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Assembling the adipose organ: adipocyte lineage segregation and
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ABSTRACT
Adipose tissue is composed of anatomically distinct depots that
mediate several important aspects of energy homeostasis. The past
two decades have witnessed increased research effort to elucidate
the ontogenetic basis of adipose form and function. In this Review,
we discuss advances in our understanding of adipose tissue
development with particular emphasis on the embryonic patterning
of depot-specific adipocyte lineages and adipocyte differentiation
in vivo. Micro-environmental cues and other factors that influence cell
identity and cell behavior at various junctures in the adipocyte lineage
hierarchy are also considered.
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Introduction
Upwards of 2 billion people worldwide are overweight or obese
(Ng et al., 2014), with obesity estimated to account for 147-210
billion dollars in annual healthcare costs in the USA alone (Cawley
and Meyerhoefer, 2012). Despite the important implications of
increased adipose mass in human health, adipose tissue is
remarkably understudied compared with other organs (Fig. 1A).
The scarcity of adipose-focused literature can be at least partly
explained by a historical lack of interest in the tissue; until the mid-
20th century, adipose was considered a metabolically inert
connective tissue with no distinguishing functional properties,
thus its physiology and ontogeny were largely ignored (Wells, 1940;
Wertheimer and Shapiro, 1948). Gradually, however, adipose tissue
has garnered greater attention from the research community
(Fig. 1B) (Rosen and Spiegelman, 2014) and is now properly
recognized as a multi-depot organ with complex regulatory roles in
processes ranging from nutrient flux to feeding behavior (Cinti and
Vettor, 2009; Frayn, 2002; Herman et al., 2012; Pinto et al., 2004).
Indeed, proper adipose tissue mass and function are crucial for
maintaining metabolic health.
Advances in our understanding of adipose tissue biology have,

unsurprisingly, coincided with a rising prevalence of obesity and
related metabolic diseases such as type II diabetes (Ng et al., 2014;
Ogurtsova et al., 2017). However, this has resulted in a lopsided
research investment that favors studies of the terminal metabolic
activities of adipose tissue over those examining the mechanisms
responsible for assembling and functionally specifying distinct adipose

depots (Fig. 1B, ‘adipose metabolism’ versus ‘adipose development’).
Our understanding of adipose tissue development therefore remains
exceedingly rudimentary. Nonetheless, seminal in vitro studies in
the mid-1990s that identified key transcriptional regulators of
adipogenesis (Tontonoz et al., 1994; Yeh et al., 1995) triggered
heightened interest in adipose development and laid the intellectual
foundation for many important discoveries made in the past 20 years.

In this Review, we describe our current understanding of adipose
tissue development, highlighting the lineage hierarchy for adipocytes
that populate major adipose depots and the cellular and molecular
determinants of adipogenesis in vivo. We critically evaluate the
capacity of depot-resident adipocyte precursors to functionally adapt
according to systemic and micro-environmental cues, as well as
comment on technological breakthroughs that have greatly enhanced
the experimental tractability of adipose tissue development.

Distinctive features of white, brown and beige adipocytes
Adipocytes are classified as white, brown or beige (also referred to
as brite) according to the unique morphophysiological properties
they possess. White adipocytes, which are capable of expanding to
well over 100 μm in diameter, are best appreciated as receptacles for
lipid storage, but also secrete adipokines that have crucial roles in
satiety regulation and whole-body insulin sensitivity (Pinto et al.,
2004; Scherer, 2006; Skurk et al., 2007; Steppan et al., 2001;
Yamauchi et al., 2002, 2001; Zhang et al., 1994). These cells
compose the bulk of white adipose tissue (WAT) mass in both mice
and humans, and populate visceral depots in the abdomen as well as
subcutaneous depots around the trunk, limbs and face (Fig. 2A) (de
Jong et al., 2015; Gesta et al., 2007; Rosen and Spiegelman, 2014;
Shen et al., 2003). Brown adipocytes, in contrast, share a similar
gene expression profile with myocytes (Timmons et al., 2007), are
rich in mitochondria and generate heat through the combustion of
various metabolites (e.g. fatty acids and glucose) (Harms and Seale,
2013). Bona fide brown adipocytes have anatomically distinct
positions in depots between the scapulae, around the neck and
within the chest cavity (Fig. 2A) (Cypess et al., 2009; de Jong et al.,
2015; Nedergaard et al., 2007). Beige adipocytes, as their name
implies, exhibit properties of both white and brown adipocytes.
They possess abundant mitochondria, are thermogenic like brown
adipocytes and are located predominately in classical subcutaneous
WAT depots in mice (Fig. 2A) (Harms and Seale, 2013; Wu et al.,
2012). Beige adipocyte formation in human WAT has not been
characterized. However, it has been suggested that human brown
adipose depots are more functionally andmorphologically similar to
murine beige fat, despite having a similar anatomic distribution to
brown fat depots in mice (Sharp et al., 2012; Wu et al., 2012).

The adipocyte lineage tree
Although the adipocyte classifications discussed above help
describe the key features of adipocytes, they do not inform us
about the ontogenetic relationships among adipocytes. To acquire
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that knowledge, a fate map must be constructed. As we discuss
below, recent technological advances in lineage-tracing and fate-
mapping techniques in mice have furthered our understanding of the
developmental origins of adipocytes and the relationships between
them.

