of pMN progenitors in vivo, (Kicheva et al. (2014)). The remainder of the 

tissue was designated as pD domain and lacked differentiation, representing the more slowly 

differentiating dorsal progenitor domains in vivo. Simulations were continued for a further 

period equivalent to 48h of biological time (Fig. 4A). 

At the end of the simulations, the proportion of tissue comprising the pMN decreased 

from the initial 30%  DV length of the tissue to ~ 5%  DV length for all 6 mechanical 

parameter regimes (Fig. 4A, S.4A). This is a consequence of the increased differentiation rate 

resulting in a loss of progenitors from the pMN. This decrease in the DV extent of the pMN 

matches the experimentally observed reduction in the DV proportion of the neuroepithelium 

occupied by the pMN domain from 30%  of the neural tube at E9 to 5%  48h later at E11 

(Kicheva et al. (2014)) (Fig. S.4A). Moreover, clones in the pD domain were comprised of 8-

12 cells on average, consistent with an average of 3-4 cell divisions that occur in the 48h 

period (see Fig. 4B and Supplementary Movie1). By contrast, pMN clones contained 4-5 

cells per clone. These in silico clone sizes are consistent with the clone sizes observed in the 

experimental data (Fig. 4C). Together these data indicate that the behaviour of the simulated 

pMN and pD domains matches the behaviour observed in vivo. 

We then examined the spread of clones along the AP and DV axes (Fig. 4D). Similar to 

the simulations lacking a pMN domain (Fig. 4D), clones within the pD region were 

anisotropic with an AP/DV aspect ratio of ~ 0.3 . By contrast, for all 6 parameter sets, clones 

within the simulated pMN domain had a substantially higher AP/DV aspect ratio (p<0.05 

two-sided T-test, Fig. 4D). The marked difference between the AP/DV aspect ratio of the 
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pMN and pD domains was seen in both experiments and simulations, independent of the 

number of cells in a clone (Fig. S.5). These results reveal that the difference in the shape of 

clones in the pMN compared to the rest of the neural tube can be explained by the increased 

differentiation rate of these cells. 

The anisotropy of tissue growth depends on the net growth rate 

To investigate how the increased rate of differentiation affects the anisotropy of tissue 

growth, we analysed how tissue anisotropy changed when different differentiation rates (0-

0.1 1h ) were imposed uniformly throughout the tissue. This revealed that higher 

differentiation rates correlated with larger AP/DV aspect ratio of the tissue (Fig. 4E). This 

effect is consistent with the observation that higher differentiation rate correlates with higher 

AP/DV aspect ratio of clonal shape (Fig. 4D, Fig. S.6). Furthermore, this tendency was 

present for all ratios of   /   larger than one (Fig. S.7). This indicates that as long as there 

are global anisotropic drag forces, the differentiation rate determines the exact extent of tissue 

growth anisotropy, with higher differentiation rates yielding higher AP/DV aspect ratios. 

The decreased anisotropy of clones of cells in the pMN domain might result from the 

decreased net growth rate of the pMN, rather than directly from the increased differentiation. 

To investigate the effect of tissue growth rate on anisotropy, we began by further simplifying 

the problem and constructing a simple model in which we assumed cells were identical and 

rectangular (Supplemental Material III). This predicted that the aspect ratio tends 

asymptotically to a value that depended on the drag coefficients and the growth rate. For very 

slow growth of the tissue (low net proliferation rate), the aspect ratio would be close to one, 

whilst for very rapid growth, it would be close to the square root of the ratio of drag 

coefficients (Supplemental Material III). Thus the effect of the drag on tissue anisotropy 

would be less pronounced for slow growth rates, leading to more isotropic growth. To test 

this hypothesis, we ran simulations without differentiation but with varying proliferation rates 

(Fig. 4F). Consistent with our hypothesis, the slower proliferation rates decreased the 

anisotropy of tissue growth. Thus, increased differentiation per se was not necessary for the 

observed behaviour. Instead, the net growth of tissue affects its aspectratio. 

Further investigation showed that the effect of differentiation rate on the aspect ratio of 

the tissue was more complex than simply slowing the effective tissue growth. Whilst both 

increasing the differentiation rate and decreasing the proliferation rate correlated with 

decreasing tissue growth anisotropy at a given time (Fig. S.6A-F), the anisotropy that 

corresponded to a specific net growth rate was not always the same. Instead, different degrees 

of anisotropy were achieved for the same net growth rate, depending on whether proliferation 

or differentiation was modulated (Fig. S.6F). Furthermore, tissues of similar size (generated 

by similar net growth rates) would adopt different aspect ratios depending on the relative 

contributions of proliferation versus differentiation to the net tissue growth (Fig. S.6A-F). 

Tissues that differentiate have increased anisotropy (lower AP/DV ratio) compared to tissues 

that reach the same size without differentiation (compare Fig. S.6G and H). We postulate that 

increasing differentiation rate facilitates the rearrangement of internal boundaries which 

allows the tissue to tolerate more tissue growth anisotropy. Consistent with this, high 

differentiation (0.1 1h ) increased the frequency of T1 transitions (to 0.38 0.04 per cell per h 

by the end of the simulation) compared to simulations with no differentiation (0.14 0.03 per 

cell per h). Thus, differentiation has opposing effects: i) it slows growth, which tends to make 

growth more isotropic (Supplemental Material III shows that if cells cannot rearrange, the 

final anisotropy of the tissue increases with the exponential growth rate of cells) and ii) it 
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facilitates internal boundary rearrangements, which tends to allow tissue growth to be more 

anisotropic (Supplemental Material III shows that if cells are free to rearrange to become 

individually isotropic, the total energy is independent of tissue aspect ratio, which is therefore 

primarily controlled by the anisotropic drag). Further work will be needed to fully understand 

the determinants of tissue aspect ratio. 

We next turned our attention to the cellular dynamics that result in the anisotropic growth 

of the tissue. We first measured the orientation of T1 transitions. In the pD domain, the 

orientation of a T1 transition more frequently resulted in topological rearrangements that 

replace an AP directed edge with one in the DV direction (Fig. 5A). Such transitions cause 

cells to intercalate, expanding the DV axis. There was no such bias in cells of the pMN 

domain. A consequence of these dynamics was a change in the orientation of cells. 

Measurements of cell elongation, defined as the square root of the ratio of the eigenvalues of 

the second moment matrix of the cell’s vertices (Materials and Methods), indicated that cells 

were equally elongated in the pMN and pD domains (Fig. 5B). However, in the pD domain 

cells tended to be orientated with their long axis in DV direction, whereas cells in the pMN 

domain tended to be orientated with their long axis in AP direction (Fig. 5C). Strikingly, 

these differences in cell orientation between cells in the dorsal and ventral halves of the 

neural tube were also observed in the experimental data (Fig. 5C). This change in cell 

orientation resulted in a difference of the mean DV length of cells, with pD cells having 

approximately 10 percent larger DV lengths than pMN cells in both simulations and 

experiment (Fig. 5D). Thus, the change in cell shape alone had a minor contribution to 

anisotropic tissue growth, suggesting that T1-mediated cell rearrangements is the main factor 

driving the DV extension of the tissue. 

