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Mapping chromatin modifications at the single cell level
Connor H. Ludwig and Lacramioara Bintu*

ABSTRACT
Understanding chromatin regulation holds enormous promise
for controlling gene regulation, predicting cellular identity, and
developing diagnostics and cellular therapies. However, the
dynamic nature of chromatin, together with cell-to-cell heterogeneity
in its structure, limits our ability to extract its governing principles.
Single cell mapping of chromatin modifications, in conjunction with
expression measurements, could help overcome these limitations.
Here, we review recent advances in single cell-based measurements
of chromatin modifications, including optimization to reduce DNA loss,
improved DNA sequencing, barcoding, and antibody engineering.
We also highlight several applications of these techniques that
have provided insights into cell-type classification, mapping
modification co-occurrence and heterogeneity, and monitoring
chromatin dynamics.
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Introduction
Most cells in an organism share the same genetic code, yet they
express different sets of genes and display distinct cellular
phenotypes that give rise to complex tissues with specialized
functions. At the heart of this incredible phenotypic diversity is an
intricate network of transcription factors, non-coding RNAs and
chromatin regulators (Allis and Jenuwein, 2016). Chromatin serves
as a substrate for these regulatory factors: chemical modifications on
histone proteins and DNA can introduce recognition motifs for these
factors and alter chromatin accessibility and 3D organization. These
chromatin modifications can affect gene expression, genome
replication, and DNA repair, and, in turn, these processes can
change the state of chromatin. As a result, chromatin modifications
are essential for establishing and maintaining cellular identity as well
as for regulating dynamic responses during development and disease.
The repertoire of distinct histone modifications is large, with

approximately 15 known chemical moieties and hundreds of
modifiable residues across five constituent histone proteins and
their variants (Huang et al., 2014). The best-characterized histone
modifications include acetylation and methylation of lysine
residues, primarily on the N-terminal tails of histones H3 and H4
(Fig. 1A). Lysine acetylation (Kac) is positively correlated with
transcription, whereas lysine methylation (Kme) is either positively
or negatively correlated with transcription depending on the residue,
degree of methylation (Lawrence et al., 2016) and modification
status of neighboring residues (Kouzarides, 2007).
DNA can also be modified, although fewer DNA modifications

are known compared with histone modifications. The most common

DNA modification in mammalian genomes is cytosine methylation
(5mC), which occurs most often at CpG dinucleotides (Ehrlich
et al., 1982; Stevens et al., 2013). This type of methylation generally
correlates negatively with transcription at promoters (Jones et al.,
1998). Interestingly, for actively transcribed genes, DNA
methylation within the gene body is believed to prevent aberrant
transcription initiation (Neri et al., 2017). Successive oxidation
of 5mC yields other possible modifications of cytosine: 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC) (Fig. 1B). Whereas 5mC and, to a lesser
extent, 5hmC are stable, 5fC and 5caC are more transient. Currently,
there is debate as to whether these less stable modifications play a
functional role beyond serving as intermediates in the active
demethylation pathway (Wu and Zhang, 2017; Zhu et al., 2018).

Given the diversity of chromatin modifications, there has been a
massive effort to measure them at a genome-wide level and in
different cell types (Allis and Jenuwein, 2016; Martens and
Stunnenberg, 2013; Roadmap Epigenomics Consortium et al.,
2015). The development of bulk methods for detecting chromatin
modifications has expanded our understanding of their roles during
development and across cell types. However, these bulk methods
often require substantial starting material (tens of millions of cells)
and produce population-averaged signals. These limitations
diminish their utility in cases where sample size is small and
heterogeneous, for example in clinical settings and when studying
primary cells during development or in situ.

By contrast, single cell methods overcome such limitations and can
actually measure heterogeneity in small samples (Fig. 2A).
Additionally, single cell-based detection of chromatin modifications
allows us to track cell lineages in development or disease (Fig. 2B).
Moreover, now that we know the identity of most molecular players in
the chromatin regulatory network (Kouzarides, 2007), it is time to
dissect the finer mechanistic details of their dynamic interactions.
Because chromatin and gene regulation are stochastic and can lead to
cell-to-cell heterogeneity, many questions concerning these processes
would benefit from single cell approaches. For example, what
combinations of chromatin modifications appear together in
individual cells, and which signals result from cell-to-cell
heterogeneity (Fig. 2C)? What type and number of modifications are
necessary and sufficient to effect changes in gene expression? Finally,
how and when does partitioning of chromatin during replication lead to
epigenetic memory? Answering these latter questions requires a
combination of single cell methods that detect chromatin state and
RNA levels (Tanay and Regev, 2017).

In this Review, we describe and assess (see Box 1, Table 1)
methods for detecting and mapping chromatin modifications,
focusing on technical advancements that have enabled adaptation
to the single cell level and on ways of combining them with
measurements of other cellular characteristics. Even though
chromatin accessibility, three-dimensional chromatin structure and
subnuclear localization contribute to cell identity and gene control
(for recent reviews, see Shema et al., 2018; Tanay and Regev, 2017;
Tycko et al., 2017), we will not cover these topics. Finally, we
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describe biological applications and insights gained using these
technologies and discuss how they could be improved and
incorporated into global scientific initiatives.

Classical methods for measuring histone modifications
The detection of histone modifications relies primarily on chromatin
fragmentation by sonication or DNA digestion, followed by
immunoprecipitation of the resulting mononucleosomes with
antibodies against a specific modification (in a process termed
chromatin immunoprecipitation, ChIP). Readout of the genomic
location of the modified nucleosomes is then performed using
quantitative PCR of a specific genomic locus (ChIP-qPCR) or
next-generation sequencing (NGS) for genome-wide detection
(ChIP-seq; Fig. 3A).
Classical ChIP has some major limitations that preclude its

adaptation to the single cell level robustly. First, crosslinking before
fragmentation can lead to artifacts, decrease reproducibility and

impair immunoprecipitation. Thus, recent protocols have excluded
this step, instead performing native ChIP (Kasinathan et al., 2014).
Second, chromatin sonication requires large numbers of cells
(hundreds of thousands to millions). The alternative to sonication,
micrococcal nuclease (MNase) digestion, can be performed with
smaller cell numbers or in situ (Skene et al., 2018). However,
MNase treatment can digest away a portion of nucleosomal DNA
(Henikoff et al., 2011), thus reducing the number of mapped reads
from a single cell. Third, antibodies used for immunoprecipitation
may exhibit low affinities for their respective targets, requiring
increased input (i.e. large cell numbers); additionally, they may vary
from lot to lot and have a low specificity (Kungulovski et al., 2014).

Genetically encoded histone modification-specific recognition
proteins present an ideal alternative to antibodies, as they can be
engineered for greater affinity and specificity and could improve
reproducibility. One such approach employs ‘reader’ domains that
have evolved to bind specific histone modifications (Yun et al.,
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Fig. 1. Key types of chromatin modifications. (A) Some of the most common histone modifications (shown on the left) occur at lysine (K), arginine (R),
serine (S) and threonine (not shown) residues. These occur on the protruding tails of various histones (right) and can be positively (blue) or negatively (red)
associated with transcription. Residue number, single-letter amino acid codes, and modifications are shown. ac, acetylation; cit, citrullination; me, methylation;
ph, phosphorylation; ub, ubiquitylation. Adapted from Huang et al. (2014) and Lawrence et al. (2016). (B) Cytosine, when in the form of deoxycytidine
monophosphate in DNA, can be methylated by DNA methyltransferases (DNMTs) and further oxidized by TET enzymes to produce four distinct species with
context-specific effects on transcription, as indicated. The final two species in this pathway may be converted back to unmodified cytosine through base excision
repair (BER). Asterisks indicate nucleobases that are chemically converted to uracil upon bisulfite treatment.
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2011). Although binding affinities for their targets are often
lower than those of antibodies (Kungulovski et al., 2014), reader
domains have known sequences and thus can be evolved to improve
affinity and specificity (Tekel et al., 2018). Similarly, fluorescent
modification-specific intracellular antibodies (mintbodies) are
small, GFP-tagged, single-chain variable fragments that can be
expressed in vivo to allow live imaging of histone modification
dynamics spatiotemporally (Sato et al., 2013) (Fig. 3J). Although
only anti-H3K9ac and anti-H4K20me1 mintbodies have been
developed so far (Sato et al., 2016), a future library of these tools
could enable multiplexed quantification of chromatin dynamics in
live cells.