Methods to track cell lineages
Fate mapping refers to the technique by which a founder cell or cell
population is heritably labeled such that the origin of all progenymay
be known. The term ‘lineage tracing’ is generally used to refer to
single-cell fate maps, although in practice multiple founder cells are
typically labeled (Kretzschmar and Watt, 2012). Myriad labeling
strategies have been employed since the inception of lineage tracing
over one century ago (Conklin, 1905; Stern and Fraser, 2001;Wilson,
1898). These include the use of natural pigment variation among cells
of divergent fates (Conklin, 1905) as well as the injection of vital dyes
into founder cells (Vogt, 1924). Today, the construction of lineage
hierarchies (or trees) occurs mainly via the use of conditional reporter
genes, which require activation by genetic approaches such as the
Cre-loxP and FLP-FRT systems (Dymecki and Tomasiewicz, 1998;
Kretzschmar and Watt, 2012; Orban et al., 1992).
Cre-loxP-based strategies are most widely employed in mouse

models, which are favored for the study of adipose biology, and require
a user-defined gene regulatory element to control the expression
domain ofCre recombinase (Table 1). In cellswhereCre is expressed, it
will dock at loxP sites and orchestrate recombination to drive reporter
gene expression (Kretzschmar and Watt, 2012; Orban et al., 1992).
Importantly, the proper interpretation of any lineage-tracing experiment
depends on a thorough knowledge of the founder cell population,
which, in the case of constitutive Cre-loxP systems, may include
multiple non-overlapping groups of progenitor cells and terminally
differentiated cell types. This means that cells marked by reporter gene
expression do not necessarily belong to the same lineage tree. Inducible
variants of the Cre-loxP system are therefore preferred, given their
capacity to limit the time frame of Cre activity and to further restrict the
labeled group of founder cells (Feil et al., 1996, 2009). Such methods
typically involve either tamoxifen or doxycycline treatment to
modulate Cre activity. Of note, it has been reported that tamoxifen

causes adverse effects on adipose tissue when administered to adult
mice (Hesselbarth et al., 2015; Liu et al., 2015;Ye et al., 2015), and that
doxycycline disrupts mitochondrial function in mice and other model
systems (Moullan et al., 2015). Thus, when tamoxifen- and
doxycycline-dependent Cre-loxP tools are implemented, careful
control experiments should be designed and low doses used to
minimize unintended effects (Hesselbarth et al., 2015; Jeffery et al.,
2016;Moullan et al., 2015). In addition, when using either inducible or
constitutive Cre for lineage tracing, multiple Cre models with well-
defined expression domains ought to be leveraged in order to control
for ‘off-target’ Cre activity, thereby improving the probability of
accurately judging the branchpoints and order of succession in a cell
lineage tree. For this same reason, it is crucial that the cell populations
labeled in any given Cre model are broadly assessed.

The use of reporter genes that are appropriate for the progeny
cells of interest is also crucial to make an accurate assessment of
their developmental origin. Adipocytes present a special case in
that traditional soluble reporters, such as Xgal and YFP, fail to
appreciably label these cells (Jeffery et al., 2014; Sanchez-
Gurmaches and Guertin, 2014b; Sanchez-Gurmaches et al., 2016,
2012). This is likely due to the intracellular lipid engorgement
and lack of cytoplasmic volume characteristic of adipocytes.
Fortunately, this problem can be circumvented by using cell
membrane-localized reporters. The current gold standard for tracing
adipocytes is the mTmG system (Berry and Rodeheffer, 2013;
Jeffery et al., 2014; Sanchez-Gurmaches et al., 2016). This system
drives the ubiquitous expression of membrane-localized tdTomato
(mTomato) in the absence of Cre, but in cells where Cre is active, the
mTomato element of the mTmG cassette is excised, resulting in the
permanent expression of membrane-localized GFP (mGFP) in
founder cells and their progeny (Muzumdar et al., 2007).

The germ layer origins of adipocytes
A fundamentally important event in vertebrate embryogenesis
is the differentiation of epiblast stem cells into the three germ
layers – endoderm, mesoderm and ectoderm – during gastrulation
(Hatada and Stern, 1994; Kimmel et al., 1990; Lawson et al., 1991).
This marks the first stage of lineage segregation in the embryo proper
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Fig. 1. Adipose tissue publication metrics. (A) Adipose tissue has received little research attention compared with other organs/tissues, as illustrated
by a bar graph depicting the number of published papers focusing on specific organs/tissues. To construct the graph, each organ/tissue name was typed
into the search box on PubMed in January 2019, and the number of items returned for each organ/tissue was plotted. (B) Research investment in adipose has
grown, yet is biased toward studies on adipose metabolism. As for the graph in A, the terms ‘adipose’, ‘adipose metabolism’ or ‘adipose development’ were
typed into the search box on PubMed. Results by year are shown. Major discoveries in adipose development are also noted along the timeline. The original
derivation of 3T3-L1 cells has been described previously (Green and Meuth, 1974). Other major discoveries along the timeline are referred to in the main text.
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and sets the stage for organogenesis, with each germ layer giving rise
to a defined set of tissues and organs (Tam and Loebel, 2007).
Early understanding of the germ layer origin of adipocytes was

