
Introduction

Gap junctions contain transmembrane channels that directly
link adjacent cells and provide pathways for the transfer of
low molecular weight molecules and ions from one cell to
another (Gilula et al., 1972; Bennett and Goodenough, 1978;
Loewenstein, 1981). The junctional channels are bipartite
structures formed by the association of two oligomeric struc-
tures or connexons, each connexon representing an
oligomeric arrangement of six polypeptides. The gap junc-
tion (GJ) proteins have been derived from a multigene fam-

ily, based on a conserved region of about 200 amino-terminal
residues that includes four transmembrane and two extracel-
lular domains (Zimmer et al., 1987; Beyer et al., 1987; Milks
et al., 1988; Goodenough et al., 1988; Nicholson and Zhang,
1988; Hertzberg et al., 1988; Yancey et al., 1989). Full-
length sequences for several of these proteins have been
deduced from cDNA analysis: a 32 ×103 Mr protein from
mammalian liver (Paul, 1986; Kumar and Gilula, 1986), a 43
×103 Mr protein from mammalian heart (Beyer et al., 1987), a
26 ×103 Mr protein from mammalian liver (Nicholson and
Zhang, 1988), and a 31 ×103 Mr protein from several mam-

827Development 115,827-837  (1992)
Printed in Great Britain © The Company of Biologists Limited 1992

The expression of three gap junction (GJ) proteins, α1
(Cx43), β1 (Cx32), and β2 (Cx26), and their transcripts
were examined during the ontogeny of the mouse and rat
kidney. These proteins were expressed in two non-over-
lapping patterns. The α1 GJ protein was first observed in
mesenchymal cells in the 12-day mouse kidney. By day 14
and thereafter, the α1 protein was detected in the tran-
sient S-shaped bodies, but not in the podocytes of the
maturing glomeruli. After birth the antigen was retained
in a small subset of secretory tubules.

The β1 and β2 GJ proteins were similar in their devel-
opmental patterns. They were first detected in a small
subset of secretory tubules in the subcortical zone of day
17 embryos. These tubules were identified by immunohis-
tochemical markers to be proximal. At birth, practically
all proximal tubules expressed the two antigens.

This analysis of GJ proteins was consistent with the
results of S1 nuclease protection assays showing that,
while the α1 mRNA appeared early during kidney devel-
opment and declined around birth, the two β mRNAs
appeared later and became intensified during the last
days of intrauterine development.

In experimentally induced metanephric mesenchymes,
a transient expression of the α1 GJ protein was seen dur-
ing the segregation of the tubular anlagen. β1 and β2 GJ
proteins were not detected in such induced mesenchymes
cultivated up to 7 days.

These observations provide evidence for the cell-
specific utilization of different GJ genes during different
stages of kidney organogenesis. The α1 gene is activated
during the early segregation of the secretory tubule and
might contribute to its compartmentalization, while the
β1 and β2 gene products are not detected until advanced
stages of development. The latter gene products might be
correlated with the physiological activity of the proximal
tubules in vivo, as they are not expressed in experimen-
tally induced tubules detectable with markers for proxi-
mal tubules.
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malian tissues, including placenta and skin (Hoh et al.,
1991). A 46 ×103 Mr protein found in the lens also appears to
be a member of this family because of its predicted structural
motif (Kistler et al., 1988; Beyer et al., 1989). On the basis of
predicted structural similarities, the multigene family has
been divided into two classes, α and β (Risek et al., 1990).
The α class contains α1 (43 ×103 Mr), α2 (38 ×103 Mr from
amphibians) and α3 (46 ×103 Mr); while the β class contains
β1 (32 ×103 Mr), β2 (26 ×103 Mr) and β3 (31 ×103 Mr).