Single cell measurements of histone modifications
In order to decipher the role of histone modifications in different
cellular functions, we would ideally need to measure multiple
histone modifications in single cells, link this information to defined
genetic loci, and measure the dynamics over time in live cells.
Although this type of multiplexed, genome-wide, live dynamics of
histone modifications has not yet been achieved at the single cell
level, recent advances – some of which are adaptations of classical
ChIP – have allowed histone modifications to be probed in various
ways at the single cell level.

Detecting and mapping single histone modifications over multiple
loci
At present, single cell ChIP-seq (scChIP-seq) was the first technique
that offers multi-locus reporting of a histone modification at the single
cell level (Rotem et al., 2015) (Fig. 3B). To overcome the limitations
associated with sonication, scChIP-seq uses microfluidics to isolate
cells into individual droplets, in which chromatin is digested and
barcoded before classical immunoprecipitation. Approximately 100
cells can be processed per assay, generating 500-10,000 unique reads
per cell. In order to extract meaningful insights from the data despite
limited coverage and low cell numbers, the authors of the above study
clustered single cell data belonging to genomic regions likely to be
similarly modified, such as a particular enhancer and the promoters it
drives. This classification of genomic regions was performed using
publicly available bulk ChIP-seq data. In this manner, the authors
identified three distinct H3K4me2-associated epigenetic signatures
within heterogeneous mouse embryonic stem cells (mESCs) grown in
serum, which primes these cells for differentiation, and showed that
these states correlate with the expression of pluripotency and
chromatin factors (Rotem et al., 2015). The low cell yield and
coverage, together with the need for a specialized microfluidics
device, might explain why scChIP-seq has not yet been applied
widely. However, as the authors suggest, the cell yield can be
increased by expanding the number of barcodes using beads
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Fig. 2. Measuring chromatin modifications at the single cell level can provide mechanistic insights into biological questions. (A) Distinct single cell
chromatin modification profiles enable computationally aided cell-type or cell-state classification. (B) Single cell methods allow cell lineages to be tracked by
following epigenetic signatures maintained throughout differentiation and development. (C) Measuring chromatin modifications (e.g. Mod 1 and Mod2) at the
single cell level can resolve averaging-associated ambiguities from bulk data to reveal potential population heterogeneity.

Box 1. Metrics of single cell technologies
In order to compare different single cell technologies, we use here a set
of metrics that were previously defined (Tanay and Regev, 2017) –

complexity, accuracy, throughput and efficiency – to which we will add a
fifth: portability. Complexity describes the number of molecules that can
be identified per cell. The complexity metric has multiple axes: the
number of chromatin modifications, the number of genomic loci (Fig. 6),
and the ability to follow modifications and loci dynamically over time and
space. Accuracy refers to the signal-to-noise ratio of the assay, with high
accuracy requiring high detection efficiency of the correct chromatin
modifications and a low error rate. Throughput is defined as the number
of cells that can be processed in an assay, and efficiency refers to the
fraction of those cells that yields usable data. Finally, additional metrics,
such as reproducibility between users and biological replicates, as well
as accessibility, cost, and ease-of-use of equipment and reagents, can
be subsumed under the broader category of portability. In a sense, how
easily can a technology be ported to a new physical research
environment or biological question with minimal troubleshooting and
financial cost? As most current single cell technologies for mapping
chromatin modifications are still in their infancy, each of them usually
scores highly in one or two of these categories (Table 1).

3

REVIEW Development (2019) 146, dev170217. doi:10.1242/dev.170217

D
E
V
E
LO

P
M

E
N
T



(Klein et al., 2015; Macosko et al., 2015), and higher coverage could
be achieved by optimizing ligation efficiency and amplification.
Very recently, three new single cell methods for detecting histone

modifications were published: single cell chromatin integration
labeling followed by sequencing (scChIL-seq) (Harada et al., 2019)
(Fig. 3C), single cell cleavage under targets and tagmentation
(scCUT&Tag) (Kaya-Okur et al., 2019) (Fig. 3D), and single cell
chromatin immunocleavage followed by sequencing (scChIC-seq)
(Ku et al., 2019) (Fig. 3E). All three methods replace traditional
immunoprecipitation and sonication with in situ (inside nuclei)
reactions: either via antibody-directed, transposase-mediated
integration of a DNA tag and fragmentation (for scChIL-seq and
scCUT&Tag), or via DNA cleavage specifically around
nucleosomes containing the target modification (for scChIC-seq).
These in situ reactions remove the need to solubilize chromatin and

thus reduce material loss. scChIL-seq and scCUT&Tag convolute
chromatin accessibility with immune recognition of the histone
modification, as the transposase is biased toward accessible
chromatin (Buenrostro et al., 2015). Overall, this accessibility bias
results in low Pearson’s correlation coefficients between bulk ChIP-
seq and ChIL-seq, especially for repressive histone modifications,
such as H3K27me3, that lie within less accessible chromatin
(r=0.26-0.31). This bias is also observed for the MNase action in
scChIC-seq for H3K27me3, albeit to a lesser extent (r=0.67).
Although the application of these methods is in its infancy, they
have unique advantages over scChIP-seq: scChIL-seq provides
spatial information by imaging the inserted probe; scCUT&Tag and
scChIC-seq have simplified workflows, are higher throughput owing
to expanded barcodes, and are more cost-effective. Therefore, we
foresee further development and applications of these techniques.

Table 1. Assessment of single cell methods for detecting DNA and histone modifications

Method Throughput Efficiency Complexity Accuracy Portability Reference(s)

Histone modifications

scChIP-seq 100 cells 5000-10,000 reads/cell
(66-79% reads mapped)

One modification
Multi-locus
Endpoint

DR: NR
FP: NR

Low (microfluidics) Rotem et al., 2015

scChIL-seq Five cells 10,000-100,000 reads/cell One modification
Multi-locus
Endpoint+Spatial

DR: 10-93%
FP: NR

Moderate Harada et al., 2019

scCUT&Tag 1000 cells 1000-100,000 reads/cell One modification
Multi-locus
Endpoint

DR: NR
FP: NR

Moderate
(nanowells)

Kaya-Okur et al., 2019

scChIC-seq 100-300 cells 1000-100,000 reads/cell One modification
Multi-locus
Endpoint

