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Transformation of a polygonal cellular pattern during
sexual maturation of the avian oviduct epithelium:
computer simulation
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SUMMARY
A peculiar cellular pattern resembling a checkerboard has been observed on the luminal

surface of the oviduct epithelium of an adult Japanese quail. The epithelium is a monolayer cell
sheet and consists of two types of columnar cells, ciliated cells (C-cells) and gland cells (G-cells)
assembled in alternating blocks. The pattern develops, during sexual maturation, from a
kagome-like pattern (in which large C-cells are surrounded by small G-cells) characteristic of the
immature oviduct. In the present paper, computer simulations of the pattern transformation
from kagome to checkerboard were performed assuming a few properties of individual cells.

The adult checkerboard-like pattern is not strictly rectangular, but is deformed toward a
honeycomb pattern. In theoretical considerations the assumption that adhesion is stronger
between unlike cells than between like cells formed an ideal checkerboard pattern, because all
cell boundaries in it are edges along which unlike cells meet. On the other hand, a honeycomb
pattern formed after assuming that the boundary length of the cellular pattern is minimized
(caused by contraction of bundles of microfilaments running along lateral boundaries of the
columnar epithelial cell while keeping contact between neighbouring cells). The actual checker-
board-like pattern was considered to be in a balanced state between the effects of (1) the strong
adhesion between unlike cells, and (2) the boundary contraction. Using a computational
analysis, this consideration enabled us to obtain a quantitative parameter value for the dif-
ference between cell adhesions of unlike cells and of like cells.

C-cells divided once during the kagome-checkerboard transformation, while G-cells did not
divide. We performed computer simulations starting with the kagome pattern in which all
C-cells divided once. The computer program of the boundary shortening procedure we used
involved the quantitative parameter value for differential cell adhesion obtained as described
above. A checkerboard pattern was successfully generated in the simulation. It is concluded that
the strong adhesion between unlike cells and the boundary shortening have important roles in
formation and maintenance of the kagome and checkerboard patterns of the avian oviduct
epithelium.

INTRODUCTION

In previous papers we constructed a boundary contracting cell model based on
an observation of bundles of microfilaments running along lateral boundaries of
epithelial cells (Honda & Eguchi, 1980; Honda, 1983). The model was used to
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investigate an epithelial cellular pattern and to distinguish an epithelial tissue
from others in a homogeneous cell system (Honda, Ogita, Higuchi & Kani, 1982;
Honda, Dan-Sohkawa & Watanabe, 1983).

Recently, we discovered peculiar cellular patterns in a heterogeneous cell
system of the epithelium. The luminal surface of an avian oviduct epithelium
consisting of two types of cells shows a kagome (or star) pattern when immature
(Fig. 1A,C: large cells are surrounded by small cells) and a checkerboard pattern
in the mature state (Fig. 1B,D: two types of cells are arranged alternately).
Observation of the oviduct epithelium is described in detail elsewhere (Yamanaka
& Honda, in preparation; Yamanaka, in preparation). There we preliminarily use
the concept of differential cell adhesion in order to understand the formation
of these peculiar patterns. Assuming that unlike cells adhere to each other
more strongly than like cells cohere, we can explain the formation of kagome
and checkerboard patterns. We speculate that the actual oviduct epithelium is
governed by two simultaneous factors, boundary contraction and differential cell
adhesions.

In the present paper the relation between the two factors is considered in detail
and the transformation of the kagome pattern into the checkerboard pattern
during development, which involves cell divisions, is simulated successfully by
computer using assumptions about cell behaviours due to these two factors.

MATERIALS AND METHODS

Oviduct
Eggs of the Japanese quail (Coturnix coturnix japonica) were hatched in the laboratory.

Oviducts were isolated from dead female animals at desired maturation stages and treated with
silver nitrate to facilitate observation of the cell boundaries (Yamanaka, in preparation).
Luminal surfaces of the magnum of the oviduct were observed throughout the present study.

Improvement of the usual cell model
We used a model for the shortening of intercellular boundaries in order to determine whether

a given cell sheet had the geometrical characteristics of an epithelium and to convert a polygonal
pattern of the given cell sheet into the expected pattern for an epithelium in which cell
boundaries had shortened. Detailed procedures are described elsewhere (Honda & Eguchi,
1980; Honda, 1983; Honda, Dan-Sohkawa & Watanabe, 1983). The boundary shortening model
was improved in order to apply it to a heterogeneous cell system and to move cell boundaries
smoothly in the computer simulation. A total standard procedure is summarized in Fig. 2.