Gap junctions mediate important developmental and phys-
iological activities. In excitable tissues, gap junctions pro-
vide low-resistance coupling pathways for nerve conduc-
tance (Furshpan and Potter, 1968), myocardial contraction
(Dreifuss et al., 1966) and the coordination of smooth muscle
movement (for review, see Daniel, 1987). The specific func-
tion of each type of GJ protein remains largely unknown,
although the dramatic elevation of α1 mRNA seen in the
myometrium the day before parturition is thought to be
responsible for producing the junctions that synchronize the
uterine contractions (Risek et al., 1990). During develop-
ment, gap junctions have been shown to play important roles
in compartmentalizing cells and in transmitting morpho-
genetic information (for review, see Guthrie and Gilula,
1989). Gap junctions connect the blastomeres of the 8-cell
mouse embryo (Lo and Gilula, 1979) and, if junctional com-
munication between cells of these embryos is blocked by
treatment with antibodies that bind to GJ proteins, the com-
munication-deficient cells are not retained by the compacted
embryo (Lee et al.,1987). Drosophila imaginal discs and the
gastrulating mouse embryo are both divided into communi-
cation compartments by GJ pathways that exist between cer-
tain cells and not others (Weir and Lo, 1982; Kalimi and Lo,
1988, 1989). Gap junctions also form communication com-
partments in developing frog embryos, which physiologi-
cally separate the presumptive neural ectoderm from pre-
sumptive epidermis (Warner, 1973). When antibodies to
mammalian GJ protein were injected into blastomeres of 8-
cell Xenopus embryos, electrical and ionic coupling was
inhibited, and patterning defects (asymmetries) developed in
those regions derived from the injected blastomere (Warner
et al., 1984). Information transfer through gap junctions has
also been found in developing invertebrates. The gradient of
hydra head inhibitor was blocked by treatment with antibod-
ies to mammalian GJ proteins (Fraser et al., 1987), and gap
junctions appear at the specific time when the information
required to form molluscan mesoderm is activated in the 3D
macromere by contact with vegetal micromeres (de Laat et
al., 1980).

The mammalian kidney provides an opportunity to
analyze whether three of the well-characterized GJ proteins
(α1, β1 and β2) are utilized differentially during organ devel-
opment. The kidney develops as a result of interactions
between two tissues, the ureter bud and the metanephrogenic
mesenchyme (reviewed in Saxén, 1987). When the bud
enters the mesenchymal blastema on day 11 of mouse devel-
opment, the mesenchymal cells induce it to branch. Con-
versely, the epithelium induces the mesenchyme to form the
secretory nephrons first visualized as condensations around
the tips of the ureter. The condensed cells then form a renal
vesicle which develops a central cavity, and, subsequently,
an S-shaped body is formed. The portion of this tube closest

to the ureter becomes the distal tubule cells, while the rest
develops into proximal tubules and the epithelium of the
glomerulus. The continuous branching of the ureter bud and
its induction of nephron formation in the mesenchyme gener-
ate the metanephric kidney.

Using antibodies and cDNA probes to three GJ proteins
and their messengers, we analyzed the spatial and temporal
distribution of these GJ proteins during mouse renal develop-
ment. Results from this study demonstrate that the
expression of these GJ proteins correlates with specific cell
types.

Materials and methods

RNA analysis 
Embryonic kidneys at different developmental stages were obtained
by timed matings of Balb/c × C57BL/6 F1 mice. The appearance of
the vaginal plug was noted as day 0. The embryonic kidneys were
removed at appropriate post-implantation stages in order to prepare
RNA for analysis. For extraction of total RNA from the kidney sam-
ples, an acid phenol-guanidinium thiocyanate procedure was
applied with RNAzol (Cinna/Biotex). The extracted RNA from the
different stages was analyzed by using a mixture of GJ probes (for
α1, β1 and β2) in an S1 nuclease protection assay as described previ-
ously (Davis et al., 1986; Nishi et al., 1991).

Histology
The kidneys were fixed with 2.5% glutaraldehyde in 0.1 M phos-
phate buffer, pH 7.3, for 1 hour at room temperature, mounted in
Epon, and 1 µm sections were cut for staining with toluidine blue
and examined in light microscopy.