DR: 47-61%
FP: NR

High Ku et al., 2019

Co-ChIP* 1-10×106 cells NR Two modifications
Multi-locus
Endpoint

DR: NR
FP: NR

Moderate Weiner et al., 2016

SMD* 1-10×106 cells 80% reads mapped Two modifications
Multi-locus
Endpoint

DR: 75%
FP: 0.1%

Low (TIRF) Shema et al., 2016

EpiTOF 1-10×106 cells NR <60 modifications
Whole cell
Endpoint

DR: NR
FP: NR

Low (FACS-MS) Cheung et al., 2018

ISH-PLA Whole tissue section or
culture

NR One modification
One locus
Endpoint

DR: 66%
FP: NR

Low (confocal) Gomez et al., 2013

Mintbodies Organism or cell culture NR One modification
Whole cell
Dynamics

DR: NR
FP: NR

Low (live imaging) Sato et al., 2013
Sato et al., 2016

DNA modifications

scRRBS-seq 10-100 cells 80-100% cells
(20% reads mapped)

5mC/5hmC
Multi-locus
(max 10% of CpGs)

Endpoint

DR: NR
FP: <0.8%

High Guo et al., 2013
Wang et al., 2015
Ma et al., 2018

scBS-seq 10-100 cells 100% cells (20.1% reads
mapped)

5mC/5hmC
Multi-locus
(max 48.4% of CpGs)

Endpoint

DR: >92%
FP: <2.3%

High Smallwood et al., 2014
Clark et al., 2017

scAba-seq 100-1000 cells 43.4% cells (mapping
efficiency NR)

5hmC
Multi-locus
Endpoint

DR: 10%
FP: 2%

High Mooijman et al., 2016

SMRT* NR NR 6mA
Multi-locus
Endpoint

DR: NR
FP: NR

Low Flusberg et al., 2010
Suzuki et al., 2016

Nanopore* ∼1×107 cells (100 μg
starting
DNA; 20 ng loaded)

NR 6mA, 5mC, 5hmC
Multi-locus
Endpoint

DR: NR
FP: NR

High Laszlo et al., 2013
Schreiber et al., 2013
Simpson et al., 2017
Rand et al., 2017

DR, detection rate; FP, false positives; NR, not reported.
*Single molecule, not single cell.
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Detecting and mapping co-occurring histone modifications
Although mapping one modification in single cells is informative,
many loci have multiple modifications that contribute to their
function (Strahl and Allis, 2000). For example, co-occurrence of
histone modifications with opposing effects, specifically H3K4me3
(active) and H3K27me3 (repressive), is thought to poise a locus for
fast transcriptional activation or silencing (Bernstein et al., 2006).
Such bivalency is thought to be especially important during lineage
specification and development. A recently developed imaging-
based technology employed genetically encoded chromatin-sensing
multivalent probes (cAMPs) to examine this bivalency (Delachat
et al., 2018) at the whole-cell level. The probe – a fluorescent fusion
protein containing micromolar-affinity readers of the H3K4me3 and
H3K27me3 modifications – produces a stable signal at locally

clustered bivalent chromatin, revealing localization changes upon
treatment with methyltransferase inhibitors.

Two other methodologies have been used to not only identify co-
occurring modifications on single nucleosomes but also map their
genomic locations (Shema et al., 2016; Weiner et al., 2016).
Although these techniques are single molecule-based, with each
nucleosome originating from a single cell, they are not single cell at
the genome-wide level, as there is no mechanism for grouping
different nucleosomes together based on cell of origin in current
workflows. The first technology providing modification co-
occurrence information at the single nucleosome level is an
imaging-based method combining visual detection of histone
modifications with on-slide sequencing (Shema et al., 2016)
(Fig. 3F). In this method, single nucleosomes are immobilized on
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glass slides and imaged using fluorescent antibodies against two
histone modifications at a time. Successive rounds of antibody
removal and incubation can provide co-occurrence information for
more than two histone modifications. This approach allowed the
authors to measure the fractions of nucleosomes containing
particular combinations of modifications in different cell types or
after treatment with epigenetic inhibitors. Furthermore, dissociation
of the histones and single molecule sequencing on the remaining
slide-bound DNA enables mapping of each nucleosome to its
genomic location. The addition of a cell-barcoding step could
advance this technique to the genome-wide, single cell level.

However, the current workflow and required infrastructure/
equipment limit the accessibility of this technology.

The second technology, termed Co-ChIP, has been used to
characterize the co-occurrence of 70 histone modification pairs
(14 primary modifications against five secondary modifications)
at the single nucleosome level (Weiner et al., 2016) (Fig. 3G).
Co-ChIP largely proceeds similarly to classical ChIP, whereby
chromatin is cross-linked, sonicated and subjected to two sets of
immunoprecipitations. However, after each immunoprecipitation
step, each particular histone modification is effectively recorded
to its nucleosomal DNA by adaptor ligation or PCR barcoding,
thus allowing mapping of co-occurring modifications on single
nucleosomes. Using this method, the authors discovered a new
combination of modifications (H3K9me1 and H3K27ac) that is
characteristic of super-enhancers and characterized bivalent
domains (marked by H3K4me3 and H3K27me3) in different
cell types. One can envision adding cell barcoding to this
workflow in order to profile combinations of modifications across
different regulatory regions in the same cell.

A recently published mass cytometry platform, termed epigenetic
landscape profiling using cytometry by time-of-flight (EpiTOF;
Cheung et al., 2018), greatly extends the number of histone
modifications that can be measured simultaneously in a given cell
(Fig. 3H). This multiparametric detection method is based on
cytometry by time-of-flight (CyTOF), which can label up to 60
targets with heavy metal isotype-tagged antibodies and measure
single cell global levels by mass spectrometry (Bandura et al.,
2009). EpiTOF was used to measure cell type-specific histone
modification patterns that could be used to predict immune cell
identity (Cheung et al., 2018). Additionally, it was demonstrated
that intercellular variability of histone modifications and histone
variants increases in human immune cells with age. The throughput
and target complexity of EpiTOF supersedes that of other epigenetic
technologies; however, readouts of global levels preclude a precise
understanding of chromatin state at individual loci, as mass
spectrometry cannot be easily coupled with sequencing.

Monitoring spatial and temporal distributions of chromatin
modifications
DNA in situ hybridization and proximity ligation (ISH-PLA) can
provide imaging-based, locus-specific histone modification
information, as well as cell phenotype and cell-cell interaction
information (Gomez et al., 2013) (Fig. 3I). This method uses two
oligo-tagged antibodies, one to recognize a genomic locus and the
other a histone modification. When both are in proximity, rolling
circle amplification from the two oligos locally produces DNA that
can be imaged. ISH-PLA has been used in histological samples to
demonstrate that epigenetic signatures can be used for lineage tracing
and identifying cell types in the context of atherosclerosis, even in the
absence of expression of classical marker genes (Gomez et al., 2013).
However, ISH-PLA has not been widely adopted, perhaps because of
its requirement for special equipment, its non-quantitative readout,
and the low volume of information (i.e. single locus, single
modification) that can be extracted from each experiment.