(1) For a heterogeneous system
We considered a polygonal cellular pattern that was the surface view of a cell monolayer. Two

arbitrary vertices (P and Q in Fig. 3) linked by a side were chosen in a given polygonal pattern
and they were moved so as to maintain a constant area for each polygon as shown in Fig. 3. The
'weighted' length of the five sides was defined as

aAPAP' + aBPBP' + aPQP'Q' + aQCQ'C + aQ DQ'D,

which was calculated from the position P' (which moved along the line containing P and was
parallel with AB). The values of the weighting factors, aAP, aBP, aPQ,... depended on the types
of cells meeting at the boundaries, AP, BP, PQ,.. . . As there are two types of cells, C (ciliated)
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Fig. 1. (A) A luminal surface of an immature oviduct epithelium just before sexual
maturation (quail, 41 days after hatching). (B) A luminal surface of a mature oviduct
epithelium. A and B were treated with silver nitrate and photographed through an
optical microscope. Bar, lOjum. (C,D) Drawings from A and B indicating C-cells
(stippled). C-cells in C are large and surrounded by G-cells (small nonstippled cells).
C-cells in D are rectangular, whereas G-cells are generally octagons consisting alter-
nately of small and large sides. Most of the C-cells in D are also surrounded by
G-cells.
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Input information on a pattern:
(1) x-, y-coordinates of vertices
(2) their connection relations

to form sides
(3) species of a side (CG, GG or CC)

Production of random numbers to
choose a side [A new elemental step]

Small displacement of a side PQ
as shown in Fig. 3 to decrease
"weighted" length of five sides

Yes

Does the sum of distance of point P
displacement exceed a limited distance?

[For a smooth movement]

No

Is it the minimum
"weighted" length? No

Yes

No

Does the elemental steps exceed
a certain step number?

Yes

Stop [

Fig. 2. Standard procedure for the improved boundary shortening.

Fig. 3. An elemental step of the boundary shortening procedure. Vertices P and Q
linked by a side are moved while keeping a constant area for each domain, so that
the total length of five sides (AP' + BP' + P'Q' + Q'C + Q'D) becomes a minimum.
PP' and QQ' are parallel with AB and CD, respectively. When P moves to P',
Q is forced to move to Q' so as to keep a constant area for two respective polygons
(polygon APQC and polygon BPQD).
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and G (gland), in a system, weighting factors are presented by aCG, aGG or ac c which is for CG,
GG or CC boundary, respectively. We normalized aGG (= 1*0) without losing generality. The
weighting factors were all the same (1-0) in the case of the usual boundary shortening model. P'
was sequentially moved away from P by small distances (positive or negative) so that the
weighted length of the five sides internal to the group of four cells becomes smaller.

(2) For a smooth movement
In order to realize a smooth movement, the movement of point P was restricted as follows. If

the total distance of sequential movements of P in an elemental step was over a given limited
distance (for example, 1-0mm), the P movement ceased. Point P remained there until it was
selected again randomly (see Fig. 2). This is the elemental step of the boundary shortening
procedure.

All information on a given pattern (x-, y-coordinates of vertices, their connection relation and
indication of cell types) was stored on a computer disc. The elemental step of the boundary
shortening procedure was performed on a side that was randomly selected. The elemental steps
were repeated on several thousand random numbers until the total weighted length of the sides
in a polygonal pattern (the total weighted boundary length) ceased to decrease. Thus, we
obtained a theoretically predicted pattern after hypothetical shortening of cell boundaries.

Periodic boundary conditions of the rectangle [side length ratio, 2: V3; side angle, 90°; point
(x,y) is equivalent to (x ± 2L, y ± V3L)] and the rhomboid [4:5; 60°; point (x,y) is equivalent
to (x±5Lcos60°±4L, y±5Lsin6O0)] were used for computation, where L is a constant
concerning pattern size. Calculation and simulation were carried out by an electronic digital
computer of Facom OS IV/F4 [E40] (Fujitsu, Co.).