based mainly on histological analyses performed by Walther
Flemming in the 1870s. In these experiments, Flemming
longitudinally observed mouse adipose development and found
that at least some adipocytes emerge from a connective tissue
anlagen known to be mesodermally derived (Flemming, 1871;
Flemming, 1879). Consequently, adipocytes have been considered
a predominately mesodermal cell type for well over 100 years.
Recent findings (which we discuss below) have verified this notion.
However, mesoderm is composed of numerous spatially diminutive
progenitor fields, each with unique developmental trajectories.
Thus, classifying adipocytes as merely mesodermal cells is an
oversimplification. Indeed, from the work of many research groups
over the past decade, it is now clear that a remarkably complex
lineage hierarchy exists for mesodermally derived adipocytes.
Moreover, in 2007, a Cre-dependent lineage-tracing paradigm
showed that adipocytes populating the murine salivary gland arise
from neural crest cells (Billon et al., 2007), which are an
ectodermally derived cell population (Simões-Costa and Bronner,
2015). It remains to be tested whether adipocytes in other
craniofacial adipose depots originate from neural crest, or from
other ectoderm derivatives. Nonetheless, this finding was an early
indicator that adipocytes could have a more complex developmental
history than previously thought. Notably, the endoderm, which is
the generative tissue for the alimentary canal, pancreas, thyroid,
respiratory tract and certain components of the liver and thymus
(Gordillo et al., 2015; Gordon and Manley, 2011; Grapin-Botton,
2009; Nilsson and Fagman, 2017), has not been demonstrated to
produce adipose tissue.

An introduction to mesoderm anatomy and fate
Mesoderm is transiently divided into three subcompartments
following gastrulation: the somites, lateral plates and intermediate

mesoderm. Somites are the most dorsal of the mesodermal
subcompartments, forming in dyadic segments as the embryo
elongates posteriorly. Each somite is partitioned further into
sclerotome, myotome and dermomyotome (Fig. 3A) (Tajbakhsh
and Spörle, 1998). Progenitor cells that compose these somitic
domains harbor distinct developmental potentials, with the
sclerotome producing cartilaginous and osteoid tissues of the
vertebral column, and the myotome producing skeletal muscle
(Pang and Thompson, 2011). By contrast, dermomyotomal
progenitors exhibit the greatest diversity in cell fates: they are
responsible for establishing the myotome (Gros et al., 2004; Pu
et al., 2013) and, beyond muscle, give rise to the dermis of the back,
as well as adipocytes in several adipose depots (Atit et al., 2006;
Lepper and Fan, 2010; Sanchez-Gurmaches and Guertin, 2014a,b;
Seale et al., 2008; Sebo et al., 2018).

Lateral plate mesoderm is composed of two bilaterally
symmetric pouches that fill the presumptive abdominal region
of the embryo. These pouches are divided into splanchnic and
somatic layers (Fig. 3A). The splanchnic layer produces the
cardiovascular system and the mesentery, which anchors
the intestines to the abdominal wall and suspends them within
the body cavity (Brand, 2003; Davis et al., 2008), while the
somatic layer is the source of appendicular skeleton and ventral
dermis (Newman, 1988; Ohtola et al., 2008). The splanchnic and
somatic layers also contribute to adipocytes in visceral and limb-
associated subcutaneous adipose depots, respectively (Sanchez-
Gurmaches and Guertin, 2014b; Sebo et al., 2018). Finally,
intermediate mesoderm, which is sandwiched between the somites
and lateral plates and is the smallest of these subcompartments,
contributes to the majority of the urogenital tract (Davidson,
2009; Torres et al., 1995) but has not been demonstrated to
produce adipocytes.

Dermomyotomal branches of the adipocyte lineage tree
The earliest definitive evidence for the existence of mesodermally
-derived adipocytes came from a study showing that tracing of the
central dermomyotome using an En1-CreER:lacZ system (Table 1)
results in the labeling of interscapular BAT (inscBAT) late in
gestation (Atit et al., 2006). These data were corroborated several
years later when progenitors expressing Pax7 (a key myogenic
transcription factor) in the central dermomyotome were inducibly
labeled using a lacZ reporter system (Table 1) and shown to give rise
to embryonic inscBAT (Lepper and Fan, 2010). Moreover,
progenitors of interscapular brown adipocytes – but not white
adipocytes that populate gluteal, inguinal and epididymal depots –
have been reported to express Myf5 (Seale et al., 2008), which also
functions as a myogenic transcription factor and is known to first be
active in the dorsomedial lip of the dermomyotome (Relaix et al.,
2005; Tallquist et al., 2000; Teboul et al., 2002). Taken together,
these data support the notion that interscapular brown adipocytes
arise from dermomyotomal progenitors and thus share a common
origin with myocytes in mice.

More recent lineage-tracing studies have revealed some
inconsistencies with earlier findings and have produced a
surprisingly sophisticated fate map for dermomyotome-derived
adipocytes (Fig. 3B). For example, a thorough analysis of Myf5-
Cre:mTmG (Table 1) tracing has shown that not all brown
adipocytes arise from a Myf5+ lineage. Rather, Myf5lin+ brown
adipocytes are restricted to interscapular, subscapular and cervical
depots. Furthermore, white adipocytes of the anterior subcutaneous
and retroperitoneal depots are Myf5lin+ (Sanchez-Gurmaches and
Guertin, 2014b; Sanchez-Gurmaches et al., 2012). These findings