Measurements of histone modifications at a single locus have also
been performed in live cells, although the locus needs to contain
repetitive sequences in order to produce a detectable signal. The
repetitive regions assayed were either engineered to contain a ∼200
copy tandem gene (Stasevich et al., 2014) (Fig. 4A) or were part of
natural satellite repeats (Lungu et al., 2017). In the tandem gene
system, antibody-derived, fluorescently labeled antigen-binding
fragments (Fabs) were introduced to measure, at the single cell

Fig. 3. Detecting and mapping histone modifications at the single cell
level. (A) ChIP-seq is the classical approach to mapping histone modifications
in bulk samples. It involves cell preparation, cross-linking of protein/DNA
components by paraformaldehyde (PFA), chromatin fragmentation by
sonication, immunoprecipitation (IP), and sequencing. Variations of this
approach enable single cell level measurements to be made. (B) scChIP-seq
employs microfluidics to encapsulate individual cells in droplet reaction
chambers for DNA fragmentation by micrococcal nuclease (MNase) and
ligation of cell-specific identifiers. Barcoded cells are pooled for IP, library
preparation, and sequencing, as in bulk ChIP-seq. (C) scChIL-seq is
performed on fixed single cells deposited in individual microwells. A primary
antibody against a histone modification of interest is detected by a chromatin
integration labeling (ChIL) probe comprising a secondary antibody conjugated
to TAMRA fluorophore-labeled double-stranded DNA. This probe is imaged
(via TAMRA) to determine the subnuclear localization of the modified
nucleosomes and integrated into the sequence adjacent to the modified
nucleosome via Tn5 transposase-binding of the mosaic end (ME) in a process
called tagmentation (Tagm.). This resulting sequence is amplified by in situ
transcription from a pT7 sequence included in theDNAoligo; this RNA library is
reverse transcribed (not shown), and well-specific (cell-specific) barcodes are
introduced during PCR amplification (not shown). (D) scCUT&Tag uses an
antibody-Tn5 or a protein A-Tn5 fusion that associates with a pre-incubated
antibody against a specific histone modification to insert pre-complexed
adapters near modified nucleosomes upon magnesium addition. Insertion is
performed on a pool/suspension of cells, which are then individually sorted into
a chip array of nanowells with unique indexing primer pairs. In each nanowell,
DNA is fragmented upon Tn5 dissociation and, upon PCR amplification, cell-
specific barcodes are introduced. (E) scChIC-seq can be used on fixed or
unfixed cells and involves incubation with an antibody-MNase or protein
A-MNase fusion that associates with a pre-incubated antibody against a
specific histone modification. Single cells are sorted into tubes and calcium is
added to trigger MNase-mediated fragmentation. PCR amplification strongly
selects for small, mononucleosomal fragments and enables cell-specific
barcode incorporation. (F) Single molecule decoding of combinatorially
modified nucleosomes (SMD) identifies the positions of bound nucleosomes
and detects antibody-labeled histone modifications via total internal reflection
fluorescence (TIRF) microscopy, followed by dissociation of histone proteins
and on-slide sequencing of the remaining, bound DNA. (G) Co-ChIP employs
two rounds (×2) of IP on bulk samples. After the first IP reaction, each
nucleosome is uniquely barcoded via adapter ligation to effectively ‘record’
detection of the first histone modification at the DNA level (dashed arrow).
Subsequently, chromatin is released, pooled, and divided for a second set of
IPs. The resulting DNA is PCR-amplified with primers unique to the second
modification to record its presence (dashed arrow). NGS enables mapping of
nucleosomes that contain particular combinations of modifications to the
genome. (H) EpiTOF employs heavy metal isotope-tagged (HMIT) antibodies
and inductively coupled plasma mass spectrometry (ICP-MS) to report global
levels of up to 60 targets in a single cell. (I) ISH-PLA involves DNA in situ
hybridization (ISH) of a biotin-labeled oligo to a target sequence. Samples are
then incubated with primary antibodies against biotin and a histone
modification of interest. DNA oligo-labeled secondary antibodies serve as
primers for rolling circle amplification (RCA). These primers hybridize to
circular DNA to enable successive rounds of amplification by DNA
polymerase, and the amplified DNA is detected with fluorescent single-
stranded DNA probes. (J) The use of genetically encoded mintbodies against
histone modifications of interest enables the global measurement of temporal
and spatial chromatin dynamics in live cells. scFv-GFP, single-chain variable
fragment fused to GFP.
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level, the effect of H3K27ac on RNA polymerase II recruitment,
initiation, and elongation dynamics at the gene array with temporal
resolution on the order of tens of seconds. This live endogenous
modification labeling revealed that H3K27ac acts to increase
accessibility for incoming transcription factors and outgoing RNA
polymerase II, as evidenced by increased elongation rates.
Gene reporter systems that indirectly monitor single cell

chromatin dynamics, avoiding the need for antibodies or reader
domains, have also been utilized. For instance, gene silencing and
reactivation dynamics can be quantified via flow cytometry and live
imaging with single cell tracking upon recruitment or release of
chromatin regulators at a fluorescent reporter (Bintu et al., 2016)
(Fig. 4B). Using this approach, it was demonstrated that various
chromatin regulators associated with repressive histone
methylation, DNA methylation or histone deacetylation impart
distinct kinetics and permanence of epigenetic memory. Notably,
the authors proposed a three-state model of gene expression – with
active, reversibly silent, and irreversibly silent states – to which they
could fit single cell data to classify each chromatin regulator based
on calculated kinetic parameters.

Classical methods for measuring DNA modifications
Classically, mapping DNA modifications relies on one of the
following techniques: (1) chemical conversion of unmodified

nucleobases to another nucleobase (Frommer et al., 1992); (2)
recognition of the modified nucleobases by restriction enzymes
(Jelinek and Madzo, 2016); or (3) recognition of the modified
nucleobases by antibodies (Weber et al., 2005). The last two methods
are less popular: the second is restricted to detecting modifications at
the subset of DNA loci that contain the particular enzyme recognition
sequence, and the thirdmethod is not ideal because existing antibodies
do not discriminate well between DNA modifications, and it has low
resolution (a few hundred base pairs, limited by fragment length).

The most commonly used method employs sodium bisulfite to
convert unmethylated cytosines to uracil, followed bysequencing (BS-
seq) (Frommer et al., 1992) (Fig. 5A). Although BS-seq can detect
modifications at the single base level, it suffers from three major
drawbacks. First, bisulfite treatment reduces all possible cytosine
modifications to one of two states: converted or unconverted.
Specifically, both 5mC and 5hmC, which can have opposing effects
on gene expression (Zhu et al., 2018), are protected from conversion
(Huang et al., 2010), whereas C, 5fC and 5caC are substrates for
conversion. Second, bisulfite treatment is harsh: because conversion is
much more efficient on single-stranded versus double-stranded DNA
(Shapiro et al., 1974), the required acidic conditions and high
temperatures ultimately degrade approximately 90%of the input DNA
(Grunau et al., 2001). Moreover, as sequencing adapters are
traditionally added to DNA prior to bisulfite treatment, a substantial
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Fig. 4. Monitoring chromatin modifications and transcription dynamics. (A) Introducing fluorescent antigen-binding fragments (Fabs) into cells for live
endogenous modification labeling (LEM) can elucidate chromatin and transcription dynamics to examine their interplay. For example, one can track histone
modifications (i), GFP-labeled transcription factors (ii), and phosphorylated serine residues (Ser) in the carboxy-terminal domain (CTD) of RNA pol II that are
related to recruitment, initiation and elongation (iii-v). Figure adapted from Stasevich et al. (2014). (B) Gene reporter systems can also be used to follow chromatin
dynamics. In the example shown, doxycycline (dox) mediates the recruitment of a chromatin regulator (CR; orange circle) fused to a reverse tetracycline repressor
(rTetR; yellow box) to TetO sites upstream of a constitutively expressed fluorescent reporter gene. Recruitment induces gene silencing and deposition of
chromatin modifications, and CR release allows gene reactivation. (C) Methylation at an endogenous locus can bemonitored by integration of a reporter gene that
consists of a minimal imprinted gene promoter (Snrpn) and the coding sequence for a fluorescent protein (tdTomato). DNA methylation spreads from the
endogenous locus into the reporter, leading to its silencing. (D) The direct readout of DNA or histone methylation at a locus of interest is possible upon
reconstitution of a split fluorescent protein (Venus), the constituents of which are fused to a programmable DNA-binding domain (DBD) and a modification
detection domain (MDD).
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Fig. 5. Detecting and mapping DNA modifications at the single cell level. (A) BS-seq is the most commonly used bulk method for mapping 5mC/5hmC with
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converts only C, 5fC and 5caC to uracil, which are read as thymines in next-generation sequencing (NGS), whereas 5mC and 5hmC resist conversion and are
read as cytosines. This technique has been modified in various ways to enable single cell-based measurements. (B) scRRBS-seq maps 5mC/5hmC and
uses a one-tube protocol to minimize sample loss. The restriction endonuclease MspI releases CpG-rich DNA fragments for bisulfite treatment, increasing the
amount of CpG information that can be obtained with fewer sequencing reads. (C) scBS-seq provides whole-genome 5mC/5hmC information with less
material loss than traditional methods by using post-bisulfite adapter tagging (PBAT) to avoid DNA damage that otherwise prevents PCR amplification.
(D) scMAB-seq uses the methyltransferase M.SssI to convert all unmodified cytosines to 5mC such that the only nucleobases converted to uracil by bisulfite are
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involves glucosylation of 5hmC by T4 phage β-glucosyltransferase, followed by glucosylation-dependent digestion by the AbaSI restriction endonuclease,
cell-specific barcoded adapter ligation, and in vitro transcription amplification (IVT) from the T7 promoter (pT7). The transcripts are fragmented and subjected to
RNA-seq library preparation. (G) Single molecule real-time sequencing (SMRT) is a third-generation, sequencing-by-synthesis technique that uses extremely
small imaging volumes to boost the fluorescent signal from nucleotide incorporation into a single molecule (SM) template. Special adapters circularize the
template to enable many reads of the same molecule, and modified nucleobases can be distinguished from unmodified ones based on differential kinetics.
(H) Nanopore sequencing is a third-generation approach that reads the current as nucleobases pass through a transmembrane pore. Special adapters are
required for pore loading, and nucleobase (modified or unmodified) identity can be predicted from the associated current reading. Both SMRT and Nanopore
sequencing can read much longer molecules than NGS.
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portion of sequences fail to amplify as a result of DNA damage. Third,
the conversion of unmodified cytosines, which normally account for
∼20% of the genome, to uracil greatly reduces sequence complexity.
This constrains PCR primer design for library preparation and
potentially hinders downstream sequencing and genome mapping
(Callinan and Feinberg, 2006).