RESULTS

Part I. Two factors that contribute to oviduct cellular patterns of the adult quail

Cell boundary contraction of the oviduct epithelium
The oviduct epithelium is a monolayer sheet of columnar cells, that shows a

polygonal pattern on its luminal (apical) surface. Bundles of microfilaments con-
sisting of actin filaments run inside the cells along lateral intercellular boundaries
just below the apical surface level (Honda, 1983; Yamanaka & Honda, in prep-
aration). Thus the bundles of microfilaments form polygonal networks just
below the apical surface of the oviduct epithelium. The bundles are the same as
the circumferential bundles, of microfilaments in the retinal pigment epithelial
cell which has been demonstrated to have contractility (Owaribe, Kodama &
Eguchi, 1981). We expect that a contractile process involving these microfilaments
shortens the polygonal cell boundaries in the oviduct epithelium while keeping cell
contact between neighbouring cells. The contractile microfilament bundles have
been studied in some epithelial sheets: retinal pigment epithelium, lung epi-
thelium, cornea endothelium, etc. (Honda & Eguchi, 1980; Owaribe, Kodama &
Eguchi, 1981; Owaribe & Masuda, 1982; Honda, 1983).

Differential adhesion among cells

Pattern formation in a cell aggregate consisting of two types of cells was ex-
plained systematically in terms of differential adhesion among cells (e.g. Steinberg,
1963, 1978). Consider a system in which there are two types of cells in an
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aggregate. If the intercellular adhesion between unlike cells is weaker than either
of the cohesions between like cells, cells of the two types sort out to form two
separate aggregates. When the adhesion between unlike cells is stronger, but less
than the average strength of cohesions between like cells, cells of the less cohesive
type partially or completely engulf a cluster of cells of the more cohesive type. If
the adhesion between unlike cells is still stronger, the two types of cells intermix in
a single aggregate.

We will consider a two-dimensional cell aggregate, that is the monolayer cell
sheet of the oviduct epithelium. The oviduct epithelium consists of two types of
cells, ciliated cells (C-cells) that have many cilia on the apical surface and gland
cells that secrete ovomucin (G-cell). If we assume the adhesion between C- and
G-cells is stronger than cohesion between G- and G-cells or between C- and
C-cells, we can understand the formation of checkerboard-like pattern as shown in
Fig. 1B,D. Most of the cell boundaries in the pattern are edges along which C- and
G-cells meet. The GG and CC boundaries are small or few in number.

A balanced state between two effects, boundary contraction and differential
adhesion

Boundary contraction of cells tends to form a honeycomb pattern as shown in
Fig. 4A since the boundary length of the honeycomb pattern is minimum. On the
other hand, the strong intercellular adhesion between unlike cells tends to form a
checkerboard pattern as shown in Fig. 4C since all cell boundaries are between
different types of cells. Neither pattern simultaneously meets the demands of both
boundary contraction and differential adhesion.

Actual oviduct epithelia show a pattern similar, but not identical, to a checker-
board (Fig. 1B,D, 4B). Most of the polygons look like squares, but, in reality,
some of them are octagons including four short sides. That is, there are minor
(short) GG or CC boundaries in addition to main (long) CG boundaries in the
pattern. The deviation from the checkerboard pattern is considered to be caused
by the boundary contraction. The actual cellular pattern of the oviduct epithelium
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Fig. 4. An actual cellular pattern of the oviduct epithelium (B) is intermediate
between two typical artificial patterns, a honeycomb pattern (A) and a checkerboard
one (C).
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Fig. 5. Elemental steps of the procedure of shortening nonweighted (A) or weighted
(B) boundary length. P and Q are movable vertices. One C-cell is designated by
stippling. The other three cells are G-cells. Parameter values of weighting factors are
as follows: acG = &GG = I'O m A, and acG = 0-4, aGG = 1*0 in B.

is in a balanced state between the two effects from differential adhesion and from
boundary contraction.

Estimation of the difference of intercellular adhesions

In other words, the actual cellular pattern of the oviduct epithelium is con-
sidered to be deformed from a honeycomb pattern on account of the stronger
intercellular adhesion between unlike cells than between like cells. In order to
introduce the effect of differential adhesion into the boundary shortening model of
cells, we have modified the previous boundary shortening model as described in
Materials and Methods. Here, we use numerical values aCG> aGG o r acc (where
aGG has been normalized as 1-0 as described in Materials and Methods) for five
weighting factors aAP, aBP, aPQ, aQC and aQD according to the respective species of
cell boundaries CG, GG or CC.