Immunohistochemistry
Sections from whole embryonic kidneys, transfilter explants and
reaggregated mesenchymal cell cultures were analyzed by immuno-
histochemistry. Affinity-purified rabbit antibodies were prepared
against synthetic peptides corresponding to the S epitopes of GJ
proteins α1 and β1 and the J epitope of β2 (Milks et al., 1988; Risek
et al., 1990). Mouse embryos from matings of CBA males with
NMRI females and Spraque-Dowley rat embryos, used for double-
staining immunofluorescence experiments, were obtained from the
breeding colony of the Department of Pathology, University of
Helsinki. For indirect immunohistochemistry, whole embryonic
kidneys were rapidly frozen in OCT and sectioned on a Leitz 1720
cryostat without prior fixation. Sections of 5-6 µm were incubated
with 3% BSA, 3% goat serum (Vector Laboratories, Burlingame,
CA) in PBS (10 mM sodium phosphate, pH 7.5, 0.9% NaCl) for 1
hour at room temperature to reduce non-specific binding. Incuba-
tion with preimmune serum or antibodies was performed overnight
at 4oC in the BSA- and goat serum-containing buffer, followed by
three washes in PBS. FITC- and TRITC-conjugated donkey anti-
rabbit IgG (Jackson ImmunoResearch, West Grove, PA) diluted
1:200 in PBS was added to the slides for 1 hour at room tempera-
ture. The slides were then washed three times in PBS and mounted
in PBS-containing glycerol or in Elvanol (Klein et al., 1988).
Podocalyxin, a rat podocyte- and endothelium-specific antibody
(Schnabel et al., 1989, Miettinen et al., 1990), dipeptidylpeptidase
IV, a rat proximal-tubule-specific antibody (Miettinen et al., 1990),
as well as brush border and Tamm-Horsfall glycoprotein antibodies
(Miettinen and Linder, 1976; Sikri et al., 1979; Dawnay et al., 1980;
Ekblom et al., 1980) were generous gifts of Dr A. Miettinen
(Department of Bacteriology and Immunology, University of
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Helsinki). Double-staining immunofluorescence also utilized
TRITC-conjugated goat anti-mouse IgG (Jackson ImmunoRe-
search) diluted 1:100 and FITC-conjugated goat anti-rat IgG (Cap-
pel Laboratory, Cochranville, PA) diluted 1:500. Immunofluores-
cence was analyzed using a Zeiss Axiophot microscope with
epifluorescence. Photographs were taken with Fuji Neopan 1600
ASA black-and-white professional print film.

Confocal microscopy was performed with the confocal scanning
laser beam fluorescence microscope developed at the European
Molecular Biology Laboratories, Heidelberg. The design and oper-
ating principles of this microscope have been described previously
(Bacallao et al., 1989; Stelzer et al., 1989). FITC was excited at 488
nm by an argon laser (2020-05 SpectraPhysics, Inc., Mountain
View, CA), and serial optical sections were made at 0.3-µm or 0.5-
µm intervals.

Transfilter induction 
Metanephric kidney rudiments were dissected from 11-day mouse
and 13-day rat embryos. To separate the mesenchyme from the
epithelial ureter bud, the explants were incubated in 0.75% pan-
creatin-2.25% trypsin for 1.5 minutes at 0oC. The manual separ-
ation was performed under a stereomicroscope at room temperature
in Eagle’s Minimum Essential Medium (MEM) supplemented with
10% fetal calf serum (FCS; Myoclone Plus, GIBCO, Paisley, Scot-
land). Fragments of spinal cord from the same embryos were used
as inducers in the transfilter experiments (Saxén and Lehtonen,
1978). In some experiments, the transfilter contact was interrupted
after 22 hours and 48 hours to follow the development of the mes-
enchyme in prolonged cultures after a short induction pulse.

