Subject Index

Allantoic endoderm

implanted into presumptive digestive area in chick embryos: YASUGI 137

Ambystoma mexicanum

in vitro development of isolated ectoderm from gastrulae: SLACK 321

regional biosynthetic markers in early embryonic development: SLACK 289

Amphibia

axolotl

in vitro development of isolated ectoderm from gastrulae: SLACK 321

Antisera

used to study differentiation of allantoic endoderm in avian embryos: YASUGI 137

Apical ectodermal ridge (AER)

effect on myogenic cell movements in avian limb bud: GUMPEL-PINOT, EDE & FLINT 105

development in chick wing bud: TODT & FALLON 21

Apoptosis

associated with cavitation in teratocarcinoma-derived embryoid bodies: BOYD, HOOPER & WYLLIE 63

Axolotl

in vitro development of isolated ectoderm from gastrulae: SLACK 321

regional biosynthetic markers in early embryonic development: SLACK 289

Canine

ontogeny of haemopoietic progenitor cells (GM-CFC): NOTHDURFT, BRAASCH, CALVO, PRÜMMER, CARBONELL, GRILLI & FLIEDNER 87

Cell death

associated with cavitation in teratocarcinoma-derived embryoid bodies: BOYD, HOOPER & WYLLIE 63

in chick optic cup-evidence for new necrotic area: GARCÍA-PORRERO, COLVÉE & OJEDA 241

in development of apical ectodermal ridge in chick wing bud: TODT & FALLON 21

Cell lineage

in chimaeric hydra from normal and slowbudding strains: TAKANO & SUGIYAMA 155

Cell marker

for clonal analysis of mouse extraembryonic endoderm development: GARDNER 251

Cell movement

in developing avian limb bud in presence and absence of AER: GUMPEL-PINOT, EDE & FLINT 105

Chick

embryo

cell death in dorsal part of optic cup:
GARCÍA-PORRERO, COLVÉE & OJEDA 241
development of apical ectodermal ridge
in wing bud: TODT & FALLON 21

differentiation of allantoic endoderm studied with antigens: YASUGI 137

myogenic cell movement in presence and absence of AER: GUMPEL-PINOT, EDE & FLINT 105

SEM localization of cell-surfaceassociated fibronectin in cranium: MEIER & DRAKE 175

spatially periodic patterns created by mechanical instability: HARRIS, STOPAK & WARNER 1

Chimaeras

in hydra

genetic analysis of developmental mechanisms: TAKANO & SUGIYAMA 155

Clonal analysis

of development of extraembyonic endoderm in the mouse: GARDNER 251

Cranial neural crest

localization of fibronectin in chick embryos: MEIER & DRAKE 175

Culture

of isolated early mouse inner cell masses: NICHOLS & GARDNER 225

Cytokeratins

as regional biosynthetic markers in early amphibian embryo: SLACK 289

Cytoskeleton

role in control of intravitelline mitoses in Drosophila embryos: TOGASHI & OKADA 43

Determination

mechanism in early development of axolotl embryos: SLACK 289

Drosophila melanogaster

egg

arrest of intravitelline mitoses by u.v. irradiation of surface: TOGASHI & OKADA 43

Ectoderm

isolated from axolotl gastrulae- in vitro development: SLACK 321

EK cells

effect on parthenogenetic development in mouse embryos: KAUFMAN, EVANS, ROBERTSON & BRADLEY 75

Embryoid body

mode of cell death associated with cavitation: BOYD, HOOPER & WYLLIE 63

Epidermis

development from isolated ectoderm of axolotl gastrulae: SLACK 321

Epimucin

as regional biosynthetic markers in early amphibian embryo: SLACK 289

Epithelial-mesenchymal interaction

between allantoic endoderm and presumptive digestive area tissues: YASUGI 137

External cells

heterogeneous differentiation in isolated mouse ICMs in culture: NICHOLS & GARD-NER 225

Extraembryonic ectoderm

differentiation in isolated early mouse ICMs in culture: NICHOLS & GARDNER 225

Feather germs

spatially periodic patterns created by mechanical instability: HARRIS, STOPAK & WARNER 1

Fibroblast traction

in feather germ pattern formation in chick embryos: HARRIS, STOPAK & WARNER 1

Fibronectin

associated with cell surface in chick embryo cranium: MEIER & DRAKE 175

Glycolipids

in early amphibian embryos: SLACK 289 Glycoproteins

as regional biosynthetic markers in early amphibian embryo: SLACK 289

Granulocyte progenitor cell (GM-CFC)

ontogeny in the beagle dog: NOTHDURFT, BRAASCH, CALVO, PRÜMMER, CARBONELL, GRILLI & FLIEDNER 87

Gravity

role in pattern formation in inverted Xenopus eggs: NEFF, WAKAHARA, JURAND & MALACINSKI 197