An example of boundary shortening in a simple pattern is shown in Fig. 5.
Polygon APQC is a C-cell, and all of the other polygons are G-cells. Therefore, we
use the value of aCG for ^AP, aPQ and aQC, and the value of aGG fc>r aBP and aQD.
We perform an elemental step of boundary length shortening by using aCG = 1*0.
A resultant pattern is shown in Fig. 5A; this is the same pattern as obtained with
the usual model of Fig. 3. On the other hand, when using aCG = 0-4 the pattern is
deformed as shown in Fig. 5B after the elemental step. (In this instance, we
did not constrain the P movement to give a smooth movement as described in
Materials and Methods.) The lengths of the CG boundaries (AP', P'Q') are
greatly elongated and the length of the GG boundary (BP') is shortened. This is an
effect of the strong adhesion between unlike cells along the CG boundaries which
is produced using aCG = 0-4. (Note that aCG is less than aGG.)

We next shorten the weighted boundary length of actual oviduct epithelial
patterns such as Fig. 6 using various values of aCG while fixing a c c at 1-0. We will
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look for a value of aCG at which a given pattern is scarcely deformed from an
original pattern. In order to know the extent of pattern deformation, we used an
s-value that is defined as the percentage of decrease in the total (not weighted)
boundary length during shortening of the weighted boundary length (Honda &
Eguchi, 1980; Honda, 1983). Results are shown in Fig. 7. The s-value is almost
zero when aCG = 0-43. We displayed a resultant pattern on an XY plotter and
confirmed that the pattern was not significantly deformed from the original
pattern. A similar result was obtained by using another actual pattern of the
oviduct epithelium (open and solid circles in Fig. 7).

Part II. A computer simulation of the transformation of the kagome pattern to the
checkerboard pattern

The kagome (or star) pattern

An immature oviduct epithelium just before sexual maturation (about 40-45
days after hatching) shows another peculiar pattern in addition to the checker-
board one (Yamanaka, in preparation). The oviduct epithelium at this stage is also
a monolayer consisting of columnar C- and G-cells. However, a luminal surface

Fig. 6. One of the checkerboard-like patterns found in the oviduct epithelium. The
drawing is from a microphotograph of microfilament bundles according to Yamanaka
& Honda (in preparation). C-cells are designated by stippling. All other cells are
G-cells. Bar, 10/mi.
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Fig. 7. Estimation of the weighting factor (aCo) value at which actual cell patterns are
scarcely deformed during the procedure of shortening the weighted boundary length.
aCc and aGG a re fixed at 1-0 throughout. The s-value, which is a percentage of a
decrease of the total (nonweighted) boundary length during 5000 steps of the pro-
cedure, is used to determine how much a pattern is deformed. We obtain aCG = 0-43
where the s-value is almost zero. We confirm by displaying resultant patterns on an XY
plotter that the patterns are not significantly deformed from the original ones when
3CG = 0-43. O, data obtained by using the pattern of Fig. 6. # , data from another
pattern of the oviduct epithelium.

shows a pattern in which large C-cells are surrounded by small G-cells as shown in
Fig. 1A,C. Most of the C-cells do not lie next to each other, whereas all G-cells
form chains that enclose isolated C-cells. The arrangement of these cells looks like
a 'kagome' pattern, one of the woven patterns appearing in Japanese traditional
bamboo ware. Fig. 8 shows the theoretical continuous change of a honeycomb
pattern to a kagome pattern. The actual immature oviduct epithelium corresponds
to the middle part of Fig. 8 (we will call it a modified kagome pattern), in which
small cells link together to surround a large cell. The ratio of small cells to large
cells in the artificial pattern of Fig. 8 is 2-0, which is close to the cell ratio in an
actual immature oviduct epithelium such as Fig. 1A (2-12 = 474/223).