Single cell measurements of DNA modifications
Current methods for detecting DNA modifications at the single cell
level are either direct – using bisulfite conversion, methylation
sensitive restriction enzymes, or third-generation sequencing – or
indirect – using fluorescent reporters sensitive to DNA methylation
(for a recent review, see Karemaker and Vermeulen, 2018).
These methods primarily focus on 5mC and 5hmC, the two most
common DNA modifications, but a subset could be adapted to
detect other modifications.

Bisulfite-based measurements of DNA modifications
Bisulfite conversion followed by sequencing was the first method to
map DNA modifications to many loci at the single cell level and is
currently the most developed in terms of throughput and base-pair
resolution. As previously discussed, bisulfite conversion of
unmodified cytosines cannot discriminate between 5mC and
5hmC (Huang et al., 2010). This limitation must be considered,
especially when interpreting mechanistic results in cell types with
higher levels of 5hmC, such as embryonic stem cells and neurons
(Wu and Zhang, 2017).
The first single cell, multi-locus method for DNA methylation

mapping used a modified version of reduced representation bisulfite
sequencing (RRBS-seq) (Gu et al., 2011; Meissner et al., 2005),
performing all reaction steps for a single cell in one tube in order to
reduce DNA loss (Guo et al., 2013) (Fig. 5B). RRBS-seq involves
enrichment of CpG-rich regions by digesting DNA with the
restriction endonuclease MspI at C^CG_G sites (approximately
once per 256 bp), followed by ligation of sequencing adapters. This
guarantees that each adapter-tagged fragment contains at least two
CpG sites and allows for comparison of methylation profiles at
select CpGs with fewer overall sequencing reads. However, single
cell RRBS-seq (scRRBS-seq) can only detect a theoretical
maximum of 10% of CpGs and still suffers from reduced material
recovery, as bisulfite conversion is performed after adapter ligation.
Nonetheless, the authors used this method to show that DNA
demethylation inmouse zygotes occurs more rapidly at gene regions
compared with intergenic regions after fertilization.
Single cell bisulfite sequencing (scBS-seq) has also been

extended to the whole genome (Smallwood et al., 2014) by using
post-bisulfite adaptor tagging (PBAT) (Miura et al., 2012). By
performing adapter addition after the DNA-damaging bisulfite
conversion step, this method avoids accidental fragmentation of
adapter-tagged DNA molecules, thereby increasing the amount of
DNA that can be successfully amplified during library preparation
(Fig. 5C). The whole-genome nature of scBS-seq provides fivefold
more CpG information than scRRBS-seq at the same sequencing
depth (Smallwood et al., 2014). The reproducibility of the scBS-seq
protocol was benchmarked using oocytes, which are highly
homogeneous and have well-defined DNA methylation profiles.
Using this approach, it was also demonstrated that mESCs grown
in serum have increased variability of DNA methylation at active
enhancers, suggesting that enhancers are the first triggers in cell
fate changes.
Several recent alterations to the basic scBS-seq and scRRBS-

seq protocols have increased throughput, decreased amplification

bias and improved data analysis. For example, workflow
optimization, such as a reduction in the number of protocol
steps and tube transfers (Farlik et al., 2015), has improved
material recovery and enabled automation via liquid-handling
robots (Clark et al., 2017) or microfluidic devices (Ma et al.,
2018). An emerging, cost-effective strategy aims to sequence a
larger number of cells at low coverage in order to construct
composite reference methylome maps for specific tissues (Farlik
et al., 2015) or to classify cell types and lineages (Luo et al.,
2017; Mulqueen et al., 2018). Traditional single cell bisulfite
workflows require an elevated number of PCR cycles to ensure
adequate input material for sequencing, resulting in amplification
bias and read duplication. One study examining the methylation
status of highly abundant, repetitive elements (Kobayashi et al.,
2016) removed PCR amplification, instead increasing starting
material via sample multiplexing. However, this method is not
generalizable to non-repetitive sequences. Alternatively, an
RRBS-based method was used to preserve PCR amplification
while incorporating unique molecular identifiers, which act as
fragment-specific barcodes, to identify PCR-related duplications
and SNP-independent allele-specific methylation (Wang et al.,
2015). Finally, one group improved priming efficiency in PBAT,
implemented additional quality control steps during data
analysis, and found high CpG concordance at neighboring sites
within a 1 kb window (Hui et al., 2018).

Although BS-seq is generally used to detect 5mC and 5hmC, this
chemical treatment has been incorporated in a workflow to
indiscriminately detect 5fC and 5caC at a genome-wide level (Wu
et al., 2017). This approach – termed single cell methylase-assisted
bisulfite sequencing (scMAB-seq, Fig. 5D) – uses the
methyltransferase M.SssI to convert CpG cytosines to 5mC,
resulting in only 5fC/5caC conversion to uracil upon bisulfite
treatment. In order to improve material recovery, the authors
successfully developed two workflows based on either PBAT or
RRBS.Whereas the former captures more of the genome and enables
more quantitative analysis, the RRBS-based scMAB-seq approach
improves measurement consistency owing to the rareness of 5fC and
5caC and their tendency to cluster in the genome. The application of
this approach to study the zygotic paternal genome following
replication and cell division directly demonstrated for the first time in
single cells that 5fC and 5caC are diluted during these processes.