In contrast to the bias in cell rearrangements, the axes of cell divisions in our simulations 

were distributed uniformly in both the pD and pMN domains (Fig. 5E,F) indicating little, if 

any, bias in division orientation. In the simulations this is a consequence of mitotic cells 

markedly reducing their elongation, allowing for random orientation of the division angle 

(Fig. S.8). To test whether this was consistent with the in vivo observations we examined the 

orientation of mitotic spindles in anaphase cells, as a proxy for the orientation of cell division 

at E10.5. This revealed a uniform distribution of cell division orientation in both dorsal and 

ventral regions of the neural tube (Fig. 5F). Together these results suggest that a difference in 

cell rearrangements, rather than oriented cell division, account for the reduction of 

anisotropic tissue growth in the pMN domain. 

In summary, the experimental observations are consistent with a model in which tissue 

growth is resisted by forces which are larger in the AP direction, causing anisotropic growth 

of the tissue. This effect is lessened in slow-growing epithelia. Thus, clones in the rapidly 

growing pD domain become more anisotropic after a fixed period of time than clones in the 

more slowly growing pMN domain. When the tissue grows anisotropically, it does so by 

biasing the direction of T1 transitions, rather than biasing the orientation of cell divisions. 
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Discussion 

To understand the mechanisms by which tissue pattern, mechanics and growth are 

coupled in the vertebrate neural tube we used experimental data to construct a mechanical 

model of the developing neuroepithelium. This allowed us to explore how proliferation and 

differentiation of individual cells, together with global mechanical constraints, influence the 

spatiotemporal dynamics of pattern formation in the tissue. Previous observations indicated 

that there are differences in the anisotropy of the shape of clones in different dorsoventral 

regions of the neural tube (Kicheva et al. (2014)), however, how this anisotropy emerged was 

not understood. Our simulations and analysis indicate that in the presence of global 

mechanical constraints local differences in growth rate create local differences in the 

anisotropy of tissue growth, consistent with experimental observations. The analysis suggests 

an explanation for how an isotropic process, such as cell differentiation, can affect an 

anisotropic process, such as the direction of clonal expansion, given that global mechanical 

properties (here, dissipation) are anisotropic. 

We adopted the well-established vertex model framework to describe neuroepithelium 

growth (Nagai and Honda (2001); Farhadifar et al. (2007); Smith et al. (2011); Fletcher 

et al. (2013)). It provides a scalable and computationally efficient means to understand how 

tissue morphogenesis is influenced by the combined effect of cell shape, forces generated by 

growing cells and external mechanical constraints. However, one of the challenges of 

modelling the neural tube epithelium resides in the 3D dynamics of neural progenitors. 

Similar to many pseudostratified epithelia, cells within the neuroepithelium undergo 

interkinetic nuclear movement (Sauer (1935)) in which cell nuclei migrate between the apical 

and basal surfaces in synchrony with the cell cycle. Previous approaches have introduced a 

time dependence to the target area (Canela-Xandri et al. (2011); Kursawe et al. (2018)) and 

we extended the formalism by including the effect of the IKNM and cell cycle on the 

preferred target apical area. This allowed us to determine mechanical parameters from 

experimental images of the apical plane, without requiring 3D reconstruction of the neural 

tube. We could thus recapitulate properties of the pseudostratified dynamics of the tissue 

without compromising the computational efficiency of the model. 

To identify the mechanical parameters of the model, we varied the cell tension, 

contractility and dissipative forces and compared descriptors of cell and tissue geometry in 

the resulting simulations to experimental data. The parameter values that produced the 

highest correlations with experimental data reside in the region of parameter space in which 

the unperturbed ground state is represented by hexagonal packing (Nagai and 

Honda (2001); Gibson et al. (2006); Farhadifar et al. (2007); Magno et al. (2015)) and there is 

a negative correlation between tension and contractility. This is as expected (Kursawe 

et al. (2018)) and in line with parameters used in previous epithelial vertex models (e.g. 

Farhadifar et al. (2007)). Importantly, a model without IKNM yielded a different set of 

parameters (Fig. S.2) and a poorer correlation with the experimental data (Fig. S.2B, right). 

A notable property of neural tube growth, observed in the brachial region at E11.5 of 

mouse development, is that most of the tissue extends faster in the DV than in the AP 

direction (Kicheva et al. (2014)). We found that cell divisions do not show a preferred 

orientation in the epithelial plane, hence this anisotropy of tissue growth must arise from 

mechanical constraints. To model this, we assumed that the overall growth of the tissue was 

resisted by drag forces with different coefficients in the two directions. In general, the sources 

of resistive forces in epithelia are poorly understood (Alt et al. (2017)). In the neural tube, it 
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is possible that expansion is mechanically constrained by the adjacent tissues. Thus, the 

laterally located somites might affect radial expansion, whereas the process of axis elongation 

through the addition of cells to the caudal end of the neural tube (Bénazéraf 

et al. (2010); Mongera et al. (2018)) might contribute to forces acting in AP direction. 

Obtaining mechanical measurements, such as tension and pressure, using force inference 

methods (Chiou et al. (2012)) within the mouse neural tube in situ might provide insight, 

however assaying these properties in vivo without surgical disruption is difficult or 

impossible. Similarly, the inaccessibility to live imaging of the unperturbed apical surface, 

which forms the internal face of the intact neural tube, remains a challenge that hinders 

obtaining kinematic data on cell shape and movement. Nevertheless, imposing asymmetric 

drag forces in the simulations generated predictions concerning cell shape, the orientation of 

the major axis of cells and cell division orientation that were borne out by the experimental 

data (Fig. 5). 

Although the nature of the resistive forces warrants further investigation, the simulations 

revealed that the anistropic growth of the tissue resulted from cell rearrangements, rather than 

changes in cell shape. Thus, T1 transitions were preferentially oriented such that it was more 

likely for an edge in the AP direction to be replaced by one in the DV direction (Fig. 5A) and 

the cell intercalation that resulted from T1 transitions contributed to the tissue extension in 

the DV direction. 