The isolated mesenchymes were transferred onto Nuclepore fil-
ters (General Electron Co., Pleasanton, CA) with an average pore
size of 1.0 µm. A piece of spinal cord was glued beforehand on the
opposite side of the filter, using agarose (Grobstein, 1956; Saxén
and Lehtonen, 1987). The transfilter explants were cultured in
MEM with 10% FCS and harvested at different intervals for
immunohistochemistry.

Results

Temporal analysis of GJ mRNA expression during kidney
development
The expression of GJ mRNA from three genes (α1, β1, β2)
during kidney development was studied by applying an S1
nuclease protection assay to RNA that was isolated at differ-
ent developmental stages.

For this analysis, probes for all three transcripts were
added together so that all three products could be analyzed
simultaneously (Fig. 1). In the 13-day mouse embryonic
kidney, the α1 transcript was seen to be present at high levels.
These levels remained high throughout development, but
declined around birth. The β1 transcript was readily detected
by day 15, and the expression of this mRNA increased
throughout development. On day 17, transcription of the β2
message was detected, and the accumulation of this tran-
script increased dramatically after birth. The overall devel-
opmental pattern of expression differed for α1 versus β1 and
β2. The α1 transcript was expressed at high abundance during
early development, but the expression decreased signifi-
cantly after birth. Conversely, the expression of the β1 and β2
transcripts increased significantly during development and
after birth.

In summary, the data from this analysis provides evidence
that all three GJ genes are expressed during the development
of the kidney, that these genes are developmentally regu-
lated, and that there is a change in the relative abundance of
these transcripts during kidney organogenesis.

Spatial and temporal immunolocalization of GJ proteins in
the developing kidney

Expression pattern of the 1 GJ protein
Stages of the early development of the metanephric kidney
are illustrated in Fig. 2.

By immunohistochemistry, the α1 GJ protein was
detectable in the 12-day embryo. At this early stage of kidney
development, the ureteric bud has branched only two or three
times and patches of immunofluorescence were observed in
the mesenchyme near these branches. This immunofluores-
cence in the mesenchyme was not seen in samples stained
with preimmune sera or with the antibodies for other GJ pro-
teins. By day 14, the expression of α1 was localized to a par-
ticular subset of kidney mesenchymal cells: it was detected
only on the cells that had formed the S-shaped bodies. The
cells expressing α1 in the 14-day mouse kidney were pre-
dominantly found in a subcortical zone containing early S-
shaped bodies (Fig. 3A). Higher magnification of one of
these regions (Fig. 3B) shows the relationship between the
ureter bud and the S-shaped bodies on either side of it. The
highest staining intensity of the α1 antigen was in the crevice
furthest from the ureter-derived collecting duct. The epithe-
lial cells of this region are the presumptive glomerular
podocytes, but when they mature, the α1 antigen is concomi-
tantly downregulated; double immunostaining with α1 anti-
body and antipodocalyxin reveals no overlapping (Fig. 3C-
F).

Expression pattern of the 2 GJ protein
The β2 GJ protein could not be detected until around day 17.