rWAT

ingWAT

mWAT

pgWATtriWAT

subscBAT

cBAT

paBAT
asWAT

inscWAT
inscBAT

prBAT

savWAT

Fig. 2. Anatomical distribution of brown and white fat depots in the
mouse. Brown fat depots are shown in brown and white fat depots are shown
in pink. The visceral cavity is indicated by a dotted line. Notably, the anterior
subcutaneous white adipose depot (asWAT) appears to be continuous with the
interscapular white adipose depot (inscWAT) under obese conditions. The
inscWAT and asWAT overlie the more internal interscapular and subscapular
brown depots (inscBAT and subscBAT, respectively). cBAT, cervical brown
adipose tissue; ingWAT, inguinal white adipose tissue; mWAT, mesenteric
white adipose tissue; paBAT, peri-aortal brown adipose tissue; pgWAT,
perigonadal white adipose tissue; prBAT, perirenal brown adipose tissue;
rWAT, retroperitoneal white adipose tissue; savWAT, salivary gland white
adipose tissue.
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were unexpected, as the divergent functional properties of white and
brown adipocytes were thought to be explained, at least in part, by
their ontogenetic proximity to myocytes (Rosen and Spiegelman,
2014; Seale et al., 2008; Timmons et al., 2007). Instead, emerging
data suggest that the allocation of dermomyotomal progenitors to
white or brown adipocyte lineages may be better explained by their
physical location along the dorsoventral axis of the dermomyotome.
Indeed, by conceptually superimposing multiple single-gene fate
maps, it is possible to construct a working lineage tree for
adipocytes arising from sub-domains of the dermomyotome. The
embryonic expression domain for Pax3-Cre includes neural crest
cells and the whole dermomyotome (Table 1) (Lang et al., 2005);
coupling this Cre with mTmG results in a labeling pattern slightly
broader than that observed in the case of Myf5-Cre:mTmG labeling
(i.e. perirenal BAT and a subset of male, but not female, perigonadal
white adipocytes are also mGFP+). This suggests that the mGFP+

adipocytes in the Pax3-Cre:mTmG system that do not overlap with
mGFP+ adipocytes in theMyf5-Cre:mTmG system are derived from
either the neural crest or a region of the dermomyotome in which
Myf5 is not appreciably expressed, particularly the ventrolateral lip
(Teboul et al., 2002).
Interestingly, pan-somite fate mapping using the Meox1-Cre:

mTmG system (Table 1) mirrors the adipocyte labeling pattern of
Pax3-Cre:mTmG, at least for adipose depots analyzed in both
studies (Jukkola et al., 2005; Sanchez-Gurmaches and Guertin,
2014b; Sebo et al., 2018). This labeling pattern includes a subset
of adipocytes residing in the male perigonadal fat pad. Thus, these
findings suggest that dermomyotomal progenitors of the
ventrolateral lip rather than neural crest cells contribute to a
proportion of male, but not female, perigonadal adipocytes.
Moreover, the sclerotome can probably be excluded as a tissue of

origin for adipocytes, as only Meox1-Cre:mTmG labels founder
cells here, yet the pattern of mGFP+ adipocyte labeling in this map
does not recognizably diverge from that of Pax3-Cre:mTmG
labeling (Sanchez-Gurmaches and Guertin, 2014b; Sebo et al.,
2018).

Recently, a constitutive Pax7-Cre (Keller et al., 2004) was
combined with the mTmG reporter to label adipocytes originating
from progenitors of the central dermomyotome (Table 1). This
resulted in <50% of interscapular white and brown adipocytes being
mGFP+ in mice ranging from 1 day to 10 weeks of age, with no
detectable labeling in other depots analyzed (Sebo et al., 2018).
These data contrast with a previous study in which intense staining
of inscBAT was observed at E16.5 in Pax7-CreERT2:lacZ mouse
embryos after induction of Cre activity at E9.5 (Lepper and Fan,
2010). Possible reasons for this discrepancy have been discussed
previously (Sebo et al., 2018); these include the use of distinct
reporters and Cre strains in the two studies. Moreover, the
observation that Pax7+ progenitors contribute to only a subset
rather than the majority of interscapular adipocytes is consistent
with Myf5-tracing, as Myf5 is expressed along a dorsoventral
gradient in the dermomyotome, overlapping with Pax7 in the center
and diminishing ventrally (Teboul et al., 2002). This suggests that
most interscapular adipocytes arise from the dorsomedial lip of the
dermomyotome, with the remainder deriving from the central region
(Sebo et al., 2018). Importantly, Pax7+ progenitors that localize
to the myotome have been shown to undergo a myogenic
developmental trajectory, ultimately producing skeletal muscle
fibers (Relaix et al., 2005). This indicates that adipocyte-fated Pax7+

progenitors do not pass through the myotome prior to lineage
segregation from myocytes. Indeed, tracing of the myotome and its
derivative tissues by MyoD1-Cre:mTmG fails to label any

Table 1. Cre driver strains previously used for the embryonic tracing of adipocyte lineages

Cre strain
Genomic
location Reported expression domains Reported adipocyte tracing by depot References

Sox10-Cre Transgene Neural crest Salivary gland white Billon et al. (2007); Matsuoka et al.
(2005)

En1-CreER Knock-in Central dermomyotome,
mesencephalon

Interscapular brown Atit et al. (2006); Sgaier et al. (2005)

Pax7-CreER Knock-in,
disrupts gene
function

Central dermomyotome, myotome,
satellite cells, neural crest,
head mesenchyme

Interscapular brown Lepper et al. (2009); Lepper and Fan
(2010)

Pax7-Cre Knock-in Central dermomyotome, myotome,
satellite cells, neural crest,
head mesenchyme

Interscapular brown, interscapular
white

Keller et al. (2004); Sebo et al. (2018)