Encouraged by the similarity between simulations and experimental data, we used the 

model to examine the clonal spread in different progenitor domains. The shape of clones was 

anisotropic throughout most of the neural tube, but clones in the pMN domain were smaller 

and rounder (Kicheva et al. (2014)). The pMN domain is distinguished by a high rate of 

progenitor loss due to terminal differentiation (Ericson et al. (1992); Kicheva 

et al. (2014); Sagner et al. (2018)), which causes the smaller clone sizes. However, the basis 

for the difference in clone shape was unclear. pMN cells are molecularly distinct from other 

progenitors and one possibility was that cell orientation or arrangement was under local 

molecular control. For instance, pMN progenitors express different sets of adhesion 

molecules than adjacent domains (Rousso et al. (2012)), raising the possibility that cell-cell 

communication plays a role in shaping the pMN domain. Strikingly, however, the model 

showed that the experimentally observed anisotropy in tissue growth could be reproduced 

simply by the increased differentiation rate of pMN progenitors in conjunction with the 

global difference in the resistive forces in AP and DV directions. The difference in resistance 

causes the tissue to become increasingly more anisotropic with time. Furthermore, increasing 

the differentiation rate or decreasing the proliferation rate causes the tissue to grow more 

slowly and become less anisotropic over a given period of time. Hence, the net growth rate is 

a governing factor that influences the degree of anisotropy, with slow growth being more 

isotropic. 

We found that this change in tissue shape anisotropy over time not only depends on the 

overall growth rate of the tissue, but also on the relative magnitudes of the proliferation and 

differentiation rates. Increased differentiation, which removes cells from the epithelium, 

facilitates cell rearrangements and effectively increases the fluidisation of the tissue (Ranft 

et al. (2010)). This alters the degree of anisotropy that is achieved for a given tissue size 

compared to growth without differentiation. In summary, the difference in the growth regime 

between domains influences the degree of tissue anisotropy. Further theoretical investigation 

will be needed to understand the exact relationships between growth anisotropy, the rate of 

proliferation and differentiation. 
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Our analysis shows that the orientation of cell divisions in experimentally observed 

tissues, as well as in simulations, is random. This suggests that cell division orientation does 

not contribute to anisotropic tissue growth (Bittig et al. (2008); Li et al. (2014)). A surprising 

observation in our data is that despite preferential cell elongation in the DV direction, cell 

division orientation is apparently random in the AP/DV plane, this could be explained by the 

decrease in elongation observed in mitotic cells as a result of IKNM (Fig. S.8). Cell division 

has been found to be frequently oriented along the longest planar axis of a cell (Baena-López 

et al. (2005); Mao et al. (2011); Wyatt et al.  (2015); Seldin and Macara (2017)), although 

this is not always the case and external and internal cues can determine the orientation of cell 

division in a shape-independent manner (Gong et al. (2004); Bowman et al. (2006); Konno 

et al. (2007); Gillies and Cabernard (2011); Bosveld et al. (2016); Finegan et al.  (2019)). In 

the spinal cord, the plane of cell division is regulated along the apicobasal axis and is 

accompanied by rotations of the metaphase plate (Morin et al. (2007)). This regulation is 

important for maintaining the integrity of the epithelium. Our data are consistent with the 

idea that the apicobasal orientation of the spindle is the dominant mode of regulation in the 

spinal cord, with no specific mechanism acting to orient the planar angle. It could be that the 

random orientation of divisions in the epithelial plane and the decoupling from cell shape is 

necessary to achieve efficient apicobasal orientation (Morin et al. (2007)). Further studies 

will be necessary to investigate this thoroughly. 

A consequence of the difference in clone shape between pMNs and other progenitor 

subtypes is that cells in all progenitor domains expand at equal rates along the AP axis, 

despite the overall smaller size of pMN clones. Thus, there is no net AP movement between 

progenitor domains and cells stay in register as development proceeds. This means that cells 

in different DV domains with the same AP identity remain adjoining. Since AP identity is 

established early during neural development, maintaining position relative to other cells in 

the epithelium may be important for the later assembly of position appropriate functional 

neuronal circuits. 

In conclusion, we described a vertex model of a pseudostratified epithelium and used it to 

study the growth of the neural tube and how cell differentiation influences clone shape. In 

future work, we wish to couple this tissue model to quantitative descriptions of the spread of 

morphogens that pattern the tissue and the gene regulatory networks that specify neuronal 

subtype identity. In this way, we hope to gain insight into the coupling of growth and 

patterning in the neural tube and understand how the position, precision and proportions of 

cell types are achieved. 
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Materials and methods 

Experimental data analysis 

E10.5 and E11.5 mouse embryos were collected and processed for dissection, fixation, 

immunostaining and flat-mounting as previously described (Kicheva et al. (2014)). Primary 

antibodies used were: mouse anti-ZO-1 (33-9100, Zymed labs), rabbit anti-phospho Histone 

H3 (Novus Biologicals), mouse anti-Aurora B (AIM1, BD Transduction), rabbit anti-Olig2 

(Millipore), mouse anti-Pax3 (DSHB). For the experimental clone shapes, we re-analysed the 

data in (Kicheva et al. (2014)). Cell elongation was calculated from the second moment 

matrix of the polygon representing the cell by taking the square root of the ratio of the largest 

to the smallest eigenvalue. Cell angle orientation was defined by  1 1arctan x y , where 

1, 1x y  represent the AP and DV component of the eigenvector corresponding to the largest 

eigenvalue. 

To quantify the cell division angle, E10.5 embryos were stained with DAPI, phospho-H3, 

and Aurora B to mark dividing cells, and Pax3 and Olig2 to mark the dorsal and pMN 

domains, respectively. Spindle rotation ceases in anaphase (Morin et al. (2007)). Cells in this 

phase were identified by low levels of phospho-H3, separated sister chromatids and Aurora B 

staining associated with the central spindle and only these cells were considered for the 

analysis (Fig. 5B, bottom). The orientation of the chromosomes with respect to the 

anteroposterior axis of the embryo was measured. 

For the analysis of cell geometries, we used images of flat mounted embryos of 

approximate size 80 x 80  m. Images taken within the dorsal half are comprised of Pax7+ 

pD progenitors, while images taken in the ventral part of the neural tube contained up to 50% 

pMN cells with the reminder being progenitors of the p2-p0 domains. Images were processed 

using the Fiji plug-in ‘Packing Analyzer v2.0’ (Aigouy et al. (2010)), which segments the 

image, classifies cell edges and vertices, and measures cell areas, perimeter, neighbours. 

Segmentation mistakes were manually corrected. 

Vertex model description 

Cells are represented as polygons with straight edges connecting vertices. Cells are 

enumerated by 1, , cN    and vertices are enumerated by 1, , vi N  . The evolution of 

each cell in these models is governed by the motion of its vertices, which are typically 

assumed to obey deterministic equations of motion. It is usual to make the simplifying 

assumption that the motion of vertices are over-damped (Drasdo (2000)), and inertial terms 

are small compared to dissipative terms. This leads to first-order dynamics. The evolution of 

the position ir  of vertex i  is determined by: 

 i
i

dr
F t

dt
    (3) 

where  iF t  denotes the total force (except drag) acting on vertex i  at time t  and   

denotes its drag coefficient. The main difference between models lies in the definition of the 

force iF  that can be derived from an energy function, E , which includes the different cell-
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cell interactions. In our model we use a modification of the energy function described in 

(Farhadifar et al. (2007)), by including time dependence of the target area term,  0A t . Thus: 

  

Elastic energy of cells

Line tension
2

0

Global contractility effect

2

2

,
2

ij ij
ij
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for which i

i

E
F

r


 


. 