Fig. 1. Analysis of gap
junction mRNA by an S1
nuclease protection assay
during mouse kidney
development. Three
antisense single-stranded
DNA probes were
hybridized as a mixture to
the different samples of
kidney RNA (5 µg total
RNA/sample). The lanes
contain the following
samples: (1) Undigested
probes; (2) 13-day
embryonic kidney RNA; (3)
15-day embryonic kidney
RNA; (4) 17-day embryonic
kidney RNA; (5) newborn
kidney RNA; (6) 4-week-
old kidney RNA.
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Fig. 2. Stages of development of the metanephric kidney. (A) A kidney of a 14-day-old mouse embryo. Low magnification showing
several pretubular aggregates in the cortical zone and the ureter (u) in the centre. (×120). (B and C) Higher magnifications of the cortical
zone of a kidney of a 16-day-old mouse embryo showing early and later stages of S-shaped bodies (s). (×300). (D and E) Two views of a
kidney of a 18-day-old mouse embryo showing maturing proximal (p) and distal (d) tubules and early glomeruli (g). (E, ×300; D, ×200).
Fig. 3. Immunohistochemical localization of α1 gap junction protein (GJ) in the developing mouse and rat kidneys. (A) A section through
a 14-day mouse embryonic kidney showing a subcortical ring of cells expressing the α1 GJ protein. (×75). (B) Higher magnification of
the subcortical zone illustrating a terminal branch of the ureter (u, arrow) and two mesenchyme-derived early S-shaped bodies (s)
expressing the α1 GJ antigen predominantly in their lower crevice. (×300). (C, D) Double immunofluorescence view of a late S-shaped
body of a 17-day rat embryonic kidney stained with antibodies against α1 GJ antigen (C) and against podocalyxin visualizing the
maturing podocytes (p, D). The GJ-protein becomes downregulated when the podocytes mature. (×360). (E, F) Double
immunofluorescence view of the cortex of a kidney from 20-day rat embryo stained as above. The α1 GJ protein is still expressed in the
S-shaped bodies (s) and in the immature glomeruli (g, E), but not in the maturing podocytes expressing podocalyxin (F). (×200).
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No β2 antigen was detected in day 12 and day 15 kidneys. At
day 17, β2 GJ protein was detected in only a few tubular cells
in each section of kidney where dots of fluorescence were
observed (Fig. 4). After day 17, more cells expressed this
antigen, and it was abundant in the tubules of newborn and
adult kidneys.

The cells expressing the β2 GJ protein were seen only in
those areas of the kidney that contained proximal tubules.
The identification of the β2-positive cells with proximal
tubules was made by immunofluorescence. First, adjacent
sections of 20-day embryonic mouse kidney were stained
with antibodies to the β2 GJ protein and to proximal tubule
brush border antigen and antibodies to distal tubule Tamm-
Horsfall glycoprotein. These studies demonstrated that the
β2 GJ antigen was located specifically on the brush-border-
positive proximal tubule cells (data not shown). Second,
double immunofluorescent staining of sections of 20-day rat
embryonic kidney (Fig. 4E, F) localized the β2 antigen only
to those tubules that expressed dipeptidylpeptidase IV, a
marker for proximal tubule cells. As the kidney matured,
more proximal tubules in each section were positive for the
β2 antigen and, by two weeks after birth, all brush border
antigen-positive tubules were also positive for the β2 antigen.
This suggests that, in the kidney, the β2 GJ protein is a
specialized product of the proximal tubule cells.

Expression pattern of the 1 GJ protein
The β1 antigen was expressed in the embryonic kidney in the
same way as β2: it appeared late during organogenesis,
around day 17 in the mouse, and became localized first in a
subset of proximal tubules (Fig. 5A). Towards the end of
kidney development, new β1-positive tubules were
detectable until most (if not all) proximal tubules expressed
the antigen in the newborn kidney (Fig. 5B).

Expression of the GJ proteins in experimentally induced
nephric mesenchymes

To explore further the appearance of the GJ antigens and
their localization, we used the transfilter technique by which
isolated kidney mesenchymes can be experimentally trig-
gered to develop into advanced tubular structures (see Meth-
ods). In the rat, the uncommitted mesenchyme is dissected
from 13-day embryos and brought into transfilter contact
with a fragment of spinal cord. On day 4 after setting up the
culture, the α1 GJ protein could be detected in many tubular
structures (Fig. 6A-C). Immunostaining with the β1 and β2
GJ antigens yielded invariably negative results up to 7 days
in vitro.