Endonuclease-based measurements of DNA modifications
Endonuclease-based sequencing methods avoid random DNA loss
and thus improve coverage and efficiency. Genome-wide CpG
island (CGI) methylation sequencing for single cells (scCGI-seq) is
one such method that enriches for sequences with high CpG
content, providing 72.7% CGI coverage per cell (Han et al., 2017)
(Fig. 5E). Following manual isolation of single cells, a cocktail of
methylation-sensitive restriction endonucleases fragments DNA in
unmethylated regions and preserves longer fragments in methylated
regions (e.g. CGIs), allowing them to be amplified via multiple
strand displacement. The use of a small pool of restriction enzymes
with specific recognition sequences precludes this technique from
directly providing single nucleotide information at most CpGs.
Rather, this method relies on the observation that neighboring CpG
sites within a 1 kb window have a high probability of sharing the
same methylation state (Hui et al., 2018). Hierarchical clustering of
CGI methylation revealed by scCGI-seq yielded distinct clusters
according to cell type, with greater CGI/promoter hypermethylation
and repeat region hypomethylation measured in the cancer cell line
K562 compared with the non-cancer cell line GM12878 (Han et al.,
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2017). This strategy could be extended to mapping 5hmC, although
more 5hmC-sensitive restriction enzymes need to be identified to
provide greater coverage.
A method for specifically detecting 5hmC (Mooijman et al.,

2016), called single cell Aba-seq, first glucosylates 5hmC to 5ghmC
for recognition by the restriction enzyme AbaSI, which cleaves the
DNA downstream of the modification to generate fragments for
ligation of cell-specific barcodes for NGS (Fig. 5F). This
methodology suffers from a low detection efficiency of ∼10%
largely owing to incomplete glucosylation. Nevertheless, scAba-seq
was used in mESCs and in developing mouse embryos to show that
each chromosome in a particular cell has high 5hmC density on one
DNA strand and low density on the other, suggesting the lack of a
specific replication-dependent maintenance mechanism for 5hmC.
Moreover, this 5hmC strand bias can be used to identify sister cells,
as the sum of their strand biases must add to unity.
Although the increasing biological importance of 5hmC, 5fC and

5caC has spurred the development of single nucleotide-resolution
detection methods at the bulk and single cell levels, there exists the
need for a method to detect 5mC alone (without 5hmC) at similar
resolution (Clark et al., 2017).

Third-generation sequencing of DNA methylation
Third-generation sequencing methods, such as single molecule
real-time sequencing (SMRT, commercialized by PacBio) and
Nanopore sequencing (commercialized by Oxford Nanopore
Technologies), promise detection of DNA modifications
directly, without amplification, on single DNA molecules
(Fig. 5G,H). However, the distinction between single molecule
detection versus single cell detection must be noted. The use of
physical cell separation or sample barcoding enables methods such
as scBS-seq to provide epigenetic information for many loci
(thousands or more) within the same cell. By contrast, although
single molecule information is inherently derived from single
cells, without unique sample identifiers it only provides
information from one genomic locus. Nonetheless, the
advantage of both SMRT and Nanopore sequencing is that reads
from single DNA molecules are long (up to 2.2 Mb for Nanopore
sequencing; Payne et al., 2018), with read length limited by the
method of DNA purification (Laver et al., 2015); thus, these
methods can provide unprecedented information about a large
genomic locus from a particular cell.
As with NGS, SMRT sequencing uses imaging of fluorescent

nucleotides upon incorporation during DNA synthesis (Fig. 5G).
Unlike NGS, which relies on local amplification of the template
to increase the fluorescent signal, SMRT uses zero-mode
waveguides (subwavelength holes in a metal film) to decrease
the imaging volume, reducing background fluorescence from
unincorporated nucleotides to enable single molecule detection
of incorporation events (Levene et al., 2003). When the DNA
template contains epigenetic modifications, the kinetics of
nucleotide incorporation slows, allowing the detection of
individual 6mA (adenosine methylated at carbon six), 5hmC or
5mC events on a synthetic template with known sequence
(Flusberg et al., 2010). However, the change in signal – the time
between two incorporation events – is low (requiring 500×
coverage for differentiating 5hmC from 5mC; Suzuki et al.,
2016), depends on the surrounding sequence, and is spread over
the several bases that contact the DNA polymerase. With these
limitations, SMRT-seq can only reliably detect 6mA (Flusberg
et al., 2010) and not 5mC/5hmc (the most common mammalian
DNA modifications) on genomic sequences.

Nanopore sequencing relies on changes in electrical current
through a pore to read the sequence of long DNA molecules as well
as their epigenetic modifications (Fig. 5H). Initial experiments
using test DNA oligos of known sequence have shown that
detection efficiency of 5mC and 5hmC can be as high as 80-97%
with a single-pass read (Laszlo et al., 2013; Schreiber et al., 2013).
However, the current depends on multiple nucleotides that are in the
pore concurrently, rendering the magnitude of the signal dependent
on the surrounding sequence. Thus, accurate detection on random
genomic DNA requires training the detection algorithm on a library
of synthetic oligos consisting of all possible sequence combinations
for the number of bases that span the pore height and with different
modifications on each cytosine. Although this feat has not yet been
achieved, significant steps have been taken to this end by training
hidden Markov models on smaller libraries and applying them to
genomic DNA samples from bacteria (Rand et al., 2017) and human
cells (Simpson et al., 2017). Indeed, this approach was used to
analyze data from individual DNAmolecules in cancer cells to show
that the methylation status of CpGs is highly correlated within 1 kb
regions from a single cell (Simpson et al., 2017), in agreement with
previous results.

Real-time reporters of DNA methylation
DNA modification detection methods are arguably most
informative when paired with DNA sequencing, which optimally
yields single nucleotide-resolution data. However, these approaches
often capture a snapshot of the methylome, which is itself dynamic.
A reporter of genomic methylation (RGM) sacrifices single
nucleotide resolution in order to indirectly monitor real-time
methylation state information at a specific locus (Stelzer et al.,
2015) (Fig. 4C). The reporter consists of a minimal imprinted
gene promoter, which is highly sensitive to proximal methylated
DNA in a non-tissue-specific manner and drives the expression
of a fluorescent protein. Stable CRISPR-mediated integration of
this reporter near an endogenous region of interest enables the
methylation state of that region to control expression of the
fluorophore. Using this reporter, the dynamics of super enhancers
were studied during mouse development and cell reprogramming.
In the future, this method could be adapted to use different
fluorescent proteins to simultaneously report the methylation status
at multiple genes.

Recently developed real-time chromatin modification sensors
(Lungu et al., 2017) directly detect a chromatin modification at a
repetitive locus of interest using bimolecular fluorescence
complementation (Fig. 4D), while simultaneously providing
subnuclear localization. These sensors, termed bimolecular anchor
detectors (BiADs), consist of a programmed DNA-binding domain
(‘anchor’, e.g. zinc finger, TALE, dCas9) and a chromatin
modification detector, each of which are fused to a portion of the
monomeric Venus fluorescent protein, which only produces a signal
upon proximity-mediated reconstitution. The authors of the above
study validated their BiAD sensors through detection of 5mC and
H3K9me3 at centromeric satellites, demonstrated BiAD accessibility
to constitutive heterochromatin and condensed chromatin throughout
mitosis, and suggested extending their method to simultaneous
detection of multiple modifications.