The first term describes an area elasticity with elasticity coefficients K , for which A  is 

the area of cell   and  0A t  is the preferred area at time t  (the preferred area will be related 

with the apicobasal nuclear position in this 2D model, Eqn (1)). The second term is 

dependent on the length of cell-cell junctions, representing adhesion/tension energy. It 

introduces the energy associated with bonds between each cell and its neighbours, where ij  

is a constant and ijl  denotes the length of the junction linking vertices i  and j . When ij  is 

negative, cell boundaries tend to expand; when it is positive the edges tend to shrink. The 

sum of ij   is over all bonds. The third term describes the contractility of the cell perimeter 

L  by a positive coefficient  , when it is small, contractile forces are small compared to 

those from area elasticity. 

We assume all parameters are the same in each cell or edge, so K K  , ij   , 

and    . In this case, the final term in Eqn (4) can be expressed as a sum over cell 

perimeters and combined with the final term to give  
2

0
2

L L
 


  , where the target 

perimeter 0L  is given by 2  . The added constant term is irrelevant, since the dynamics 

only depend on changes in energy. 

Vertex model implementation 

The model is implemented with a custom Python code (available in Bitbucket: 

https://bitbucket.org/Pigueco/vertex_model_python_2.7) using the Euler method to solve the 

equation of movement for each vertex, Eqn (3). We nondimensionalise in time and space by 

taking as unit of time 460s  and using an area of 223 m . The units of force are arbitrary. The 

tissue is initialized as an hexagonal mesh of 10 by 10 cells, or 15 by 15 cells for simulations 

with pMN domain. The initial tissue is allowed to evolve for 30h (biological time) to generate 

a vertex distribution close to steady state. At this point, the time is reset and the vertex 

distribution is taken as the starting point for the simulations described in this study. 

To accommodate topological transitions in the simulations, we introduced the possibility 

of T1 transitions. During a T1 transition an edge below 3%  of the average edge length of the 

tissue is eliminated and a new edge of length newl  expands perpendicular to the old edge 

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t

Xfarhadifar2007
Xfarhadifar2007
x1-5r1
x1-11r4
https://bitbucket.org/Pigueco/vertex_model_python_2.7
https://bitbucket.org/Pigueco/vertex_model_python_2.7
x1-10r3


(values given in Table 2). If the rearrangement results in the formation of a two-sided cell, the 

cell is removed from the epithelium. 

Division occurs when the cell is in M-phase ( 1 2G S Gt t t t   ) and the volume of the cell 

exceeds a critical value, cA . For a cell to divide, a new edge is introduced by creating two new 

vertices. The location of the first vertex is chosen as the midpoint of a randomly selected 

edge of the dividing cell with probability proportional to the edge length. The other vertex is 

the midpoint of the opposite edge, if the cell has an odd number of sides the second edge is 

the closer mid edge. The newly generated sister cells then commence the next cell cycle. 

In order to define the frequency of cell divisions in the model, we defined the 

proliferation rate   as  d Ñ t , where d  is the number of division events in a small time 

interval t , and Ñ  is the average number of cells in the tissue during t . For a proliferating 

tissue where differentiation does not occur, this estimate of   is equivalent to the effective 

rate of tissue growth   ln C Ck N t N t   , where t  is a time interval, CN is the 

number of cells in the tissue at the start of the interval and  CN t  the number of cells at the 

end of the interval. To match the experimental data (Kicheva et al. (2014), Table 1), in the 

simulations we aimed to obtain a proliferation rate of 0.05 1h . For a proliferating tissue 

without differentiation  ln 2 Tt   where Tt  is the total cell cycle time. Thus, 

10.05h  corresponds to an average cell cycle length of 13h, which is 510  simulation time 

steps (Table 1 and 2). In Fig. S.6 Tt  13h is used for the condition with fixed proliferation 

and varied differentiation. In tissues with high levels of differentiation, however, the 

proliferation rate is an effective rate because at any one time a fraction of cells present in the 

tissue will not further divide. Thus, in a tissue with a differentiation rate of 10.1h  and 

effective proliferation rate of 10.05h  the cell cycle time of the dividing cells is on average 

shorter and corresponds to 11.7h. Note that the estimates of cell cycle duration given in Table 

1 are based on fractions of dividing cells from fixed images and are therefore effective 

measurements. The values of the proliferation rates given in Figs. 4F, S.6 are  2 Tln t , 

where Tt  is used in simulations to determine the evolution of the target area and the 

minimum time at which cells can divide. For proliferation rate 10h , Tt  is set to13000h . 

Number of neighbours, cell area, and cell perimeter distributions in simulations were 

compared with output using code from (Smith et al. (2011)). 

Growth of the tissue 

We model the neural tube as a torus with two radii R  and H . The torus can grow in both 

radial directions. The growth in R  is resisted by a drag force of magnitude 
dR

dt
  per cell. 

The forces are balanced so drag forces are of the same total magnitude, as the other forces. 
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Thus, its growth is determined by a balance between the potential forces and drag: 

1
,c i

i
i

dR E E
N x

dt R R x


 
    





  (5) 

where i ix R  is the coordinate that we use for the i th vertex in the dorsoventral 

direction (Supplemental Material I). 

Equivalently, we calculate growth in the perpendicular direction, H , using the drag 

coefficient, 2 . 

The tissue aspect ratio (AP/DV) was measured using the whole tissue AP length and DV 

length. The AP/DV clone aspect ratio was measured as defined in (Kicheva et al. (2014)) to 

enable comparison between experimental data and simulations. In computing the ratio, one 

nondimensional unit of length is subtracted from the mean AP and mean DV lengths of 

clones. 

Statistical Analysis 

Statistical analysis details are documented in figure legends and captions. To compare the 

distributions of cell area, perimeter and number of neighbours of the experimental and 

simulated data in Figs. 3A and S2.A we quantified the Kolmogorov Smirnov (K-S) statistic, 

which measures the difference between distributions. We used mean distributions for the 

comparison, derived by averaging across 11 images at E11.5 for the experimental data, and 

10 runs of the model for the simulated data. We then report the K-S statistic, which represents 

the largest difference between the mean distributions. Other quantities compared between 

simulations in Figs. 3A, 3B and S3.A- cell area standard deviation, cell perimeter standard 

deviation, DV length of tissue and AP/DV ratio of tissue- were absolute values of the 

differences between the experimental values and simulation values. The difference between 

the mean value of 11 images and each of 10 simulations runs was taken and then the mean of 

these 10 values. In Fig. 3B and S3.A, the values for AP/DV ratio and DV length were then 

summed. 
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Figures 

 

 

Fig. 1. Analysis of the cellular features of the mouse neuroepithelium A) Example clones in E11.5 embryos, data 

from (Kicheva et al. (2014)). Clonal labelling was induced at E9.5 of development. The coordinates of EYFP-
labeled cells in the confocal image on the left are shown on the graph on the right. The AP/DV ratio of clones in 
the pMN domain (red marks) is higher than in the pD domain (green shades). Scale bar, 50 m. B) Top: Apical 

surface of E11.5 flat mounted mouse neural tube immunostained for ZO-1. Images were taken within the ventral 
and dorsal halves of the neural tube as indicated. Dorsal side up. Scale bar = 10  m. Bottom: Segmented 

images after manual correction. Insets show an overlay of original and segmented image. C) Histograms of 
apical area, perimeter, number of neighbours and elongation of cells, from the dorsal (brown) and ventral (green) 
regions of E10.5 and E11.5 neural tubes. Sample sizes: E10.5, n=25 images of dorsal and 5 images of ventral 
domains from 7 different embryos; E11.5, 11 images of dorsal, 3 images of ventral domains from 3 embryos.  