In the mouse, the uncommitted nephric mesenchyme is
dissected from 11-day embryos and brought into contact
with the inducer. We have previously shown that a short
transfilter induction “pulse” of 24 to 28 hours is sufficient to
program the mesenchyme into epithelial transformation and
tubule formation (Wartiovaara et al., 1974; Saxén and Lehto-
nen, 1978). Using markers for the various segments of the
secretory nephron, we have shown that all three main seg-
ments, the distal and proximal tubules and the glomerular
podocytes, will differentiate after this pulse (Ekblom et al.,
1980, 1981; Lehtonen et al., 1983). Here, however, a 22-hour
induction was not long enough to trigger the α1-GJ antigen in
the observed, cytokeratin-positive tubules, but an additional
26 hours of transfilter contact yielded positive tubules in
mesenchymes subcultivated for 3 days (Fig. 6D). Interest-

Fig. 4. Immunohistochemical localization of the β2 GJ protein in
the tubules of developing mouse and rat kidneys. (A) Small
subcortical groups expressing the GJ antigen in the kidney of a
17-day mouse embryo. (×120). (B) A similarly treated cortical
region of kidney of a newborn mouse where a majority of the
proximal tubules express β2 GJ protein. (×100). (C) A proximal
tubule of a 17-day mouse embryonic kidney composed of β2 GJ-
positive cells. (×500). (D) Confocal microscopy section through a
β2 GJ-positive tubule in a 17-day mouse embryonic kidney. (×12
000). (E, F). Double immunofluorescent staining of β2 GJ protein
(E) and dipeptidylpeptidase IV (DPY) (F) of a section through a
20-day rat kidney. Note the tubular portions already expressing
DPY, but not yet the gap junction protein (arrows). (×350).

Fig. 5. Immunofluorescence localization of the β1 GJ protein first expressed in some secretory tubules of a 17-day embryonic kidney (A)
(×260) and detected in the newborn kidney of the mouse (B). (×300).
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ingly, as in vivo, this expression was transient and no α1-pos-
itive cells were detected in mesenchymes cultivated for a
total of 7 days.

As in the rat, immunostaining with the β1 and β2 GJ anti-
bodies yielded invariably negative results (Fig. 6E) despite
the presence of well- developed proximal tubules expressing
the brush-border antigen (Fig. 6F).

Discussion

This study examined the expression of mRNA and protein
from three gap junction (GJ) genes during murine kidney
development. Two non-overlapping patterns of expression
were observed. The mRNA for the α1 GJ protein was already
prevalent in the mouse kidney by embryonic day 13, and it
continued to be expressed throughout embryonic develop-
ment. Immunofluorescence microscopy showed that this GJ
protein was expressed as early as day 12 in the metanephric
kidney, as also recently reported by Yancey et al. (1992). The
α1 GJ protein becomes localized to the transient S-shaped
bodies produced by the mesenchymal aggregates.

The expression of the mRNAs and antigens for both β1 and
β2 GJ proteins follow similar patterns. By S1 nuclease pro-
tection assay, this mRNA is detected around day 17 of mouse
development, and soon thereafter the protein can be localized
to a subset of proximal tubules as verified with the brush bor-
der (mouse) and the dipeptidylpeptidase (rat) antigens. By
birth, the kidney already expresses an adult pattern wherein
all proximal tubules can be decorated by the two gap junction
antibodies. This is consistent with the mRNA data, which
provides evidence for an increased expression of the mRNAs
after their initial appearance during late intrauterine develop-
ment.

The different expression of the α and β GJ proteins during
nephrogenesis suggests that they have different functions.
The transient expression of the α1 GJ protein in vivo coin-
cides with a unique stage of development of the secretory
nephron. At this stage, the primitive nephric vesicle under-
goes a transformation into the S-shaped body, an event
involving cleft formation and invagination followed by
differential cytodifferentiation of the main segments
(Jokelainen, 1963; Saxén and Wartiovaara, 1966). In the
experimental in vitro model system, the appearance of the α1
GJ antigen coincides temporally with this crucial step of