Consideration on the kagome-checkerboard transformation

We next consider the pattern transformation from kagome to checkerboard with
respect to cell number and size. The oviduct grows from approximately 12cm to
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18 cm in length during the kagome-checkerboard transformation (Yamanaka, in
preparation). Roughly speaking, it increases 1-5-fold in length and then 2-3-fold in
surface area. We count cells using photographs such as Fig. 1A and B. At the
kagome stage there are 223 C-cells and 474 G-cells in a certain area (20 000/mi2).
At the checkerboard stage there are 407 C-cells and 479 G-cells in an area
(20 000/mi2 x 2-3) which corresponds to a region of area (20 000/mi2) at the
kagome stage. These numerical data suggest that C-cells divide once during the
transformation since 446 (223x2) corresponds to 407 for C-cells and 474 to 479 for
G-cells. We can conclude that during the kagome-checkerboard transformation
C-cells divide once whereas G-cells do not divide and the luminal surfaces of all
cells increase 2-3-fold.

We intend to perform a computer simulation on the transformation to the
checkerboard pattern from the modified kagome pattern (the middle part of
Fig. 8). Large regular hexagons correspond to C-cells which are going to divide
once. Small hexagons consisting of alternate long and short sides correspond to
G-cells which surround isolated C-cells.

Determination of the weighting factor acc

When we determined aCc = 0-43 we fixed aCc at the value 1-0 arbitrarily. The
arbitrary fixation of the aCc value was justified, since there were scarcely any
CC boundaries in the actual cellular patterns. However, there are many CC
boundaries in the modified kagome pattern in which all C-cells have divided as
shown in Fig. 9A. We have to determine a definite value of ac c . We performed
the improved boundary shortening procedure, using various aCc values with

Fig. 8. Change of an artificial pattern from honeycomb (left) to kagome (right). The
middle is a modified kagome pattern which corresponds to the typical cellular pattern
of avian oviduct just before sexual maturation. Hexagons corresponding to C-cells are
designated by stippling.
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Fig. 9. A computer simulation of the transformation starting with a modified kagome
pattern. (A) A modified kagome pattern where C-cells (stippled polygons) divide in
parallel with each other. All polygons are the same in area. The procedure of
shortening the weighted boundary length is performed on the pattern A, putting
aCG = 0-43, aGG = 1-0 and ac c = 1-8. A rectangular cyclic boundary condition is used.
(B) After 2000 steps. (C) After 9000 steps. (D) After 40000 steps. The pattern comes
to resemble a checkerboard.

aCG = 0-43, on the modified kagome pattern in which C-cells divided. When a c c =
1-0 or 1-5, all cells in the pattern are deformed into pentagons. When a<x = 1-8 or
2-0, the cellular pattern somewhat resembles a checkerboard; when aCc = 2-5, the
pattern shows many singular figures despite the constraint that the P movement
should be smooth. (See Fig. 13A which will be discussed later.) We will then use
a cc = 1*8 hereafter for the computer simulation of the pattern that includes many
CC boundaries. Interpretations of the aCc value will be discussed later.

Computer simulations of the kagome-checkerboard pattern transformation

A computer simulation of the pattern transformation started with the modified
kagome pattern shown in Fig. 9A. The area of C-cells (large regular hexagons)
was assumed to be twice that of G-cells (small hexagons) in a luminal surface and
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the cleavage planes for all C-cells were parallel to each other. The improved
boundary shortening procedure was performed on the pattern of Fig. 9A using
aCG = 0-43, aGG = 1-0 and aCc = 1*8. A rectangular cyclic boundary condition was
used. The resultant patterns after 2000, 9000 and 40000 steps are shown in
Fig. 9B,C,D, respectively. Fig. 9D shows a pattern resembling a checkerboard;
most of the boundaries are edges along which C- and G-cells meet.

Similar results, as shown in Fig. 10A,B, were obtained by using a different series
of random numbers which determined other sequences of selecting sides in the
boundary shortening procedure. The resultant pattern in the case of a rhomboidal
cyclic boundary condition is also shown in Fig. 10C which is similar to other results
(Figs 9D, 10A,B). Fig. 9A corresponds to an actual pattern of Fig. 1A,C. Figs 9D
and 10A-C should be compared with an actual pattern of Fig. 1B,D.