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t

XKicheva1254927
XKicheva1254927


 

 
 
Fig. 2. Vertex model simulation framework for the neural tube incorporating interkinetic nuclear movement A) Top: 

3D Diagram illustrating the dorsoventral (DV), anteroposterior (AP) and apical-basal (AB) axes on a cylindrical 
representation of the neural tube. Bottom: 2D Polygon representation of the apical junctional network. In the 
simulations, periodic boundary conditions mean that the top-bottom and left-right edges are continuous. B) Left: 
Neuronal differentiation of a progenitor leads to loss of the apical contact and cell extrusion from the epithelium. 
Right: Interkinetic nuclear movement: the apicobasal position of the nucleus changes with cell cycle phase. The 
nucleus moves basally during G1, undergoes S phase basally, returns apically in G2 and is apical during mitosis. 

C) Top: Representation of the function used to describe nuclear position (  ) during a simulated cell cycle. 

Bottom: The apical target area that results from Eqn (1) during a cell cycle. Coloured regions in top and bottom 

indicate different cell-cycle phase durations: 1Gt  (green) G1-phase, St  (light blue) S-phase, 2Gt  (dark blue) is 

G2-phase, and Mt  (orange) M-phase. This is an illustration for an example cell, the exact cell cycle behaviour of 

individual cells in simulations will vary. 
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Fig. 3. Identification of simulation parameters matching experimentally determined features of the neuroepithelium 
A) Similarity of experimental data and simulations with the indicated composite tension and contractility 
parameters. Colour code represents: the average of the maximum distance of the empirical cumulative 
distribution function for cell area, cell perimeter and polygon number, and the absolute difference between the 
standard deviations of cell area and cell perimeter (see Materials and Methods). Experimental data is from E11.5 
embryos and simulations correspond to 10 independent simulations per point in parameter space. Roman 

numbered dots indicate the mechanical parameters selected to study clonal distribution, ( ,  ) I: (-0.4, 0.14), II: 

(-0.2, 0.12), III: (-0.3, 0.1), IV: (-0.05, 0.065), V: (0.075, 0.04), and VI:(0.15, 0.02). and   are 0.02 and 1 

respectively. Blue lines demarcate the four different parameter regions of the phase diagram (see Supplemental 
Material II). B) Heatmap as in A) but the absolute value of the difference (log scale) in the change in DV length of 
the tissue over 48h plus the absolute value of the difference in the final tissue aspect ratio (AP/DV) between 
simulations and experimental data was taken and this quantity was averaged over 10 simulations for each point. 

 ,  used for these simulations are from the mechanical parameter set V. C) Examples of the shape of 

simulated clones tracked over 48h demonstrate the dorsoventral bias in their elongation in silico. D) 

Comparison of clone spread ratio (AP/DV) between experiments (Xpt data) and simulations. Box plot shows the 
quartiles of 12 realisations of the simulation with no differentiation (all cells pD domain). Roman numerals indicate 

mechanical parameters used ( ,  ) (Fig. 3A). Other parameter values are provided in Table 2.  
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Fig. 4. The rate of neuronal differentiation affects the anisotropy of tissue growth A) Snapshots from a simulation 

of a tissue with pD and pMN populations. Differentiation in the pMN domain is initiated at 30h, after which the 
relative DV length of the pMN domain decreases from 30% to 5% over 48h. B) Examples of clones tracked 

during the 48h simulation in silico. C) Comparison of number of cells per clone between experimental data (Xpt 

data) and simulations in pMN (green) and pD (brown). D) The ratio of AP/DV spread of clones in the pD (brown) 
and pMN domain (green) domains compared with experimental data (Xpt data). E) Tissue aspect ratio (AP/DV) 
for simulations of homogeneous tissues consisting of a single cell type with the indicated differentiation rates: 0 

1h  (purple), 0.05 1h  (red) and 0.1 1h  (light blue). F) Tissue aspect ratio (AP/DV) over time of simulated 

tissues with the indicated proliferation rates and differentiation rate equal to zero for a given regime V. Data in C-
F is derived from 12 different simulations per parameter set and Roman numbers indicate the mechanical 

parameters ( ,  ) from Fig. 3A. Differentiation rate in pMN for A, B, C and D is 0.1
1h
. Other parameters are 

indicated in Table 2.  
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Fig. 5. Contribution of cell rearrangements, cell shape and cell division orientation to anisotropic growth A) 

Orientation angle with respect to the DV axis of the newly formed edge after a T1 transition in the pMN (green) or 
pD (brown) domains. B) Distributions of cell elongation in simulations and experimental data at E11.5. C) 
Distributions of the orientation angle of the long axis of cells with respect to the DV axis in simulations and 
experimental data at E11.5. D) Cell DV length distribution calculated by taking the vertex coordinates and 
calculate min(x)- max(x) (x-axis represents DV direction), in simulations and experimental data in the indicated 

regions. E) The angle of cell division orientation in vivo as outlined by the lines in two example cells was 

measured at E10.5. AP axis, dotted line. F) Distributions of cell division orientation in simulations and 

experimental data in the indicated regions. Angle is represented by radians where 0  is parallel to DV axis. The 

angle of the new edge after cell division should be roughly orthogonal to the axis of cell division. For simulations, 
distributions were estimated after 12 realisations using mechanical parameter regime V. Differentiation rate in 

pMN domain 0.1
1h
. Other parameters are indicated in Table 2. For experimental data, distributions were 

calculated at E11.5. 11 images of the dorsal and 3 images of the ventral domain from 3 embryos were used in B, 
C, D and F.  
 