tubulogenesis although the shaping process remains incom-
plete. In such transfilter cultures where development was fol-
lowed after a short induction pulse, the antigen was not
expressed. This may lend further support to the morpho-
genetic role of the α1 GJ protein. Gossens and Unsworth
(1972) have provided experimental evidence for a two-step
process in tubule induction: an initial, epithelializing stimu-
lus is followed by further interactions between the epi-
thelium of the renal vesicle and the mesenchymal stroma
leading to the shaping and coiling of the tubule. This second
step might be impaired in our short-term induction pulse
experiments in which the uninduced mesenchyme is soon
lost in prolonged cultures. When the segments of the secre-
tory nephron have segregated (in vivo and in vitro), the α1 GJ
protein is downregulated. All of this suggests that the protein
is involved in a specific stage of development, a suggestion
consistent with many previous experimental results and
observations on various systems. The findings in the kidney
might be analogous to that described by Yancey et al. (1992)
in the developing limb bud, where α1 GJ protein was seen to
interconnect the polarizing cells within the apical ectodermal
ridge rather than in the epithelial-mesenchymal interphase.
The role of gap junctional communication during develop-
ment has been shown in snail mesoderm formation (de Laat
et al., 1980), in mammalian oocyte maturation (Anderson
and Albertini, 1976; Gilula et al., 1978), in preimplantation
mouse embryos (Lo and Gilula, 1979), and also suggested by
observations on mutant Drosophila (Jurnisch et al., 1990).
The transient expression of this GJ antigen and its appear-
ance in the avascular, nonfunctional isolated mesenchymes
in vitro speak against its functioning in the physiological
processes of the newborn or mature kidney.

The expression of the mRNAs and antigens for the β1 and
β2 GJ proteins follows a pattern different from that above,
and it suggests a different function. Both appear rather late
during development in vivo, and the proteins can be localized
first to a subset of maturing proximal tubules. Around birth,
apparently all proximal tubules express both β proteins. In
vitro, despite the prolonged culture period and the appear-
ance of well-developed, non-functioning proximal tubules,
the two β GJ proteins were not detected. Both findings can be
best interpreted as suggesting that the β1 and β2 GJ proteins
are not directly involved in the process of tubulogenesis, but
rather are connected to proximal tubule function.

The genes for these GJ proteins show different patterns of
regulation. This has also been observed for other embryonic
organs (Nishi et al., 1991). In the uterus, the day prior to par-
turition is characterized by a dramatic increase in α1 gene
expression and a corresponding decrease in β2 expression
(Risek et al., 1990). However, in heart and liver, no changes
in GJ protein gene transcription are seen around parturition.
Thus, different GJ proteins can be regulated differently
within the same organ, and the same GJ gene can be regu-
lated differently in different organs in the same organism.

This study of GJ proteins and their transcripts demon-
strates that different GJ proteins are utilized in different por-
tions of the renal nephron. As a biological model, the devel-
oping kidney offers a good opportunity to analyze the
formation of physiological compartments during the devel-
opment of a complex mammalian organ. The major aspects
of renal development are well characterized, and the nephron

Fig. 6. Immunohistochemical demonstration of the expression of
α1 gap junction protein in experimentally induced metanephric
mesenchymes. (A) A mesenchyme from a 13-day rat embryo was
cultured transfilter to the inductor for 4 days and then stained with
an antibody to the α1 GJ protein (arrows). (×200). (B) A phase
contrast view of the same tubules (arrows) in the mesenchyme
illustrated in (A). (×200). (C) Higher magnification of the tubule
seen on the left in the above figures and stained with α1 GJ
antibody. (×900). (D) Tubules (t) expressing the α1 GJ antigen in
an 11-day mouse metanephric mesenchyme induced through a
filter (f) for 48 hours and subcultivated for 72 hours. (×750). (E
and F) A transfilter-induced mouse metanephric mesenchyme
cultivated for 7 days and stained with the α1 GJ antibody. The
result of the immunostaining is negative (E) (×720). A section
similar to that in E stained with a brush-border antibody, reacting
specifically with the proximal tubules (F) (×720).
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forms an array of distinct anatomical and physiological com-
partments. The formation of these physiological units may be
structured by GJs which are used to compartmentalize infor-
mation and to inform cells of their neighbors.
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