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SUMMARY 

The paternally expressed imprinted Retrotransposon-like 1 (Rtl1/Peg11) is a 

retrotransposon-derived gene that has evolved a function in eutherian placentation. 

Seven miRNAs, including miR-127, are processed from a maternally expressed 

antisense Rtl1 transcript (Rtl1as) and regulate Rtl1 levels through RNAi-mediated 

post-transcriptional degradation. To determine the relative functional role of Rtl1as 

miRNAs in Rtl1 dosage, we generated a mouse specifically deleted for miR-127. The 

miR-127 knockout mice exhibit placentomegaly with specific defects within the 

labyrinthine zone involved in maternal-fetal nutrient transfer. Although fetal weight 

is unaltered, specific Rtl1 transcripts and protein levels are increased in both the fetus 

and placenta. Phenotypic analysis of single (ΔmiR-127/Rtl1 or miR-127/ΔRtl1) and 

double (ΔmiR-127/ΔRtl1) heterozygous miR-127 and Rtl1 deficient mice indicate that 

Rtl1 is the main target gene of miR-127 in placental development. Our results 

demonstrate that miR-127 is an essential regulator of Rtl1 mediated by a trans-

homologue interaction between reciprocally imprinted genes on the maternally and 

paternally inherited chromosomes.  

 

INTRODUCTION 

Mammalian genomic imprinting is an epigenetic process whereby genes are mono-

allelically expressed in a parent-of-origin specific manner (Ferguson-Smith, 2011). 

The imprinted gene cluster on mouse chromosome 12 contains four paternally 

expressed protein-coding genes and maternally expressed non-coding RNAs (Fig. 

1A) (da Rocha et al., 2008). One of these paternally expressed genes, 

Retrotransposon-like 1 (Rtl1/Peg11) is derived from a Ty3/gypsy type 

retrotransposon that, in eutherians has evolved a large conserved ORF but has lost its 
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long terminal repeats (LTRs) resulting in loss of original retroviral promoter activity. 

(Brandt et al., 2005; Youngson et al., 2005; Edwards et al., 2008).  

The primary Rtl1as is exclusively expressed from the maternally inherited Rtl1 

locus but in the opposite direction to Rtl1 (Fig. 1A) (Seitz et al., 2003). At least seven 

miRNAs processed from Rtl1as are therefore 100% complementary in sequence to 

Rtl1 (Davis et al., 2005). Maternally inherited deletion of the differentially 

methylated imprinting control region for the locus (IG-DMR) causes a maternal to 

paternal epigenotype switch across the whole imprinted gene cluster (Lin et al., 

2003). This is associated with repression of all the maternally expressed non-coding 

RNAs including the miRNAs, and inappropriate activation of the usually paternally 

expressed protein-coding genes on the maternally inherited chromosome resulting in 

a double dose. However, Rtl1 mRNA levels increase 4.5 fold from both alleles, 

instead of the double dose expected from loss of imprinting (LOI). This suggests that 

the increase in Rtl1 dosage in the mutant is the cumulative effect of both LOI and a 

failure to destabilize the now biallelically expressed transcript by the antisense 

miRNAs (Lin et al., 2003). Further evidence that these miRNAs can degrade Rtl1 

transcripts by the RNAi machinery in vivo came from the identification of both 

DROSHA and DICER cleavage products for each of the miRNAs (Davis et al., 

2005). Previous work has shown that Rtl1 gene deletion causes growth retardation of 

both the fetus and placenta and that removal of six of the seven miRNAs on Rtl1as, 

leads to Rtl1 overproduction and placentomegaly (Sekita et al., 2008).   

Further findings indicate that miR-127 on Rtl1as can be independently 

regulated in human cancer (Iorio et al., 2005; Lu et al., 2005), and that on its own 

miR-127 may be the major contributor to Rtl1 silencing in differentiating mouse 

embryonic stem (ES) cells (Ciaudo et al., 2009). These findings suggest that miR-127 
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may play a prominent role controlling Rtl1 dosage during normal development. In 

order to clarify the biological significance of miR-127, we generated miR-127 

knockout mice and studied its impact on Rtl1 transcript and protein levels and for 

placental development.  