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t

x1-12r2


Tables 

 
Table 1. Proportion of cells in the indicated cell cycle phases and total cell cycle time in minutes at stage 
E10 of cells in the ventral (V) and dorsal (D) region of the neural tube. Data from (Kicheva et al. (2014)).  
Cell cycle phase V D 

G1 0.7 0.4 

S+G2 0.2 0.5 

M 0.1 0.1 

(total min) ~ 780   ~ 780   

 

 

 

 
Table 2. Simulation constant parameters.  
Parameter Meaning Value Ref 

K   Elasticity coefficient 1a.u. (Farhadifar 

et al. (2007)) 

cA   Critical area 30 2m   - 

1T   Length threshold 0.048 m   (Kursawe 

et al. (2018)) 

newl   Distance new edge 

nodes after 1T   

1.01 1T    

t   Time step 0.46 s   (Fletcher 

et al. (2013)) 
   Medium viscosity 20.276K m s   - 

   DV drag viscosity 20.276K m s   - 

   AP drag viscosity 213.8K m s   - 

   Proliferation rate 0.05 1h   (Kicheva 

et al. (2014)) 
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Fig. S.1. Average area of different polygon classes A) Mean areas of different polygon classes normalised to the average area of cells, 〈An〉/〈A〉, in experimental data
from the ventral and dorsal domains at mouse neural tube stage E10.5 and E11.5.

Development: doi:10.1242/dev.176297: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



I

II

III

IV

V

VI

Cell area

 C
on

tra
ct

ili
ty

 ( 
 )

Tension (   )
-1.2           -0.8        -0.4           0.0          0.4

0.18

0.14

0.10

0.06

0.02

>0.4

0.3

0.2

0.1

0.0

Γ̄

Λ̄

ECDF of cell elongation

A

B

ECDF of cell elongation

Fig. S.2. Simulations without IKNM match experimental data less well A) Map of the average of maximum distance between the experimental and simulated empirical
cumulative distribution function of cell area distribution for a model without IKNM (constant target area). Experimental data corresponds to E11.5 embryos and simulations
correspond to 10 simulations per point in the parameter space. Roman numeral marked points indicate the mechanical parameters selected, (Λ̄, Γ̄) in Fig. 3A. B) Empirical
cumulative distribution function (ECDF) of cell elongation in simulations with and without IKNM using mechanical parameter V in Fig. 3A compared to E11.5 experimental
data of mitotic and non-mitotic cells (left and right respectively).
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Fig. S.3. Determining drag coefficients that generate anisotropic growth in simulations A) Heatmap indicating the difference between simulation and experimental
tissues for different values of the drag coefficients µ′ and µ′′. The absolute value of the difference in the change in DV length of the tissue over 48h plus the absolute value of
the difference in the final tissue aspect ratio (AP/DV) between simulations and experimental data was taken and then this quantity was averaged over 10 simulations. Colour
map shows the average difference (log scale) from 10 different simulations per point with the experimental data from E11.5 embryos. Other parameters are indicated in Table
2. Roman numerals indicate mechanical parameters used (Λ̄, Γ̄) in Fig. 3A. B) The AP/DV aspect ratio of simulated tissues at the end of the simulation (72h) for a range of
µ′′/µ′ ratios. The proliferation rate is 0.05h−1 and there is no differentiation. Parameter regime V is used. The reported errors are SE.
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Fig. S.4. The effect of introducing differentiation on DV length of the pMN domain A) DV length of the pMN domain relative to the total DV length of the tissue at
the point pMN is introduced to simulations (blue) and after 48 hours (green). Differentiation rate in pMN domain 0.1h−1. Other parameters are indicated in Table 2. These
time points correspond to experimental samples (Xpt data) from E9.5 and E11.5 mouse embryos, respectively. The DV length at these developmental stages was measured
in (Kicheva et al. (2014)).
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Fig. S.5. Shape of clones of different size in the pD and pMN domain A) The AP/DV aspect ratio for clones containing the indicated number of cells per clone (3 green,
4 yellow, 5 purple, 6 blue) in the pD and pMN domains. Experimental samples (Xpt data) are compared to the result of 12 simulations per mechanical parameter set (Λ̄, Γ̄)
from Fig. 3A. Differentiation rate in pMN is 0.1h−1. Other parameters are indicated in Table 2.
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Fig. S.6. Effect of proliferation and differentiation rate on the size and shape of simulated neuroepithelial tissue A) Number of cells in simulated tissues as a function
of time for different proliferation rates and no differentiation. The proliferation rates from top to bottom: 0.05h−1 (red), 0.04h−1 (blue), 0.03h−1 (green), 0.02h−1 (purple),
0.01h−1 (grey), 0h−1 (black). In A-I: the simulation starts with an initial period of (t < 26h) during which the proliferation rate is 0.05h−1 and there is no differentiation.
Afterwards proliferation or differentiation is altered as indicated. In A-H parameter regime V is used. B) The number of cells as a function of time for different differentiation
rates and fixed proliferation rate = 0.05h−1. The differentiation rate is 0h−1 (red), 0.01h−1 (blue), 0.02h−1 (green), 0.035h−1 (purple), 0.05h−1 (grey), 0.075h−1

(black). The parameters were chosen so that the net growth rate in B is similar to that in A for curves of the same colour (except black). C) Overlaid data from A and B. D)
Aspect ratio of the tissue AP to DV extension for varied proliferation and no differentiation (same as main Fig. 4F, parameters as in A). E) As D but for varied differentiation
and fixed proliferation (parameters as in B). F) Overlaid data from D and E. Only simulations with positive net growth rate are plotted (no black trajectories). G, H) The
tissue aspect ratio (AP/DV) from D and E as a function of cell number. Only conditions with positive growth rate are shown. I) The tissue aspect ratio (AP/DV) for varied
proliferation and no differentiation in parameter regime VI. The proliferation rates and colour convention as in (A). Data A-I was averaged over 12 independent simulations
for each condition. The reported errors are SEM. If error bars are not visible the SEM was very small (<2%).
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Fig. S.7. Influence of the ratio of the AP/DV drag coefficients on the shape of tissue with different rates of differentiation A) Increasing the differentiation rate
increases the AP/DV aspect ratio of simulated tissues for all µ′′/µ′ ratios larger than 1. The AP/DV aspect ratio at the end of the simulation (72h) is reported. The simulation
starts with an initial period of (t < 26h) during which the proliferation rate is 0.05h−1 and there is no differentiation. Afterwards differentiation is altered: 0h−1 (purple,
same as in Fig. S.3B), 0.05h−1 (red), 0.1h−1 (solid light blue). The indicated µ′′/µ′ ratio is fixed from the start. The parameter regime V is used. In the case µ′′/µ′ =1, the
final AP/DV aspect ratio is <1. This is because the tissue is initialized with hexagonal mesh of 10 by 10 cells (honeycomb pattern) that has the AP/DV ratio =

√
3/2 ≈ 0.87.

If the tissue is initialized with hexagonal mesh of 10 cells in DV direction and 12 cells in AP direction (initial AP/DV ratio ≈ 1.04), then the end result is also isotropic as
expected (empty light blue dot). The reported errors are SE.
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Fig. S.8. Cell elongation in simulated tissue and experimental data A) Histogram of cell elongation in cells close to mitosis (brown) and non-mitotic (red) cells in
simulations and experimental data in the dorsal domain. In the experimental data, the 2.5% of cells with largest area were considered mitotic. For the simulations, parameter
regime V was used.
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Supplementary Material: Neuronal differentiation influences progenitor arrangement
in the vertebrate neuroepithelium
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FIG. SM.1. Cylindrical representation where R is the radius,
θ is the angle and H is height of the cylinder and the z-axis
is along this length.