Fig. 10. As in Fig. 9; results of computer simulations under different conditions.
(A) Using other series of random numbers than in Fig. 9. After 9000 steps. (B) Using
other series of random numbers than those in Figs 9,10A. After 4000 steps. (C) Using
a different cyclic boundary condition (a rhomboid). After 40000 steps.
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Fig. 11. Schematic cellular pattern change during sexual maturation of the avian
oviduct epithelium. Stippled polygons are C-cells. Others are G-cells. (A) Maximal
dispersion of C-cells among G-cells, using the condition that C-cells do not adjoin each
other. Thus, there is no CC boundary. The ratio of C-cells to G-cells is 1/2. (B) C-cells
enlarge their area relative to G-cells so as to decrease the length of GG boundaries,
thus forming a modified kagome pattern. Next, CC boundaries are generated through
divisions of C-cells. (C) A checkerboard pattern forms so as to decrease CC bound-
aries. Thus, all boundaries are edges along which C- and G-cells meet.

DISCUSSION

The developmental process of the oviduct epithelium

A sequence of cellular pattern changes has been observed in oviduct epithelium
of the Japanese quail (Yamanaka, in preparation). The epithelium just after
hatching consists of undifferentiated cells of a single type which form a monolayer
cell sheet. In luminal surface view cells in the monolayer have sinuous boundaries
that form a pattern resembling a jigsaw puzzle. This pattern lasts until about
32 days after hatching. During the next stage (approximately from 32 to 40 days)
the cell boundaries change from sinuous to straight and cells form polygons. The
cells differentiate into C- or G-cells and vary in size. There are fewer C-cells than
G-cells. This pattern is called random polygons. G-cells have a tendency to link
with each other, whereas C-cells have a tendency not to contact each other. Finally
G-cells form chains that enclose an isolated C-cell; that is, the kagome pattern
forms as described already.

We are interested in the patterns of only the luminal surface of the epithelium.
The patterns are considered to form and transform mainly due to lateral relation-
ships between neighbouring cells. We have omitted the basal relationship with
basement membrane, because the oviduct epithelial cells are columnar and so tall
(Yamanaka, in preparation) that adhesion of the cell bottom to the basement
membrane is considered not to affect significantly the behaviour of the apical part
of a cell. The distance of cell displacement during the computer simulation is small
in comparison with the cell height.

The purpose of the present investigation has been to explain theoretically the
pattern transformation from kagome to checkerboard (Fig. 11B-C). We have



14 H. HONDA, H. YAMANAKA AND G. EGUCHI

shown that two factors, the boundary shortening properties and the stronger
adhesion between C- and G-cells than between two C-cells or two G-cells, are
sufficient to explain the pattern transformation using computer simulations. But it
should be noted that we cannot say these two factors are necessary for the pattern
transformation. We cannot exclude other possible mechanisms to explain the
pattern transformation. This is the limitation of computer simulation studies.

We now discuss some assumptions we have made in the present computer
simulation.

The kagome pattern

We first discuss the geometrical configuration of the kagome pattern. For
simplicity we will use a hexagonal pattern as a typical polygonal pattern. Consider
a polygonal pattern in which all polygons are G-cells. The problem is to distribute
as many as possible C-cells among G-cells with the condition that C-cells do not
adjoin each other. One solution is the pattern shown in Fig. 11A. The ratio of
C-cells to G-cells in the pattern is 0-5, which is the maximum possible value
among solution patterns, and close to the value of an actual kagome pattern
(0-47 = 223/474) as already described in Part II of Results. (There are two possible
mechanisms forming this pattern in the developmental process: (1) immature cells
differentiate into C-cells spontaneously, but, when they adjoin C-cells, they
differentiate into G-cells; and (2) a cell divides at or migrates to a boundary where
two C-cells adjoin and differentiates into a G-cell.) A similar idea has been
discussed with respect to the distribution of ciliated cells on the epidermis of an
axolotl embryo (Landstrom, 1977). It seems that ciliated cells in some epithelial
tissues are prohibited from directly contacting each other. After the arrangement
of cells as shown in Fig. 11 A, the C-cells of the oviduct epithelium enlarge its
luminal area to form the kagome pattern as shown in Fig. 11B, at the same time as
the length of GG boundaries decreases in the pattern.