Myf5-Cre Knock-in,
disrupts gene
function

Myotome, satellite cells Interscapular, subscapular and
cervical brown, anterior
subcutaneous, retroperitoneal
white

Sanchez-Gurmaches and Guertin
(2014b); Sanchez-Gurmaches et al.
(2012); Seale et al. (2008); Tallquist
et al. (2000)

Pax3-Cre Knock-in Dermomyotome, myotome,
neural crest

Interscapular, subscapular, cervical,
perirenal brown; anterior
subcutaneous, retroperitoneal and
epididymal white

Engleka et al. (2005); Lang et al. (2005);
Sanchez-Gurmaches and Guertin
(2014b)

Meox1-Cre Knock-in Somites Interscapular brown, interscapular,
retroperitoneal, epididymal white

Jukkola et al. (2005); Sebo et al. (2018)

MyoD1-Cre Knock-in Myotome and derivative
myogenic cells

None Sanchez-Gurmaches and Guertin
(2014b); Yamamoto et al. (2009)

WT1-CreER Knock-in Embryonic mesothelium,
intermediate mesoderm,
epicardial progenitors

Mesenteric, epididymal, perirenal,
retroperitoneal, epicardial, omental
white

Chau et al. (2014); Zhou et al. (2008)

Prx1-Cre Transgene Limb bud mesenchyme, craniofacial
mesenchyme

Inguinal and anterior subcutaneous
white

Logan et al. (2002); Sanchez-
Gurmaches et al. (2015)

HoxB6-CreER Transgene Posterior lateral plates, dorsal
neural tube, isthmic organizer,
limb-bud mesenchyme

Inguinal, mesenteric, female
perigonadal

Nguyen et al. (2009); Sebo et al. (2018)
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adipocytes, brown or white (Table 1) (Sanchez-Gurmaches and
Guertin, 2014b).
To summarize, adipocytes residing in dorso-axial adipose depots

are likely to find their origin predominately in the dorsomedial lip
of the dermomyotome, with a subset of interscapular adipocytes
arising from the central dermomyotome. A proportion of male, but
not female, perigonadal adipocytes arise from the ventrolateral lip of
the dermomyotome. Finally, evidence to date indicates that
adipocyte founder cells do not contribute to the myotome during
their developmental history.

Lateral plate branches of the adipocyte lineage tree
Less work has been done to precisely characterize the segregation of
lateral plate-derived adipocyte lineages, although a few key

experiments have provided insight into this process. The first
indication that some adipocytes arise from lateral plate mesoderm
came in 2014 when it was reported that several visceral, but not
subcutaneous, adipocyte populations differentiated from embryonic
mesothelial cells expressing the transcription factor Wilms tumor 1
(WT1) (Chau et al., 2014); these cells are generally thought to
descend from splanchnic lateral plate progenitors (Winters et al.,
2012). However, it should be noted that WT1+ cells also include
derivatives of the intermediate mesoderm (Armstrong et al., 1993).
Soon afterwards, it was shown that tracing of the limb bud
mesenchyme by Prx1-Cre (Logan et al., 2002) resulted in labeling
of limb-associated subcutaneous adipocytes (Krueger et al., 2014;
Sanchez-Gurmaches et al., 2015), suggesting these cells are derived
from progenitors of the somatic layer of the lateral plates (Durland
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Fig. 3. Embryonic patterning of adipocyte lineages. (A) Schematic of an ∼E9.5 mouse embryo. Cross-sectional views show relevant mesodermal and
neuro-ectodermal subcompartments. (B) A model adipocyte lineage tree. This tree was constructed based on current lineage-tracing data in mice. Beige
adipocytes are not included in the tree, given that it is unclear whether these cells are specified embryonically. *The triceps white adipose depot (triWAT) is
not a subcutaneous adipose depot. Rather, it is an internal supra-muscular depot. Grey text indicates specific adipose depots; arrows indicate cell lineage
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et al., 2008). A lateral plate origin for adipocytes was recently
confirmed through the transient induction of Cre activity at E8.5 in
HoxB6-CreERT:mTmG embryos. This marks founder cells in the
splanchnic and somatic layers of the posterior domain of lateral plate
mesoderm and results in the labeling of adipocytes in ventrolateral
adipose depots (i.e. mesenteric, inguinal and female perigonadal)
(Sebo et al., 2018). These data suggest that some visceral and
subcutaneous adipocytes share a common group of founder cells in
the lateral plates, yet these appear to be partitioned into splanchnic
and somatic progenitor pools, respectively. These data also confirm
that perigonadal adipocytes arise from distinct mesodermal
subcompartments in males and females (Fig. 3B), suggesting that
the sex-specific anatomy of the perigonadal fat pad in mice is
coordinately patterned with internal reproductive organs and, thus,
uniquely encoded by male and female genomes.
Our understanding of the adipocyte lineage tree in mice is far

more detailed than it was a decade ago. Nonetheless, we still know
very little about the mechanisms driving the ramification of these
lineages. A functional marker for embryonic interscapular brown
adipocyte progenitors has been identified (Wang et al., 2014),
although it is unclear whether other depot-specific adipocyte
lineages can be molecularly distinguished prenatally, as most
adipose tissue does not form until after birth in mice (Jiang et al.,
2014). Indeed, it is possible that, for the majority of mouse
adipocyte lineages, embryogenesis serves merely to spatially
segregate depot-specific progenitor fields. In this way, such fields
could be directed to an adipocyte fate by local inductive signals at
the outset of depot formation. Consistent with this notion, the
formation of adipose tissue in postnatal mice is partitioned both
spatially and temporally such that each depot emerges in a
stereotyped developmental sequence rather than all at once. For
example, inguinal and retroperitoneal adipocytes become
morphologically distinguishable soon after pups are delivered,
whereas perigonadal adipocytes are not visible until 1 week of age
(Birsoy et al., 2011; Han et al., 2011). Human adipose depots are
also established sequentially, albeit prior to birth. During the second
trimester of gestation, adipose in the head and neck arise, followed
by depots in the torso and limbs (Poissonnet et al., 1984, 1988).
Thus, adipocyte lineage segregation and adipogenesis are likely to
be coordinated developmental events in mice and humans.