I. CYLINDRICAL REPRESENTATION

The domain of the vertex model is a cylinder, the ra-
dius, R, and height, H, of which can change in time.
A natural set of coordinates for the vertex i within the
cylinder are (θi, z̃i), where θi are cylindrical polar angles
and z̃i = zi/H, where zi is the coordinate in the direc-
tion along the length of the cylinder, see Fig. SM.1. Note
that in simulations we actually impose periodic bound-
ary conditions also in the direction along the length of
the cylinder. The movement of vertices is determined by
an energy function, E.

We assume overdamped movement, with the drag coef-
ficient for vertices within the cylinder (whilst the cylinder
size is fixed) being µ. Therefore:

µR
dθi
dt

= − 1

R

∂E

∂θi
, (SM.1)

µH
dz̃i
dt

= − 1

H

∂E

∂z̃i
. (SM.2)

In addition the cylinder itself can grow. We assume

that cells (whose average areas are constant) experience
some drag proportional to their speed, both radial and
tangential (frictional) as the outside surface of the cylin-
der expands. Radially the speed of each cell is dR

dt and
along the length of the cylinder, the velocities are on av-
erage 1

2
dH
dt relative to a fixed point at one end of the

cylinder 1. Let us define the relevant drag coefficients to
be µ′ radially and 2µ′′ along the length of the cylinder.
The equation for the radius and the height are deter-
mined by the balance between the radial component (the
height component) of the potential forces and the accu-
mulated drag on all of the cells:

µ′Nc
dR

dt
= −∂E

∂R
, µ′′Nc

dH

dt
= − ∂E

∂H
, (SM.3)

where Nc is the number of cells. We note that the three
drag coefficients µ, µ′ and 2µ′′ are likely to be different.
We also note when a cell is added its energy is added to
E.

The coordinates that we actually use in the vertex
model code are given by (xi, zi), where xi = Rθi and
zi = Hz̃i, which are effectively rectangular coordinates
in a folded out cylinder. The equation for the radius,
thus becomes:

Ncµ
′ dR

dt
= −

∑
i

∂E

∂xi

∂xi
∂R

= − 1

R

∑
i

xi
∂E

∂xi
. (SM.4)

Therefore

dxi
dt

= − 1

µ

∂E

∂xi
− 1

µ′
xi

NcR2

∑
j

xj
∂E

∂xj
. (SM.5)

Similarly,

dzi
dt

= − 1

µ

∂E

∂zi
− 1

µ′′
zi

NcH2

∑
j

zj
∂E

∂zj
. (SM.6)

In the code, we update xi and zi first according to
equation (SM.1) and (SM.2), (i.e. in time step ∆t we add
R∆θi and H∆z̃i), then we multiply by a factor R+∆R

R

and H+∆H
H respectively, where we call ∆R

R and ∆H
H “ex-

pansion” and these are given by − ∆t
Ncµ′R2

∑
j xj

∂E
∂xj

and

− ∆t
Ncµ′′H2

∑
j zj

∂E
∂zj

.

1 The magnitude of the overall force is the same if we consider the
middle of the cylinder as being stationary.
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II. BIOPHYSICAL PARAMETER SPACE

We study the effect of the biophysical parameters on
the cell dynamics. The energy (Eq. 4) is determined by
the vertex positions and parameters K, Λ, and Γ. Magno
et al. [2015] find parameter regions that yield different
behaviours depending on the mechanical parameters.

The energy E for an individual cell is given by:

E =
K

2
(A−A0)2 +

Λ

2
L+

Γ

2
L2. (SM.7)

The interfacial tension γ and pressure Π are given by

γ = ∂E
∂L =

Λ

2
+ ΓL, (SM.8)

Π = −∂E∂A= −K(A−A0). (SM.9)

A reduction in cell perimeter reduces the energy and
is therefore favoured. This favours cells that take a reg-
ular shape, hence we require the interfacial tension to be
positive,

γ =
Λ

2
+ ΓL > 0. (SM.10)

This should be true for the equilibrium cell size.
Suppose a cell has a fixed shape and denote the square

root of its area by l and its shape index by s = L/
√
A

where L and A are the perimeter and the area cell. The
equilibrium size is determined by setting ∂E

∂l = 0:

∂E

∂l
= γ

dL

dl
−Π

dA

dl
= 0, (SM.11)

thus at equilibrium γs = 2Πl, and therefore

2Kl3 = −Λ

2
s+ (2KA0 − Γs2)l. (SM.12)

We note that when l = 0, ∂E
∂l = Λs, so the state l = 0

is stable if and only if Λ > 0. Eq. SM.12 has a single
positive solution corresponding to an energy minimum
if Λ < 0 (meaning cells converge to a single equilibrium
area). If Λ > 0, Eq. SM.12 can either have zero positive
solutions (in which case all cells collapse to zero area)
or two positive solutions. In the latter case, the larger
positive solution will correspond to an energy minimum
and the small positive solution to an energy maximum.
Thus cells with area greater than the unstable value will
expand their area towards a fixed positive value, while
the area of small cells will collapse to zero.

We note that the condition for the state l = 0 to be un-
stable is independent of the target area. In our model, the
target area varies slowly compared to the movement of
vertices and thus we expect this property to hold for the
same parameter values in the model with varying target
area too. The condition for regularly shaped cells does
depend on the target area, since when interfacial ten-
sion is zero, the minimum energy will be attained when

cell area is equal to target area. With other parameters
fixed, as the target area increases, the interfacial tension
will also increase and so cells will tend to be more regu-
lar. Thus it is possible that small cells will be irregularly
shaped, but larger ones will be regularly shaped. This is
because for small cells the adhesive force will dominate
the force from the actomyosin ring, whereas for larger
cells, the opposite will be true.

The final condition that we need to determine is the
condition for there to be two positive steady states in-
stead of zero when Λ > 0. There are two positive states
if and only if

A0 >
Γs2

2K
+

3

4

(
Λs

K

)2/3

. (SM.13)

This condition depends on our variable target area.
What really matters, however, is whether cells are likely
to grow at any size that they attain (i.e. it does not
matter if we are in the region with two stable areas if the
cells are so small when they are born that they shrink to
zero). A necessary condition for cells to shrink from their
size at birth is that ∂E

∂l

∣∣
l=
√
Ac/2

< 0 with the target area

given by its value at the start of the cell cycle. A sufficient
condition is that ∂E

∂l

∣∣
l=
√
Ac/2

< 0 with the target area

given by its minimal value. Now

∂E

∂l

∣∣∣∣
l=
√
Ac/2

=
Λ

2
s+Γs2

√
Ac/2+2K

√
Ac/2(Ac/2−A0).