Haemopoietic progenitor cells (GM CFC)

ontogeny in the beagle dog: NOTHDURFT, BRAASCH, CALVO, PRÜMMER, CARBONELL, GRILLI & FLIEDNER 87

Hydra

analysis of chimaeras from normal and slow-budding strains: TAKANO & SUGIYAMA 155

Immunolatex microspheres

used to locate fibronectin in chick embryo cranium: MEIER & DRAKE 175

Inner cell masses

isolated from mouse blastocysts: NICHOLS & GARDNER 225

Inverted eggs

of Xenopus—cytoplasmic rearrangements after fertilization: NEFF, WAKAHARA, JURAND & MALACINSKI 197

In situ

cell marker for clonal analysis of mouse development: GARDNER 251

In vitro

culture of rat visceral yolk sac: Lu, sobis, van hove & vandeputte 127

Limb bud

cell movements in presence and absence of apical ectodermal ridge: GUMPEL-PINOT, EDE & FLINT 105

Limb development

of chick-apical ectodermal ridge in wing bud: TODT & FALLON 21

Malic enzyme activity

as cell marker for clonal analysis of development in mouse: GARDNER 251

Mammals

ontogeny of haemopoietic progenitor cells (GM-CFC) in the dog: NOTHDURFT, BRAASCH, CALVO, PRÜMMER, CARBONELL, GRILLI & FLIEDNER 87

Mechanical instability

model for generation of spatially periodic patterns: HARRIS, STOPAK & WARNER 1

Metamerism

in localization of fibronectin during development of chick cranium: MEIER & DRAKE 175

Mitotic cycle

in *Drosophila* embryos after u.v. irradiation of egg surface: TOGASHI & OKADA 43

Mouse

blastocytes

culture of isolated inner cell masses: NICHOLS & GARDNER 225

embryo

effect of injected pluripotential cells on parthenogenetic development: KAUF-MAN, EVANS, ROBERTSON & BRADLEY 75

in situ marker for clonal analysis of extraembryonic endoderm: GARDNER 251

Myogenic cells

movement in developing avian limb bud: GUMPEL-PINOT, EDE & FLINT 105

Necrosis

associated with cavitation in teratocarcinoma-derived embryoid bodies: BOYD, HOOPER & WYLLIE 63

Necrotic area

in chick optic cup development: GARCÍA-PORRERO, COLVÉE & OJEDA 241

Optic cup

evidence for new necrotic area in chick embryo: GARCÍA-PORRERO, COLVÉE & OJEDA 241

Organ culture

of rat visceral yolk sac: Lu, sobis, van hove & vandeputte 127

Parietal endoderm

in situ cell marker for clonal analysis in mouse: GARDNER 251

Parthenogenetic embryos

influence of injected pluripotential (EK) cells: KAUFMAN, EVANS, ROBERTSON & BRADLEY 75

Pattern formation

after fertilization of inverted Xenopus eggs: NEFF, WAKAHARA, JURAND & MALACINSKI 197

in feather germs in chick embryo-mechanical instability model: HARRIS, STOPAK & WARNER 1

Pluripotential cells (EK)

effect on parthenogenetic development in mouse embryos: Kaufman, Evans, ROBERTSON & BRADLEY 75

Quail

allantoic endoderm

implanted into presumptive digestive area in chick: YASUGI 137

Rat

visceral yolk sac

differentiation potentiality in organ culture: LU, SOBIS, VAN HOVE & VANDEPUTTE 127

Regulation mechanism

for intravitelline mitoses in *Drosophila* embryos: TOGASHI & OKADA 43

Retina

evidence for new necrotic area in chick optic cup: GARCÍA-PORRERO, COLVÉE & OJEDA 241

Teratocarcinoma

derived embryoid bodies-mode of cell death during cavitation: BOYD, HOOPER & WYLIE 63

Trophectoderm

differentiation in isolated early mouse ICMs in culture: NICHOLS & GARDNER 225

U.v. irradiation

of *Drosophila* egg surface causes arrest of intravitelline mitoses: TOGASHI & OKADA 43

Visceral endoderm

in situ cell marker for clonal analysis in mouse: GARDNER 251

Visceral yolk sac

of rat in organ culture: LU, SOBIS, VAN HOVE & VANDEPUTTE 127

Vital staining

of chick optic cup-evidence for new nectoric area: GARCÍA-PORRERO, COLVÉE & OJEDA 241

Xenopus laevis

egg

cytoplasmic rearrangements after fertilization of inverted eggs: NEFF, WAKAHARA, JURAND & MALACINSKI 197

Yolk platelets

distribution in inverted *Xenopus* eggs following fertilization: NEFF, WAKAHARA, JURAND & MALACINSKI 197