 

RESULTS AND DISCUSSION 

Maternal miR-127 deletion induces placentomegaly  

The schematic organization of the imprinted Rtl1 sense and antisense transcripts is 

shown in Fig. 1A. A 134bp deletion removed miR-127 upon maternal transmission 

(ΔmiR-127), while the same deletion when paternally transmitted (ΔRtl1) introduces 

a nonsense mutation in the (3rd) exon of Rtl1 resulting in premature translation 

termination of a normally transcribed mutant transcript (Fig. 1A and S1B). Western 

blotting data showed no detectable RTL1 protein in ΔRtl1 conceptuses  (Fig. S1G), 

although Rtl1 mRNA was stable (Fig. S3A). All phenotypic analyses were carried out 

on the C57BL6 background unless otherwise indicated. 

Placentae were significantly over-grown in ΔmiR-127 mutants, which was first 

apparent at E16.5; placental weights were 111.6% and 118.5% compared with WT at 

E16.5 and E18.5, respectively (Fig. 1B). In contrast, there was no effect of ΔmiR-127 

on fetal weight during development (Fig. 1B). Previous work had shown that when 

six miRNAs, including miR-127, are deleted, mutant placental weights are 156% of 

WT values at E18.5 although fetal weights are not different (Sekita et al., 2008). 

These data suggest that miR-127 functions to suppress placental growth in pregnancy, 

although placentomegaly in ΔmiR-127 was milder than with the larger deletion 

harboring six miRNAs. After birth the ΔmiR-127 mice grew at comparable rates to 
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WT and no lethality was observed either pre- or postnatally in these mice (Fig. 1D 

and Table S1, S2).  

ΔRtl1 mice showed prenatal growth retardation starting at E16.5; fetal weights 

were about 80% of WT  (Fig. 1C). Mice have reduced wet weight at birth (~70% of 

WT) and remain growth retarded into adulthood (Fig. 1D). Prenatally, the placenta is 

growth restricted from E14.5, prior to the onset of fetal growth restriction suggesting 

a causal role for the placenta in the fetal growth phenotype (Fig. 1C). Prenatal 

lethality was not observed in ΔRtl1 but the majority of neonates died within one day 

of birth (Table S1 and S2). In situations where ΔRtl1 newborns survived more than 2 

days, animals survived to adulthood. The lethality of the ΔRtl1 was not evident on a 

mixed 129aa and C57BL/6J background (Table S1). The embryonic lethality we 

report differs from the previously reported larger deletion, where lethality occurred 

during gestation upon paternal transmission of the larger deletion (Sekita et al., 2008) 

despite both mutants lacking the RTL1 protein.  

 

ΔmiR-127 causes defects in the placental labyrinthine zone.  

Placental structure was analysed stereologically (Gundersen et al., 1988; Mandarim-

de-Lacerda, 2003; Coan et al., 2004) upon both maternal and paternal transmission of 

the deletion at E18.5. In ΔmiR-127 the labyrinthine zone (Lz), which is the site of 

nutrient and gaseous exchange between the maternal and fetal blood supplies, was 

expanded compared to WT (142.3% of WT, Fig. 2A,C). Conversely, the volume of 

the Lz was reduced in ΔRtl1 compared with WT (64.7% of WT, Fig. 2B,D). In 

contrast to the Lz, the junctional zone (Jz), decidual basalis (Db) and chorion (Ch) 

were all unaffected by miR-127 or Rtl1 deficiency.  
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Detailed structural analysis of the Lz showed that both the fetal capillaries (FC) 

and the labyrinthine trophoblast (LT), were significantly increased in ΔmiR-127, with 

a non-significant trend for expanded maternal blood spaces (MBS) (Fig. 2E and Fig. 

S2). Similar to the volume differences, the surface areas of FC and MBS were also 

extended in ΔmiR-127 (Table S3). Moreover, the average length of FC in the Lz was 

elongated in ΔmiR-127, without a change in capillary diameter. There was no effect 

of miR-127 deficiency on the thickness of the interhemal trophoblast membrane 

where nutritional exchange takes place. These results suggest that miR-127 

suppresses fetal capillarisation of the placental exchange region. 

In ΔRtl1, placental abnormalities were observed in the same compartments 

affected by miR-127 deficiency but with opposite phenotypes (Fig. 2F and Fig. S2). 