It should be noted that, in contrast to the checkerboard pattern, the typical
kagome pattern simultaneously meets both demands of (1) the large cell bound-
aries between unlike cells and (2) the boundary contraction. All cell boundaries in
the kagome pattern (the right part of Fig. 8) are between unlike cells where the
C- and G-cells meet and its total boundary length is minimal. The minimum
boundary length can be inferred as follows. Triangles in the kagome pattern in the
right part of Fig. 8 are considered to be the extreme case of small hexagons in the
middle of Fig. 8 whose three minor sides shorten and finally disappear. Not only
the large polygons (regular hexagons), but also the small polygons in a modified
kagome pattern are hexagonal; their inner angles are all 120°. A theorem of
geometry states that a hexagonal pattern whose inner angles are all 120° has the
minimum boundary length, even if the side lengths are heterogeneous. Therefore,
the total boundary length is the same among various patterns in Fig. 8 and its value
is minimal.
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The direction of cell division

We have assumed that all C-cells divide in the same direction. We will explain in
this section that this assumption seems to be reasonable.

Hofmeister (quoted in Korn & Spalding, 1973) observed that a cell divides
perpendicular to its long axis. We have confirmed this fact in the epithelium of the
starfish embryo (Honda, Yamanaka & Dan-Sohkawa, 1984).

Next, a method to determine the long axis of a cell has been developed and
successfully used for the computer simulation of cell divisions (Honda et al. 1984).
That is, a cell is considered as a polygon made from thin uniform board. The
polygonal board has a moment of inertia. We can determine three mutually
perpendicular axes through the centre of mass of the polygonal board according to
elementary mechanics, so that the moment of inertia about one of these axes has
the minimum possible value for any axis through the centre of mass. Then, we
used the axis of the minimum value as the long axis of a polygon. Therefore, we
can determine a division plane when the shape of a polygonal cell is given.

A C-cell (a regular hexagon) in the modified kagome pattern divides. One of the
modes of division is shown in Fig. 12A. The improved boundary shortening
procedure is performed on Fig. 12A. The resultant pattern is shown in Fig. 12B.
Polygons around the divided cell are somewhat deformed. Directions of long axes
of six deformed large hexagons are determined by the method of the moment of
inertia as described above and the division planes that are perpendicular to the
long axes are determined as shown in Fig. 12B. Four out of six hexagons (solid

B

Fig. 12. The effect of a single C-cell division on the adjacent six C-cells. C-cells are
designated by stippling. (A) Before cell division. Direction of a cell division is
indicated by a broken line. (B) A computer simulation of a polygonal pattern after
division with 9000 steps using aCG = 0-43, aGG = 1*0 and aCc = 1"8. Six C-cells around
the divided cell are deformed and directions of the next division are determined
according to the assumption that a cell divides perpendicular to its long axis. Four cells
(solid arrows) that are greatly deformed divide almost in parallel with the initial
division. Two cells (open arrows) that are slightly deformed divide approximately
perpendicular to the initial division.
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arrows in Fig. 12B) suffer relatively large deformations and their division planes
are almost in parallel with the division plane of the central polygon which
previously divided. The remaining two hexagons (open arrows in Fig. 12B) de-
form slightly and their division planes are approximately perpendicular to the
division plane of the central polygon. Similar results are obtained using a number
of procedures with modes of cell divisions other than Fig. 12A.

Based on the information obtained from the above-mentioned computer simu-
lation of a single C-cell division (Fig. 12), consideration proceeds as follows. When
a C-cell divides in the modified kagome pattern, four of six cells close to the
divided cell are greatly deformed and begin to divide in parallel with the first
division. Thereafter, most of the other C-cells around the site are deformed and
divide sequentially in parallel with the first division. On the other hand, the
remaining two cells close to the original dividing cell are slightly deformed and
have a slight tendency to divide perpendicular to the first division, but the
tendency is disturbed by many neighbouring cells dividing in parallel with the first
division. Therefore, we have reasonably postulated that C-cells in the modified
kagome pattern divide in parallel with each other in a restricted area. We await
further studies that show cell divisions of the same direction in actual tissues.

The effect of the smooth movement of point P

As described in Materials and Methods, the movement of point P is restricted
within a given distance during a single elemental step in the present investigation.
We suggest that the restriction causes point P to move in a natural, reasonable
manner, since actual movements of cell boundaries in a tissue take place simul-
taneously in many locations, while cell boundaries in a computer simulation move
one by one. It is far from natural that, while a certain cell boundary moves greatly,
other cell boundaries do not move at that time. Although there is a restriction of
P movement during a single elemental step, many repetitions of these elemental
steps result in many small movements of vertices in several locations, which is
close to actual cell behaviour. In comparison with the conventional computation
more steps are necessary to get the pattern change. When the computer simulation
runs without the restriction of P movement, the resultant patterns often contain
singular figures as shown in Fig. 13A. In contrast, we obtain reasonable figures
as shown in Fig. 13B by using the program to restrict the movement of P. The
assumption of the smooth P movement has therefore been used in the present
computer simulation.