Human adipocyte lineage segregation and lipodystrophy
Unsurprisingly, adipocyte lineage segregation is much less
understood in humans. However, it is known that several rare
adipose disorders (RADs) and lipodystrophies result in depot-
specific redistribution and/or loss of fat mass (Herbst, 2012; Herbst
et al., 2003; Köbberling andDunnigan, 1986), raising the possibility
that distinct adipocyte lineages are affected in these conditions.
Indeed, it has been shown in mice that knocking out phosphatase
and tensin homolog (PTEN), an important negative regulator of
the insulin signaling pathway, in the Myf5+-lineage results in a
dramatic reduction in visceral fat mass and a corresponding increase
in interscapular fat mass (Sanchez-Gurmaches et al., 2012).
Interestingly, these observations phenocopy a RAD in humans
called multiple symmetric lipomatosis (Enzi et al., 2002; Herbst,
2012), suggesting a genetic defect that only affects a subset of
adipocyte lineages may be responsible for this disease (Sanchez-
Gurmaches et al., 2012).
In line with this, it has been proposed that mosaicism (a condition

in which a single organism harbors two or more cell populations with
different genotypes) could explain the etiology of at least some
idiopathic partial lipodystrophies (Kim et al., 2009). In this case, a

given embryonic progenitor cell would acquire a deleteriousmutation
in a gene important for adipose tissue development or maintenance.
This mutation would be passed on to daughter cells, including some
but not all adipose-resident cell types, resulting in the failed
establishment and/or maintenance of affected adipose depots.
Importantly, such mutations need not occur strictly in adipocyte
lineages, as it is now clear from mouse studies that proper adipose
tissue function and adipogenesis require the activity of multiple
adipose-resident cell types (Han et al., 2011; Nishimura et al., 2007).

Adipogenesis in vivo
Adipogenesis refers to the process by which new adipocytes
differentiate from precursor cells. Below, we discuss the regulation
of adipogenesis both during development and during tissue
homeostasis.

Developmental adipogenesis
Adipocyte precursors (APs), also called adipocyte stem/progenitor
cells, display a unique cell surface marker profile (CD45−CD31−

CD34+CD29+SCA1+CD24+/−) and are functionally separable by
the presence of CD24. Specifically, CD24 is lost on the AP cell
surface as they commit to the adipocyte fate and exit the cell cycle
(Berry and Rodeheffer, 2013), yet it is not known whether CD24
plays an active role in adipogenesis. APs residing in a white adipose
anlagen (nascent adipose tissue) are highly proliferative prior to
their differentiation and lipid filling (Jeffery et al., 2015). The dif-
ferentiation of these cells is dependent on their crosstalk with var-
ious other cell types in the adipose anlagen. For example, disrupting
angiogenesis (blood vessel formation) and reducing the number of
depot-resident macrophages both result in defective perigonadal
adipose development (Han et al., 2011). Consistent with this, it has
been shown that adipose-resident endothelial cells are essential st-
ructural and functional components of the niche in which APs reside
(Tang et al., 2008), although a direct role for macrophages in adi-
pogenesis has not been identified. Thus, the micro-environment of
nascent adipose tissue is an important regulator of developmental
adipogenesis.

In addition, several transcription factors have been shown to have
important cell-intrinsic roles in the process of adipocyte
differentiation. Indeed, a core adipogenic transcriptional cascade
is well characterized (Farmer, 2006; Lefterova and Lazar, 2009;
Rosen and MacDougald, 2006; Siersbæk et al., 2012). Upstream
components of this pathway include C/EBP transcription factors
that work sequentially to activate PPARγ: the master regulator of
adipocyte differentiation. Knocking out or disrupting the function
of these genes results in severe lipodystrophy (Moitra et al., 1998;
Rosen et al., 1999). A recent study suggested that C/EBPα is not
required for developmental adipogenesis (Wang et al., 2015);
however, this study knocked out C/EBPα using an adiponectin-Cre,
which is active in mature adipocytes but not in APs (Berry and
Rodeheffer, 2013; Jeffery et al., 2014). Thus, C/EBPα may be
dispensable for maintaining certain aspects of adipocyte identity
once these cells have been established. For brown adipogenesis, the
core program is adjoined by unique transcriptional co-regulators,
including PRDM16 and Ebf2, that physically interact with PPARγ
to direct brown adipocyte-specific target gene expression
(Rajakumari et al., 2013; Seale et al., 2008). Notably, these
factors also play a role in beiging, but it is currently unclear whether
beige adipocyte formation is developmentally encoded or whether
these cells arise only upon induction in adult adipose tissue.