These results suggest that Rtl1 supports fetal capillary elongation and that the two 

genes interact to regulate the same placental processes. The alterations in MBS and 

FC surface area would affect nutrient and oxygen supply to the fetus and contribute 

to the observed fetal growth restriction. The theoretical diffusion capacity (TDC) and 

specific diffusion capacity (SDC) are barometers for the potential ability of small 

molecules like oxygen to transfer by passive diffusion from mother to fetus (Laga et 

al., 1973). The TDC and SDC values of the mutant placentae indicate that ΔmiR-127 

mice have a higher diffusive capacity than WTs and conversely that ΔRtl1 placentae 

have less (Table S3). Although this is likely to contribute to the growth retardation of 

the ΔRtl1 fetuses, it is noteworthy that the ΔmiR-127 mutants are not growth 

enhanced. Previous work has proposed that Rtl1 cleaves an extracellular matrix 

(ECM) component resulting in a release of growth factors to promote 

hepatocarcinogenesis (Riordan et al., 2013). During angiogenesis, the degradation of 

the basement membrane and ECM facilitates migration into the interstitial matrix and 
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formation of new capillaries (Jain, 2003). Since placental Lz RTL1 protein is 

expressed in the capillary endothelial cells (Sekita et al., 2008), we propose that 

RTL1 promotes cleavage of the basement membrane to progress the vascularisation 

of FC.  

 

All Rtl1 isoforms are regulated by miR-127 

cDNA screening previously revealed that Rtl1 had two exons and its transcription 

start site was located 5 kb upstream of the retrotransposon-like sequences (Hagan et 

al., 2009) suggesting that Rtl1 may be regulated by a host-derived promoter outside 

the retrotransposon. In order to further clarify Rtl1 transcript structure, we identified 

further Rtl1 transcription start sites by 5’ RACE. One alternative leader exon was 

identified in E15.5 placenta (Rtl Ex1a) and three alternatives were identified in the 

E11 embryo (Rtl1 Ex1b, 1d and 1e), (Fig. 3A and Fig. S4). All five Rtl1 alternative 

transcripts including the known Rtl1 Ex1c (GeneBank: EU434918), contain a 

common large exon, namely exon3, which contains the retrotransposon derived ORF, 

and different small exons. All alternative exon1s are spread over a 12kb region, 

suggesting they might be transcribed from different promoters. To address this, real 

time RT-PCR was performed using alternative transcript specific forward primers 

and a common reverse primer in exon3. This showed that Rtl1 Ex1c was the most 

abundant transcript in E16.5 whole embryos (Fig. S3B). The other Rtl1 transcripts 

were also detectable in E16.5 embryos, but Rtl1 Ex1a expression level was much 

lower (0.6%) than the other four. Conversely, the most abundant mRNA in the 

placenta was Rtl1 Ex1a contributing more than 97% of total Rtl1 expression 

compared to the others (Fig. S3B).  
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In order to address whether all Rtl1 transcripts were equivalently modulated 

by miR-127, we quantified Rtl1 transcript levels in Δ miR-127 embryos and 

placentae. Results showed that all alternative transcripts were significantly over 

expressed (about 1.7 fold of control) in E16.5 ΔmiR-127 embryos (Fig. 3B). Rtl1 

Ex1a was significantly increased (1.7 fold) in ΔmiR-127 placentae (Fig. 3B). This is 

not an indirect effect caused by a disproportionate increase in the number of 

endothelial cells since there is a similar increase of 70% in Ex1a expression when 

normalized to the endothelial cell marker PECAM1/CD31 (Fig S3C). Analysis of 

hybrid fetuses and placentae indicated all alternative transcripts are exclusively 

transcribed from the paternal chromosome in ΔmiR-127 (Fig. S3D) indicating that the 

overexpression is not associated with loss of imprinting. Western blotting showed 

that RTL1 protein was significantly increased proportional to the increased level of 

the transcript in E16.5 ΔmiR-127 embryos and placentae (Fig. 3C and Fig. S1H). 

Since deletion of six of the seven miRNAs results in only a 2.5 fold increase of Rtl1 

mRNA (Fig. S3E) our findings indicate that, compared to the other miRNAs in the 

cluster, miR-127 contributes a proportionately greater effect on Rtl1 levels in 

placentae, and disruption of this repression causes placental over-growth.  