Meanings of the values aCG and ace

An interpretation of aCG = 0-43 is as follows. Shortening of the cell boundaries
is considered to contribute to stabilization of the epithelium. In the oviduct
epithelium, moreover, the decrease of a unit length of GG boundary contributes
to the stabilization more than the decrease of a unit length of CG boundary. The
length of GG boundary then tends to become short in comparison with the length
of CG boundary. Quantitatively, the decrease of 2-33 (= 1/0-43) of CG boundary
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Fig. 13. The effect of the smooth movement of point P. The improved boundary
shortening procedure without the restriction of the P movement sometimes generates a
singular pattern such as A. When restricting the P movement during a single elemental
step (see Materials and Methods), a regular pattern such as B is obtained. C-cells are
designated by stippling.

length makes the same contribution as the decrease of a unit of GG boundary
length. We cannot define the physical meanings of aCG = 0-43 more precisely, but
the present interpretation seems to be important since we do not have any other
method to obtain quantitative information on the adhesion strength of cells being
organized into tissues in situ.

We have used aCc = 1*8, but the value is not as reliable as the value of aCG when
considering the process of determination of the aCc value. We can say, however, it
is meaningful that the value of aCc is considerably larger than that of aGG (= 1-0)
because the frequencies of CC boundaries are few in comparison with those of GG
boundaries in the oviduct epithelium (Yamanaka & Honda, in preparation). That
is, C-cells have a tendency not to contact each other whereas G-cells link with each
other.

Rhombic checkerboard pattern

Our computer simulation of the transformation from the modified kagome
pattern results not in orthogonal, but rhombic checkerboard patterns as shown in
Fig. 9D, 10. This is not due to the shape of a cyclic boundary condition, since the
different cyclic boundary conditions of rectangle (Fig. 9D, 10A,B) and rhomboid
(Fig. IOC) have both given similar results. Cells in the modified kagome pattern
correspond one-to-one to cells in the resultant checkerboard pattern as shown
in Fig. 14. Averaged positions of individual cells have not shifted significantly
during computer simulation. This is why we do not get orthogonal cell arrays. Cells
would have to be moved for a long distance in order to obtain an orthogonal
checkerboard pattern in a computer simulation. Pattern changes not involving
long-distance cell shifts are due to the limited ability of side movements in the
boundary shortening procedure, that is sides of polygons move one by one keeping
constant polygonal areas.

Functions of the checkerboard-like arrangement of cells

The checkerboard-like cell arrangement makes an even distribution of C-cells
and G-cells on the luminal surface of the oviduct. Cilia movement of C-cells and
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Fig. 14. Correspondence of initial polygons (A) to the final ones (B) in a computer
simulation of the pattern formation. Polygons do not shift significantly during the
simulation. The resultant polygons are not squares, but have been deformed into
rhomboids. C-cells are designated by stippling.

ovomucin secretion from G-cells both help the transport of an egg through an
oviduct tube. Therefore, the even distribution of C- and G-cells is considered to
promote egg transport.

We have observed coated pit-like structures on a lateral boundary between two
columnar cells in the oviduct epithelium with an electron microscope (unpublished
results). This might suggest a transportation of substances between the two types
of cells. We are not sure whether the effective transport of certain substances
across CG boundaries is required for cell survival. If it is, then cell configurations
like a checkerboard and kagome are adaptive for effective transport, since both
configurations provide large lateral boundaries between unlike cells. A similar
discussion has taken place with regard to counter-current exchange within a
bundle of small blood vessels (veins and arteries) in the wall of the swimbladder of
deep-sea fishes (Scholander, 1969).

In the differential adhesion theory of cell aggregates (e.g. Steinberg, 1963,
1978), the intermixing case has only been theoretical: there has been no actual case
in which two types of cells mix with each other and do not sort out. Our finding of
the checkerboard pattern in the avian oviduct epithelium may be the first instance.
However, our instance is in a two-dimensional cell aggregate, not in a three-
dimensional one.
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