(SM.14)
The cells will thus grow if

2K
√
Ac/2(A0 −Ac/2) >

Λ

2
s+ Γs2

√
Ac/2. (SM.15)

Let us use the notation of Farhadifar et al. [2007], with
the A0 that they use to create the nondimensional pa-
rameters given by its mean value, 〈A0〉 during the cell
cycle in our model. The nondimensional parameters are
Λ̄ = Λ

K〈A0〉3/2 and Γ̄ = Γ
K〈A0〉 . Let Ac/(2〈A0〉) = c and

the value of A0 in Eq. SM.15 be β〈A0〉. Then cells will
grow if

Λ̄s/2 + Γ̄s2
√
c < 2

√
c(β − c). (SM.16)

If the model of target area variation with the cell cycle
and the critical area for cell division are fixed, then, for
a given shape index (e.g. that of a regular hexagon), this
forms a diagonal region in the phase space.

We note that equations SM.13 and SM.15 imply that
cells with lower shape indices (i.e. more regular and with
larger number of sides) are more likely to be stable.

In Fig. SM.2, we show the phase diagram in the space
of the parameters Λ̄ and Γ̄. Region I is where cells
are expected to have negative interfacial tensions and
so have irregular shapes since they do not want to min-
imise their perimeters. The boundary of this domain
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Region I

Region II

Region III

Region IV

FIG. SM.2. Phase diagram for biophysical parameter space
for hexagonal cell in term of Λ̄ and Γ̄.

is at Λ + Γs
√
A0 = 0, so Λ̄ + Γ̄s = 0. We plot this

for hexagonal cells (s = 2 × 31/421/2). In Region II,
cells take regular shapes and the only stable size is pos-
itive. The other boundary of this domain is at Λ = 0 or
Λ̄ = 0. In Region III, cells take regular shapes and small
cells collapse, whilst larger ones grow to an equilibrium
size. In Region IV, all cells collapse. The boundary be-

tween these regions is given by A0 = Γs2

2K + 3
4

(
Λs
K

)2/3
or

2 = Γ̄s2 + 3
2 (sΛ̄)2/3. We plot this for hexagonal cells.

We also show as the dotted line, a line below which all
cells should grow (Eq. SM.16). Here β = 0.68/1.25 is
the minimum value of A0 divided by its mean value. The
minimal value is calculated from Eq. (1), assuming mean
growth rate, and c = 1.3/(2 · 1.25) is the critical area di-
vided by twice the mean value of A0 (all nondimensional
units).

III. TISSUE ASPECT RATIO DEPENDS ON
EXPANSION RATE, THE VALUE OF Γ AND ON

HOW EFFICIENTLY CELLS REARRANGE

To gain insight into the anisotropic growth of the tis-
sue, we consider a slightly simpler system. We assume
all cells are identical with area A and we assume that
Λ/Γ << 1, so that the target perimeter is negligible. We
assume cell division is unorientated. Let the dimensions
of the neural tube be R(t) and H(t) and the number of
cells be Nc(t). Therefore NcA = RH. For ease of analy-
sis, we assume that cells are rectangular. In the direction
of R, there are n1 cells of length l1, with R = n1l1 and
similarly in the other direction there are n2 cells of length
l2. Therefore, H/R = (n2 l2)/(n1 l1) and Nc = n1n2. We
start with an equal number of square cells in each direc-
tion. We consider two extreme cases. In the first case,
intercalation can take place rapidly, allowing the num-
ber of cells in each direction to change. In this case, any

change in the tissue shape and the dissipation of drag
forces will occur predominantly by changing the num-
ber of cells in each direction, rather than by altering cell
shape. In such a scenario, the shape of individual cells
will be relatively unaffected by anisotropic forces and will
be square, hence n2/n1 = H/R. In the second case, inter-
calation does not take place, in which case as the aspect
ratio of the whole tissue changes, the cells change shape
accordingly. In this case, the relative number of cells in
each direction does not change, since cell division is un-
orientated and intercalation impossible, hence n1 = n2

and l2/l1 = H/R.

The expansion of the tissue in dimensions R and H
and perimeter L = 2(l1 + l2), is given by SM.3. On
the shortest timescales, we assume only l1 and l2 change.
Therefore

∂E/∂R = NcK(A−A0)∂A/∂R+NcΓL∂L/∂R

= HK(A−A0) + 2NcΓL/n1

= HK(RH/Nc −A0) + 4n2Γ(l1 + l2)

= H[K(RH/Nc −A0) + 4Γ(1 + l1/l2)].

(SM.17)

Similarly,

∂E/∂H = R [K(RH/Nc −A0) + 4Γ(1 + l2/l1)] .
(SM.18)

In the first case, µ′/µ′′ dR/dH = H/R and the change
in R2 will be µ′′/µ′ times the change in H2, so the aspect

ratio, H/R, will tend to
√

µ′

µ′′ .

In the second case,

µ′Nc
dR

dt
= H[K(A0 −RH/Nc)− 4Γ(1 +R/H)]

µ′′Nc
dH

dt
= R[K(A0 −RH/Nc)− 4Γ(1 +H/R)].

(SM.19)

We expect that in the long term the growth will equi-
librate so that the average areas and aspect ratios of
cells will tend to constants, which we call r = H/R and
A = RH/Nc. Then we have that the length and height
of the tissue satisfy

R =
√
A/r

√
Nc

H =
√
rA
√
Nc.

If we assume that cell numbers grow exponentially with
rate λ, so that dNc

dt = λNc, then substituting into Eqs.
SM.19 gives

λ

2

√
Ncµ

′
√
A/r =

√
rA
√
Nc[K(A0 −A)− 4Γ(1 + 1/r)]

λ

2

√
Ncµ

′′
√
rA =

√
A/r

√
Nc[K(A0 −A)− 4Γ(1 + r)].
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Dividing by
√
NcA yields simultaneous equations for r

and A0 −A with solution

r =

√
µ′λ+ 8Γ

µ′′λ+ 8Γ

A0 −A =
8Γ +

√
(µ′λ+ 8Γ)(µ′′λ+ 8Γ)

2K
.

This means that when growth is slow so that
µ′λ, µ′′λ << 8Γ, as t→∞, the aspect ratio should tend
to one. When growth is fast so that µ′′λ, µ′λ >> 8Γ,

the aspect ratio should tend to
√

µ′

µ′′ . As the exponen-

tial growth rate of the tissue varies from small to large,
the asymptotic aspect ratio will vary monotonically be-
tween these two values. Slow tissue growth is defined by
the regime in which perimeter forces greatly exceed drag
forces and rapid tissue growth by the regime in which
drag forces greatly exceed perimeter forces. Cell pres-
sure due to area elasticity is always important. In slow
growth, pressure generated by the difference between tar-
get area and mean area is balanced by the stretched ac-
tomyosin ring, whereas in rapid growth it is balanced by
drag.

The most extreme aspect ratios are achieved when the
actomyosin ring exerts a negligible force or when tissue
rearrangement is extremely efficient.
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