Consistent with its impact on Rtl1 levels, miR-127 is the most abundant miRNA 

generated from Rtl1as (Fig. 3E). We next determined whether the deletion of miR-

127 influences expression of the neighbouring miRNAs to potentially impact Rtl1 

expression. As expected, miR-127 was not detected in ΔmiR-127 embryos and 

placentae (Fig. 3D). In ΔmiR-127 fetuses, only miR-433-3p was up-regulated with no 

change in miR431, miR-434-3p and miR-136 expression (Fig. 3D). In contrast, all 

four miRNAs were significantly up-regulated, with miR-433-3p the most induced in 

ΔmiR-127 placenta. The same miRNAs that were up-regulated in the placenta in the 
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ΔmiR-127 mutant were down regulated in ΔRtl1 (Fig 3D). Together, these results 

suggest there may be a compensatory feedback mechanism involving RTL1, acting 

specifically in the placenta to minimize the impact on Rtl1 transcript levels. miR-433 

has its own promoter and thus may be more sensitive to this feedback mechanism 

(Song and Wang, 2008). 

 

Rtl1 is the main target gene of miR-127 for placenta development 

Our data suggests miR-127 can regulate placental growth through Rtl1 repression. 

However, to address the possibility that other target genes of miR-127 might also 

contribute to placental development, we generated double heterozygous mice (ΔmiR-

127/ΔRtl1) lacking both Rtl1 and miR-127. If Rtl1 is the main target of miR-127 

leading to repressed placental growth the ΔmiR-127/ΔRtl1 mutant should show a 

similar phenotype as ΔRtl1. However, if miR-127 has other targets contributing to 

this phenotype, the ΔmiR-127/ΔRtl1 mutant would be expected to have an 

intermediate phenotype between that seen in ΔRtl1 and ΔmiR-127. The ΔmiR-

127/ΔRtl1 mutant mouse embryo and placental weight data show that they are similar 

to ΔRtl1 at E18.5 rather than the ΔmiR-127 (Fig. 4A). Histological analysis also 

showed that the extent and volume reduction of the placental Lz was the same in both 

the ΔmiR-127/ΔRtl1 and ΔRtl1 (Fig. 2C, 4B). Detailed analysis of the Lz also 

determined that volumes and surface areas of MBS, FC, LT, FC, TDC and SDC were 

similarly decreased in ΔRtl1 and ΔmiR-127/ΔRtl1 compared with WT (Table S3). In 

contrast, these volumes were increased in ΔmiR-127. These striking similarities 

between ΔRtl1 and ΔmiR-127/ΔRtl1 placentae suggest miR-127 specifically acts 

upstream of Rtl1 during placental development. Comparative analysis of the 

genomic locus between eutherian, metatherian and protherian mammals 
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suggests that miRNAs on Rtl1as evolved in eutherians along with the 

neofunctionalisation of RTL1 (Edwards 2008). Marsupial mammals lack the 

microRNAs and have retained only remnants of the Ty3/Gypsy retrotransposon 

that evolved into Rtl1 in eutherians.  Hence it is likely that Rtl1as miRNAs 

evolved as a host defence mechanism to negatively modulate the activity of this 

retrotransposon-derived gene (Edwards et al., 2008). In particular, the 

reciprocally imprinted, miR-127 and Rtl1 that interact so effectively in trans, co-

evolved to regulate placenta development. 

 

Materials and methods 

Generation of ΔmiR-127/ ΔRtl1 mice 

We generated a miR-127 deletion construct that lacks 134bp incorporating miR-127 

(chr12:109,592,803-109,592,936) (Fig. S1A).  The miR-127 targeting construct was 

transfected into female 129SV ES cells and clones containing the targeting vector 

were selected (Fig. S1C-E). After deletion of the neomycin resistance gene (Fig. 

S1F), targeted ES cells were injected into blastocysts to make chimaeras and 

germline transmission confirmed. Animals were backcrossed to C57BL/6J for ten 

generations with consistent growth and viability phenotypes noted after N5 on this 

genetic background (Table S1). Mice were subsequently maintained on a C57BL/6J 

genetic background. Additional details are described in the supplementary materials 

and methods. 
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Placental histology 

Placentae from embryonic day (E)18.5 conceptuses were dissected free of fetal 

membranes, weighed and bisected mid-sagittally. One half was fixed in 4% 

paraformaldehyde, paraffin-embedded, sectioned, hematoxylin and eosin stained and 

gross placental structure analysed. The other half was fixed in 4% glutaraldehyde, 

resin-embedded, toluidine blue stained and structure stereologically assessed. 