Linking chromatin modifications to other measurements
There has been a recent development of single cell methodologies
that combine detection of chromatin modifications with
measurements of gene expression and/or chromatin organization
in order to elucidate the relationship between them (Fig. 6A).
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DNA methylation and chromatin accessibility
Single cell nucleosome occupancy and methylome sequencing
(scNOMe-seq) provides chromatin accessibility and DNA
methylation information, which, taken together, are particularly
useful for characterizing regulatory regions (Pott, 2017). In this
approach, a viral GpC methyltransferase, M.CviPI, is used to
convert chromatin accessibility into a pattern of Gp5mC (Kelly
et al., 2012), a type of methylation that is rare in eukaryotes. This
enzyme preferentially methylates GpC cytosines in non-
nucleosomal DNA when added to extracted nuclei. These
methyltransferase-treated nuclei are deposited by fluorescence-
activated cell sorting (FACS) into individual wells and subsequently
subjected to the scBS-seq protocol, revealing both endogenous CpG
methylation and nucleosome occupancy as a lack of GpC
methylation. Using this approach, it was shown that promoter
accessibility and gene-body CpG methylation are positively
correlated with gene expression annotations, whereas promoter
CpG methylation is negatively correlated with known expression,
consistent with previous findings (Schübeler, 2015). Furthermore,
both DNA methylation and accessibility could be used to
independently classify cell types.
A nearly identical method, termed single cell chromatin overall

omic-scale landscape sequencing (scCOOL-seq), has been used to
provide information about nucleosome positioning, DNA
methylation, copy number variation (CNV), and ploidy in mouse
preimplantation embryos (Guo et al., 2017). The authors observed
higher DNA methylation heterogeneity between embryos than
within an embryo at the two-cell stage, demonstrating a high degree
of synchronization during development. They also found that, from
the late zygote to the four-cell stage, intergenic regions on paternal
alleles are more methylated relative to maternal ones, whereas
intragenic regions are less methylated. In addition, their analysis of
mESCs revealed that promoters with increased heterogeneity in
accessibility are generally hypomethylated, although the factors
responsible for this phenomenon remain to be discovered.

DNA methylation and gene expression
At present, there are three methodologies that provide DNA
methylation and gene expression information at the single cell
level. Two approaches are both named single cell methylome and
transcriptome-sequencing [scM&T-seq (Angermueller et al., 2016)
and scMT-seq (Hu et al., 2016)], and the third, which also looks at
DNA copy number variation, is called single cell triple omics
sequencing (scTrio-seq) (Hou et al., 2016). The first approach,
scM&T-seq, separates polyadenylated RNA from DNA with
biotinylated oligo-dT primers for RNA-seq (Macaulay et al.,
2015) and performs whole-genome methylome sequencing with
scBS-seq. The second approach, scMT-seq, uses microcapillary
pipetting to isolate the nucleus from the cytosol and enriches for
CpG-dense regions with scRRBS-seq. Both techniques implement
a widely used scRNA-seq protocol known as Smart-seq2 (Picelli
et al., 2014) for transcriptome library preparation. The third
approach, scTrio-seq, uses gentle lysis and centrifugation to
physically separate cytosolic contents from the nucleus, thereby
minimizing DNA contamination during RNA-seq library
preparation, and also uses the scRRBS-seq method for methylome
profiling.
scM&T-seq has been used to recapitulate the increased

epigenetic and gene expression heterogeneity observed when
ESCs are grown in serum versus 2i media (Angermueller et al.,
2016). Importantly, this study showed that distinct clusters of the
most variable genes arise by either methylome- or transcriptome-

based hierarchical clustering, supporting the utility of the dual
methodology. Moreover, the data quality and results of using the
combined technique are comparable to the data quality and results of
performing scRNA-seq or scBS-seq individually. Because scM&T-
seq utilizes the whole-genome bisulfite approach, 48.4% of CpG
sites can theoretically be identified, in contrast to the 1% of sites that
the reduced representation approach employs in both scMT-seq and
scTrio-seq (Hu et al., 2016).

scMT-seq has been used in dorsal root ganglion sensory neurons,
the large size of which facilitates micropipetting, to link methylation
patterns with allelic expression (Hu et al., 2016). Specifically,
this study revealed that transcription of non-CGI promoter
genes negatively correlates with promoter methylation, whereas
transcription of CGI promoter genes positively correlates with gene
bodymethylation. The scMT-seq method additionally revealed a rare
subset of highly expressed genes with hypermethylated, CpG-rich
promoters.

scTrio-seq recapitulates correlations between gene expression
and promoter hypomethylation and gene-body hypermethylation,
and provides nearly complete single cell copy-number variation
determination with 10-Mb resolution; this method allows
classification of cancer cell subpopulations with high metastatic
potential that bulk assays would fail to capture (Hou et al., 2016).
However, scTrio-seq provides only approximately two-thirds the
transcriptome coverage of scMT-seq (Hu et al., 2016), likely owing
to the incomplete transfer of cytosolic material during the physical
separation procedure. Nonetheless, this procedure may more
flexibly accommodate multiple, downstream transcriptomic and
methylomic pipelines, including whole genome scBS-seq (Hou
et al., 2016).

DNA methylation, chromatin accessibility, and gene expression
Single cell nucleosome, methylation, and transcription sequencing
(scNMT-seq) is the natural successor to the above methods,
combining elements of the scM&T-seq method with the
scNOMe-seq workflow (Clark et al., 2018). Using this technique,
the number and nature of associations between pairs of these three
layers of molecular regulation in embryoid bodies was examined
and revealed the following: (1) CpG methylation and transcription
are generally negatively correlated at the genome-wide level; (2)
accessibility and transcription are positively correlated in promoters,
p300 targets, and super enhancers; and (3) CpG methylation and
accessibility are generally negatively correlated in introns. Clustering of
single cell accessibility profiles provided an estimate of accessibility
heterogeneity for each gene, with those that were homogeneously open
being highly expressed housekeeping genes and those with a mixed
state being lowly expressed and more likely to contain a bivalent
promoter. Finally, the authors used gene expression data to infer the
position of each cell along a differentiation trajectory to examine
accessibility and methylation dynamics as functions of pseudotime. As
expected, methylation and accessibility become increasingly negatively
correlated throughout differentiation.

Applications of single cell chromatin mapping technologies:
insights into development and disease
Single cell chromatin modification mapping technologies have
deepened our understanding of cell types and states as well as how
these change throughout development and disease. Cell-type or cell-
state classifications have both been used to benchmark these
technologies and as a tool to study cell-fate decisions in
development, aging and disease. Benchmarking has been
performed in a few ways: (1) by mixing known cell types together
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and showing that they can be computationally separated; (2) by
using haploid cells with homogeneous chromatin modification
profiles, such as oocytes, and showing that single cell data reproduce
bulk results; or (3) by looking for increased heterogeneity in mESCs
grown in serum versus 2i medium. Single cell detection of chromatin
modifications has been used to classify cell types in the early embryo
(Guo et al., 2013; Guo et al., 2017), smooth muscle (Gomez et al.,
2013), cortex (Luo et al., 2017), the hematopoietic system (Cheung
et al., 2018; Farlik et al., 2016; Hui et al., 2018) and the immune
system (Cheung et al., 2018). Additionally, single cell measurements
have shown that immune cells exhibit increased overall levels and
heterogeneity of histone modifications with aging (Cheung et al.,
2018). Similarly, hepatic cancer samples show heterogeneity in DNA
methylation and contain a subpopulation of cells that expresses
markers associated with immune evasion andmalignancy (Hou et al.,
2016). These results underscore the value of mapping chromatin
modifications for diagnosis.
Classification of cell types can also be achieved with other single

