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In vertebrates, heart asymmetry is biased toward the left side and
orchestrated by signals from the embryonic left–right (L–R)
organizer (LRO) (Grimes and Burdine, 2017). In fish, the LRO
features a fluid-filled cavity, the Kupffer’s Vesicle (KV), located in
the tail bud. The fluid is set in motion by motile cilia, which leads to
the right-sided inhibition of the Nodal family gene spaw by the
antagonist Dand5, and the activation of target genes in the lateral
plate mesoderm (Hashimoto et al., 2004). In comparison with
humans, which display laterality disorders in only 1 of 5000-7000
births (Shiraishi and Ichikawa, 2012), the teleost Astyanax
mexicanus, a single species consisting of two phenotypically
distinct surface- and cave-dwelling populations, exhibit remarkable
differences in their heart L–R asymmetry frequency. Cavefish
display up to 20-30% of right-oriented hearts, compared with <5%
for surface fish (Ma et al., 2021). In Ng et al. (2023 preprint),
the authors examine the role of Sonic hedgehog (Shh) signaling in
L–R patterning in the two populations of Astyanax mexicanus.
Previously shown to be responsible for the environmental
adaptation of the cavefish, Shh increases the olfactory sense and
contributes to eye degeneration (Yamamoto et al., 2004; Menuet
et al., 2007). The authors propose that the enhancement of Shh also
leads to structural changes in the LRO and subsequent L–R axis
reversion.
Natural differences in the morphology of the KVor its precursors,

the dorsal forerunner cells (DFCs) are associated with laterality
defects in zebrafish (Moreno-Ayala et al., 2021). Thus, Ng and
colleagues started by comparing the KV structures between the
surface fish and two cavefish families exhibiting high or low
cardiac-looping defects. They found that the cavefish family with
high cardiac L–R defects exhibits larger KV or more than one KV,
potentially as a result of lumen formation defects. Specifically, a
large KV area correlates with looping defects in the cavefish family
with laterality defects. Cilia number and length in the KV, which are
associated with L–R robustness in fish, can vary considerably
among wild-type and transgenic strains (Gokey et al., 2016). In the
cavefish family with high cardiac-looping defects, cilia length was
shown to be increased and cilia density decreased. It will be
interesting to evaluate in future studies whether these natural
changes in KV ciliation are associated with different KV flow
patterns (Sampaio et al., 2014) or if the ratio between motile and
immotile cilia (Ferreira et al., 2017) is altered in this cavefish family.
KV cells are a coalescence of the DFCs, which are considered a

subset of the endoderm (Warga and Kane, 2018). KV area correlates

with DFC cell numbers and fewer DFCs leads to cardiac-looping
defects. Ng and colleagues quantified the number of DFCs and
noticed that, consistent with the enlarged and multiple KV, the
cavefish with high L–R defects exhibited more DFCs. In parallel,
they found that the master regulator of motile ciliogenesis foxj1a
(Tavares et al., 2017) is enriched in the tailbud of the cavefish with
high L–R defects. The authors suggest that those differences may
account for the structural differences in KV morphology in this
cavefish family.

Upstream of foxj1a, Shh signaling is a modulator of ciliogenesis
and is associated with L–R asymmetry establishment in vertebrates
(Negretti et al., 2022). In cavefish with high L–R defects, the
expression of shh and its receptor ptch2 expand toward the posterior
midline, where the notochord meets and shapes the KV
(Compagnon et al., 2014). Using the Smoothened agonist SAG,
the authors found that Shh overexpression in surface fish
recapitulates the cavefish phenotype with regressed eyes as well
as increased KV area, cilia size and cardiac-looping defects.

The hallmark of laterality initiation is the right-sided enrichment
of the Nodal antagonist dand5, expressed in KV cells (Hashimoto
et al., 2004). Ng et al. analyzed the expression of dand5 in the
cavefish with higher L–R defects and found a higher percentage of
abnormal expression, which correlates with large KVs. These
observations on dand5 laterality can be recapitulated by Shh
overexpression, which leads to the bilateral or right-sided expression
of spaw, responsible for propagating the L–R information from the
posterior to the anterior mesoderm. Overall, these results suggest
that the structural KV variations, including enlargement and cilia
patterning, are responsible for the observed L–R defects, under the
control of Shh signaling.

The pre-chordal plate at the anterior midline is crucial to
understanding the role of Shh in cavefish adaptation (Yamamoto
et al., 2004; Menuet et al., 2007). This research by Ng and
colleagues offers insights into the role of Shh signaling in L–R
asymmetry by showing that it is also enhanced posteriorly. It will
be interesting to investigate how a higher DFC number and larger
KVs in the cavefish populations with high L–R defects could be
responsible for this phenotype. Although no other natural
occurrence of multiple KV has been reported, loss-of-function
conditions of pk1a and myo1d can lead to fragmented KV lumens
(Oteiza et al., 2010; Saydmohammed et al., 2018) and could be
compared to the one present in this study. The analysis of fluid
flow patterns in large KVs could also contribute to understanding
how dand5 degradation only occurs on the left side (Sampaio
et al., 2014; Juan et al., 2018). Moreover, Shh has been reported
on extracellular vesicles in the mammalian LRO (Tanaka et al.,
2005). However, the role of these vesicles or similar extracellular
granules (Tanaka et al., 2023) in controlling dand5 expression
remains to be investigated. Finally, it will be interesting to
determine whether Shh levels are also predictive of L–R
robustness in other vertebrate species. In summary, these
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findings offer valuable insights into how morphological traits can
appear through modifications in key genetic pathways and can
serve as a model to investigate the impact of Shh signaling on
development and evolution.
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