Analyses were performed using the Computer Assisted Stereological Toolbox (CAST 

v2.0) program as previously described (Coan et al., 2004). 

 

Rapid Amplification of cDNA Ends (5'RACE) and quantitative RT-PCR 

5'RACE was performed using First Choice RLM-RACE (Ambion) following the 

manufacturer's protocol. 10 µg of total RNA from E11 fetus and E15.5 placenta was 

used as the starting material. 

For real time PCR, total RNA (10 µg) from whole embryos and placenta at 

E16.5, was DNase-treated with RQ1 RNase-free DNase (Promega). cDNA was 

synthesized using RevertAid™ H Minus First Strand cDNA Synthesis Kit with 

random hexamers (Fermentas). Real time RT-PCR assay for Rtl1 was performed 

using alternative exon 1 specific forward primers and a common reverse primer on 

exon3. TATA box binding protein (Tbp) expression was used as internal control.  

For mature miRNA expression, we carried out real time RT-PCR using 

TaqMan MicroRNA Assays (Applied biosystems). Details are described in the 

supplementary materials and methods. 
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Western blotting 

Proteins were extracted from E16.5 embryos and placentae using RIPA buffer 

containing protease inhibitors (Complete, EDTA-free, Roche). RTL1 was detected by 

anti RTL1 rabbit antibody (YZ2843) created in the Stewart lab, and then normalized 

by α-Tubulin (Sigma-Aldrich, T6199). Further details are described in the 

supplementary materials and methods. 
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Fig. 1. Structure of Rtl1 locus and pre- and postnatal growth of miR-127 KO and 

Rtl1 KO mice. (A) Schematic presentation of the Dlk1-Dio3 cluster. Lower left 

schematic - representation of the WT Rtl1 locus (Exon3). Rtl1 is expressed from 

paternal chromosome and Rtl1as is exclusively transcribed from maternal 

chromosome. Lower right schematic - representation of the knockout allele. The 

paternal transmitted deletion induces a stop codon in the frame that results in 

premature termination of RTL1. The maternal transmitted deletion lacks miR-127 

expression. (B, C) Prenatal growth of ΔmiR-127 mice and ΔRtl1 mice, respectively. 

Left and right panels show embryonic and placental growth curves in mutant and WT 

littermates from E12.5 to E18.5. All embryos and placentas were collected from the 

N6 and N7 generation. (D) Postnatal growth curve of ΔmiR-127 (left) and ΔRtl1 

(right) from birth to 2 months. Weights were measured every three days. ΔRtl1 mice 

were significantly smaller than WT.  
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Fig. 2. Histological analysis shows abnormality in labyrinthine zone in ΔmiR-127 

and ΔRtl1. (A, B) Histological analysis of WT littermate and ΔmiR-127 or ΔRtl1, 

respectively. Panels show H&E-stained paraffin sections of E18.5 placentae. (C to F ) 

The volumes of placental and labyrinthine compartments are indicated.   
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Fig. 3.  Expression of Rtl1 alternative transcripts and miRNAs in embryo and 

placenta at E16.5. (A) Structure of the Rtl1 locus. Alternative transcripts are 

transcribed from different leader exons. Exon1s are named 1a-1d. All alternative 

transcripts have common exon3 that has a conserved retrotransposon sequence. Rtl1 

Ex1a and Ex1b also have common exon2. Exons are represented as solid bar. (B) 

Quantitative expression analysis for each alternative Rtl1 transcript in ΔmiR-127 

embryo and placenta at E16.5. (C) Western Blotting for RTL1 normalized to α-

TUBULIN in ΔmiR-127 embryo and placenta at E16.5. (D) miRNAs expression is 

shown normalized to snoRNA202. (E) The relative expression of miRNAs. miR-127 

is most abundant miRNA among other miRNAs in Rtl1as.  
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Fig. 4. ΔmiR-127/ΔRtl1 KO mice are comparable to ΔRtl1.  Double heterozygous 

mice carrying both ΔmiR-127 and ΔRtl1 were born from heterozygous parents. (A) 

Fetal and placental weights at E18.5 are shown. (B) Volumes ratio of the placental Lz 

at E18.5.  
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