Secreted proteins are also thought to play important roles in
developmental adipogenesis. BMP7, for example, has been shown
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to be crucial for the induction of brown adipose tissue formation
(Tseng et al., 2008), whereas BMP2 and BMP4 have been
implicated as positive regulators of white adipogenesis (Huang
et al., 2009; Jin et al., 2006). However, the pro-adipogenic activity
of BMP2 and BMP4 have not been validated in vivo. Similarly,
Wnt10b has been shown to be a potent inhibitor of adipogenesis in
cell culture and implantation models (Bennett et al., 2002; Ross
et al., 2000), but no transgenic mice have been developed to test the
role of Wnt10b in regulating the establishment of specific adipose
depots. Interestingly, Wnts and BMPs are well known morphogens
that direct the patterning and differentiation of various organs in
development (Clevers, 2006; Wagner et al., 2010). It is possible that
opposing gradients of these cytokines are present at presumptive
adipose depots and act to spatiotemporally constrain depot
formation.

Obesogenic adipogenesis
The development of obesity occurs through an increase in adipocyte
number by adipogenesis (hyperplasia) (Fig. 4) and/or an increase
in the size of existing adipocytes (hypertrophy). Here, we will focus
on adipocyte hyperplasia. At the onset of high-fat diet (HFD)
feeding, APs in mice exhibit a burst in proliferation and, over the
course of 7-8 weeks, differentiate into adipocytes (Jeffery et al.,
2015; Vishvanath et al., 2016; Wang et al., 2013). This response is
restricted to visceral adipose tissue in males, but occurs in both
visceral and subcutaneous fat in females (Jeffery et al., 2016;
Vishvanath et al., 2016; Wang et al., 2013). Interestingly,
obesogenic adipogenesis appears to take place preferentially in
APs that express the pericyte marker, Pdgfrb (Vishvanath et al.,
2016), although a functional role for Pdgfrb in this process has not
been identified. Furthermore, obesogenic adipogenesis and
developmental adipogenesis seem to be initiated by distinct signal
transduction pathways, as Akt2 is required for HFD-induced
adipocyte hyperplasia but not for the developmental
establishment of adipocytes (Jeffery et al., 2015). Akt2 knockout
mice display age-dependent lipoatrophy (Garofalo et al., 2003) and
an Akt2mutation in humans (Akt2H274) is associated with reduced
adipose tissue mass (George et al., 2004), indicating this gene is
required for normal adipose tissue maintenance, in addition to
obesogenic adipogenesis. Indeed, it is known that ∼10% of
adipocytes are replaced annually in humans under homeostatic
conditions (Spalding et al., 2008). Thus, loss of Akt2 function may
impair homeostatic adipocyte renewal, resulting in the progressive
loss of adipose tissue mass.
AP behavior is also regulated by micro-environmental and

systemic factors. The reciprocal transplantation of visceral and
subcutaneous APs in male mice results in transplanted APs taking
on the behavioral properties of host-depot APs. That is,
subcutaneous APs transplanted into visceral fat respond to HFD
by proliferating, whereas visceral APs transplanted into

subcutaneous fat do not (Jeffery et al., 2016). Furthermore, it is
known that, in response to HFD, APs in the anterior tip of male
perigonadal fat undergo more adipogenesis than those located in the
posterior region of the depot. Importantly, this seems to be
independent of AP lineage (Sebo et al., 2018), indicating that AP
behavior is strongly influenced by the intra-depot micro-
environment. Indeed, a newly discovered cell population in the
perivascular compartment of adipose tissue has been demonstrated
to negatively regulate adipogenesis in cell culture and Matrigel
implantation models through a paracrine mechanism (Schwalie
et al., 2018). These cells, which are called Aregs and display a novel
cell-surface marker profile (Lin−CD29+CD34+SCA1+CD142+

ABCG1+), might fine-tune the pattern of adipocyte hyperplasia
between and within depots to regulate fat mass and distribution. Sex
hormones also play a role in AP activity, as treating male mice with
estradiol results in a feminized pattern of AP proliferation upon
HFD feeding (Jeffery et al., 2016). Thus, AP behavior is regulated
by cues from the diet, circulating hormones and the micro-
environment (Fig. 4).

Recently, it was shown that feeding PdgfRβ-Cre:mTmG male
mice a Surwit diet (58% kcals from coconut/soybean oil and
sucrose) results in high levels of mGFP+ adipocytes in visceral
(∼35%) and subcutaneous (∼70%) adipose depots after 4 weeks
(Gao et al., 2018). This was interpreted as obesogenic adipogenesis
from PdgfRβ+ APs. However, this conclusion conflicts with
previous findings, particularly observations indicating that
adipocyte hyperplasia is restricted to visceral fat in males and
takes approximately 2 months (Jeffery et al., 2015, 2016;
Vishvanath et al., 2016; Wang et al., 2013). It is possible that a
Surwit diet initiates a pro-adipogenic response that is distinct from
that induced by standard lard-based HFDs. The data from Gao et al.
can also be explained by the induction of PdgfRβ expression in
mature adipocytes; this would be reflected in increased mGFP
labeling of adipocytes in the absence of increased PdgfRβ+ AP
differentiation. Notably, these possibilities are not mutually
exclusive, and further experiments will be required to better
understand the effect of a Surwit diet on obesogenic adipogenesis.