cell methods that rely on detection of transcripts or chromatin
accessibility (Trapnell, 2015). scRNA-seq is currently the most
widely used method for cell-type classification (Tanay and Regev,
2017), as gene expression is a good indicator of cell type, and one
can recover a fair number of RNA molecules from each cell.
However, because transcription occurs in bursts and is dynamic over
short timescales, scRNA-seq data has intrinsic noise. Therefore,
many cells are needed to extract trends, and care should be taken
when interpreting these data as cell types rather than signaling states
within a cell type. Given these dynamics in RNA levels, chromatin
state might be a more stable signature of cell type. One method to
globally assess chromatin state is the assay for transposase-
accessible chromatin (ATAC-seq) (Buenrostro et al., 2013), which
has been adapted to the single cell level (Buenrostro et al., 2015;
Cusanovich et al., 2015) and applied to classify cell types (for a
review, see Klemm et al., 2019). A recent study that built an immune
cell atlas has shown that analysis of chromatin accessibility by
single cell ATAC-seq at distal enhancers results in sharper cell
classification than analysis based on RNA expression or
accessibility of transcription start sites (Yoshida et al., 2019).
Similarly, analysis of chromatin modifications at select genomic
elements could yield improved cell-type classification once the
number of reads recovered from each cell increases sufficiently.
Single cell detection of chromatin modifications can also be used

for lineage-tracking during development and disease. Tracking
relies either on strong maintenance of histone or DNA methylation
at particular loci throughout cell generations or on the complete lack
of maintenance of modifications, such as 5hmC, that leads to their
strand-specific partitioning in daughter cells. 5mC is a stable
modification, owing to its replication-dependent maintenance by
DNMT1, and thus can be used to track lineages across generations
(Farlik et al., 2016). Histone methylation can also persist for many
generations in certain cell types. For instance, H3K4me2 is detected
at tissue-specific promoters of smooth muscle cells even when these
cells have differentiated into atherosclerotic tissue and no longer
express those specific genes (Gomez et al., 2013). Alternatively,
modifications that lack strong maintenance, such as 5hmC in early
embryo development, can be used to identify sister cells, as the
5hmC signal from the original DNA is partitioned perfectly between
sister cells upon DNA replication (Mooijman et al., 2016). Lineage
tracking, either by monitoring naturally occurring chromatin
modifications or by introducing orthogonal modifications from
other organisms, can be used to interrogate mechanisms in
development and to improve diagnosis.

Single cell measurements have also confirmed key results about
histone modification combinations and DNA modification dynamics
that were implied from bulk data and have started to unravel details
that would otherwise be obscured by the stochastic nature of
epigenetic events. In particular, modifications that are associated with
opposing gene expression patterns (H3K4me3 and H3K9me3) were
definitively shown to exist on the same nucleosomes (bivalency) in
mESCs, as well as other cell types (Rotem et al., 2015; Weiner et al.,
2016), as opposed to resulting from mixed cell populations. Histone
modifications associated with synergistic effects on gene expression
(H3K9ac and H3K4me3) have also been identified on the same
nucleosomes, and their co-existence is enriched compared with levels
that would be expected from measurements of each modification
independently, suggesting positive feedback between these two
modifications (Weiner et al., 2016). Moreover, multiple studies have
uncovered an increased degree of heterogeneity in histone
modifications and DNA methylation at enhancers in hepatocytes
(Gravina et al., 2015; Gravina et al., 2016) and in mESCs primed for
differentiation (Angermueller et al., 2016; Smallwood et al., 2014;
Weiner et al., 2016), suggesting that changes in chromatin
modifications could be drivers of cell differentiation.

Conclusions and perspectives
The rapidly increasing pace of method development in mapping
single cell chromatin modifications reflects the appreciation of
intrinsic stochasticity and heterogeneity in biology. This fast pace has
been supported by advancements inmicrofluidics, automation, single
molecule imaging, DNA synthesis, and sequencing. The major DNA
and histone modifications have now been measured at the single cell
level in multiple ways. So far, research on single cell detection of
chromatin modifications has primarily focused on the development
and validation of these techniques. This focus on technological
development is justified, as single cell technologies at present have
quite low complexity [low number of modifications and loci mapped
per cell (Fig. 6B,C) and limited spatial and temporal resolution].
Owing to these limitations, genome-wide single cell technologies are
currently much better at classifying cell types and states than at
answering mechanistic questions. At the other extreme,
measurements that follow a single locus over time, such as real-time
reporters (Bintu et al., 2016; Stasevich et al., 2014; Stelzer et al.,
2015), can shed some mechanistic insight on the role of chromatin in
gene expression. However, it remains to be seen how these findings
extend to different loci and cell types. In particular, different cell types
grown in culture appear to be more similar in their epigenetic profiles
to one another than to cells from within the tissue from which they
were derived (Zhu et al., 2013). This finding suggests that using bulk
data from in vitro cell culture to guide the analysis of sparse reads from
single cell measurements performed on primary or clinical samples
should be performed with care, as it may lead to misclassification.

We foresee that, as they mature and increase in complexity, single
cell technologies could be used to detect multiple modifications,
including combined DNA and histone modifications (e.g. bulk
ChIP-BS-seq; Gao et al., 2016) at many loci, and they could
additionally measure gene expression and chromatin structure over
time and space (Fig. 6A). One way to achieve this ideal is by using
recently developed multiplexed imaging technologies – such as
Oligopaints for chromatin (Beliveau et al., 2015; Bintu et al., 2018;
Boettiger et al., 2016) and MERFISH or intron seqFISH for RNA
(Chen et al., 2015; Shah et al., 2018) – as endpoint measurements in
time-lapse microscopy experiments. Finally, with the development
of programmable DNA-binding domains, we can now perturb the
epigenome at will (Cano-Rodriguez and Rots, 2016; Park et al.,
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2016; Thakore et al., 2016; Vora et al., 2016) and actually determine
causation rather than correlation between chromatin and gene
regulation. These improvements will increase our mechanistic
understanding of chromatin and its connections with cell identity
(Tanay and Regev, 2017).
Technological advances associated with single cell technologies

can also be used to improve traditional bulk methods for detecting
chromatin modifications. Protocol modifications that combine all
reactions in one small volume can reduce the number of cells
necessary for bulk analysis. For instance, CUT&RUN (Skene et al.,
2018), a protocol that performs targeted chromatin digestion inside
nuclei using MNase linked to an antibody against a specific histone
modification, can be used with hundreds of cells instead of the
millions required for classical ChIP. Additionally, barcoding can be
used to index different samples instead of single cells, thus allowing
robust, high-throughput analysis of many small samples, as
demonstrated in the indexing-first chromatin IP approach (iChIP)
(Lara-Astiaso et al., 2014). Finally, extensive panels of antibodies
against histone modifications have been validated (Cheung et al.,
2018; Weiner et al., 2016) and new, genetically encoded ones
(mintbodies) have been developed (Hayashi-Takanaka et al., 2011;
Sato et al., 2013; Sato et al., 2016). These well-characterized
antibodies should be used for bulk assays, and newly developed
antibodies should be benchmarked in a similar manner. Taken
together, these improvements will enable the processing and
analysis of smaller samples, allowing us to reduce costs, improve
diagnosis, and answer biological questions using primary cells.
The continued development and dissemination of single cell

technologies for mapping chromatin modifications will also be
essential for global scientific efforts (see Box 2). Although these
projects are currently dominated by bulk data, the importance of
single cell measurements in the context of cellular heterogeneity is
coming into focus (Dekker et al., 2017) and is likely to increase as
these technologies improve throughput and portability. These
advances in single cell technologies will greatly enhance our
understanding of mammalian cell biology and help us to develop
cell-based diagnostics and therapeutics.
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