Beiging
Beige adipocyte formation, in contrast towhite adipocyte formation,
in obesity is induced by cold exposure or pharmacological activation
of β-adrenergic receptors (Harms and Seale, 2013). Unlike white
adipogenesis, beige adipogenesis is rapid and can occur in less than
3 days (Wang et al., 2013).De novo adipogenesis is thought to be the
major mechanism by which beige adipocytes arise (Harms and
Seale, 2013; Wang et al., 2013), although these cells can also form
through the direct conversion of white adipocytes (a process also
referred to as transdifferentiation) (Rosenwald et al., 2013; Vitali
et al., 2012). It remains unclear whether all white adipocytes are
capable of taking on thermogenic properties. However, the depot-

Proliferation Differentiation

Micro-environment
HormonesDiet

Fig. 4. Adipocyte hyperplasia is regulated by dietary, micro-
environmental and hormonal cues. New adipocytes form
through the proliferation and differentiation of depot-resident
adipocyte precursor cells. This process is combinatorially
regulated in vivo. However, the molecular mechanisms by which
different cues influence adipocyte hyperplasia are only beginning
to be understood.
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specific micro-environment, particularly innervation, is likely to be
important for both white/beige interconversion and de novo beige
adipogenesis, as higher neurite density in inguinal fat is associated
with beiging (Chi et al., 2018) and ablation of sympathetic
arborizations in inguinal fat prevents beiging upon cold exposure
in this tissue (Jiang et al., 2017). In addition, β3-adrenergic receptor
activation has been shown to be dispensable for cold-induced
beiging and thermogenesis (de Jong et al., 2017), indicating
that beige adipocyte formation can occur by at least two distinct
molecular pathways. Interestingly, beige adipocyte formation
occurs in 3-week-old mice in the absence of overt cold exposure.
These so-called postnatal beige adipocytes subsequently whiten in
adulthood and, if exposed to cold, are more likely to become beige
than are other depot-resident white adipocytes (Wang et al., 2017).
It is unclear whether postnatal beige adipocyte formation is a
genetically encoded process or takes place as a result of reduced
body temperature after weaning (i.e. separation from parents).
It has been reported that F4/80−CD19−CD137+TMEM26+ cells

in subcutaneous fat preferentially differentiate into beige adipocytes
in adults (Wu et al., 2012). However, this cell pool includes
endothelial cells (CD31+) and is not enriched for cells with accepted
markers of stemness (CD34+SCA1+), highlighting that the identity
of beige APs requires further refinement. Importantly, the extent to
which depot-resident white and beige AP populations overlap, if at
all, is currently unclear. The embryonic founder cells from which
beige adipocytes arise are also not known, although it would be
surprising if beige and white adipocyte lineages diverged prior to
depot formation. Indeed, Prx1-Cre tracing labels both white and
beige adipocytes in subcutaneous fat (Sanchez-Gurmaches et al.,
2015), indicating lineage divergence has not occurred by the outset
of limb formation (E9.5-E11.5) (Logan et al., 2002). Consistent
with this notion, it has been reported that at least some beige
adipocytes, but not white adipocytes, arise from a common depot-
resident progenitor pool with smooth muscle cells (Long et al.,
2014). However, lineage-tracing experiments from this study are
difficult to interpret due to poor adipocyte labeling. Interestingly,
both white and beige adipocytes arise from a PdgfRa+ lineage
(Berry and Rodeheffer, 2013; Lee et al., 2012), and depot-resident
PdgfRb+ APs can differentiate into adipocytes of either type
depending on the mode of stimulation (i.e. HFD or cold)
(Vishvanath et al., 2016). Thus, distinguishing white and beige
adipocyte lineages merely by the ancestral expression of a single
gene may not be sufficient. Indeed, beige adipocytes can switch
to a white adipocyte phenotype when cold exposure is abated
(Rosenwald et al., 2013) and also retain a beige-like chromatin state
poised for thermogenic gene expression under such conditions (Roh
et al., 2018). Thus, the concept of distinct white and beige adipocyte
lineages may not be valid in all physiologic contexts. Further work
will be required to identify the in vivo regulators of beiging and the
phenotypic range of adipocytes.

Conclusions and future perspectives
In this Review, we have discussed cellular and molecular features of
adipose tissue assembly, focusing on the embryonic segregation of
adipocyte lineages and adipogenesis in vivo. It is now apparent
that adipocytes have remarkably diverse developmental ancestries,
and that adipogenesis is a context-dependent, modifiable cell
differentiation program. Yet we know little about how adipocyte-
fated embryonic progenitors are allocated to specific depots, nor
have any mechanisms been implicated in the temporal regulation of
depot formation. Indeed, how the core adipogenic transcriptional
program is differentially deployed in development and in response

to specific external cues, such as diet and temperature, has only
recently become an area of active investigation. Therefore, a great
research frontier lies ahead.

Next-generation sequencing methods involving DNA barcodes
and single cell transcriptional profiling have emerged as powerful
tools for lineage tree reconstruction and the study of cell
differentiation (Kalhor et al., 2018; Kumar et al., 2017; McKenna
et al., 2016). In addition, intravital imaging approaches have
tremendous utility for viewing cell dynamics in live animals in real
time (Nishimura et al., 2008). Implementing such methods in
the study of adipose tissue will be crucial to gain further insight
into how adipose tissue develops and how micro-environmental
factors influence adipogenesis in vivo. This has implications for
understanding not only the structural emergence and maintenance
of adipose tissue, but also how adipose formation is involved
more broadly in establishing and integrating systemic metabolic
regulatory networks.
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