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In preprints: revisiting RNA in PRC2
Yuka W. Iwasaki1,2,*, Haruhiko Koseki3,4 and Shinsuke Ito3,*

The role of RNA in recruitment of various chromatin factors is
widely acknowledged to contribute to nuclear transcriptional
regulation. For instance, in PIWI–piRNA-mediated nuclear
co-transcriptional silencing, piRNAs act as guides for the PIWI–
piRNA complex, facilitating its localization at target nascent RNAs
through sequence complementarity (Iwasaki et al., 2015). This
complex recruits silencing effectors, including chromatin modifiers,
thereby initiating co-transcriptional silencing. Similarly, long
non-coding RNAs (lncRNAs) have diverse roles in nuclear
transcriptional regulation (Yao et al., 2019). Xist serves as a
prime example, orchestrating the architecture of the inactive X
chromosome (Xi) during X chromosome inactivation. Xist recruits
HDAC1-associated repressor proteins, SMART, HDAC3 and
Polycomb repressive complex 1 (PRC1) to silence Xi (McHugh
et al, 2015; Chu et al., 2015). Another lncRNA, Mhrt, prevents
SWI/SNF binding to corresponding DNA loci (Han et al., 2014).
Khps1 enhances RNA polymerase II (Pol II) transcription by
forming an R-loop that anchors Khps1-interacting p300/CBP to the
SPHK1 promoter (Postepska-Igielska et al., 2015). Additionally,
some lncRNAs, such as SLERT, promote RNA polymerase I (Pol I)
transcription by binding to DDX21, altering its conformation, and
releasing its inhibitory effect on Pol I (Xing et al., 2017). These
examples underscore the significance of non-coding RNAs in
collaborating with proteins for diverse nuclear regulatory and
genome function aspects.
Polycomb repressive complex 2 (PRC2) mediates gene silencing

by associating with CpG islands (CGIs) by trimethylation of histone
H3 at lysine 27 (H3K27me3). Recent reports indicate that its
recruitment and catalytic activity are closely linked to recognition of
H2A mono-ubiquitylation given by PRC1 and unmethylated CpG
dyads in CGIs (Blackledge and Klose, 2021; Kasinath et al., 2021).
Nonetheless, PRC2 is also known to interact with RNA through
several mechanisms to exert precise control over gene expression
(Almeida et al., 2020; Davidovich and Cech, 2015). Notably, there
are some models suggesting that PRC2 interacts with non-coding
RNAs, which can bind to specific genes, guiding PRC2 to their
genomic locations. RNA, through binding to regulatory regions of
particular genes, recruits PRC2 to those specific loci, initiating
H3K27 methylation. This epigenetic modification promotes gene
silencing. A prominent example occurs in the Kcnq1 domain of an
imprinted allele, where it has been reported that Kcnq1ot1 lncRNA
interacts with PRC2 and recruits it to the imprinted allele, increasing

H3K27 methylation levels and ensuring gene silencing (Pandey
et al., 2008). Although it was initially postulated that RNA
facilitates the recruitment of PRC2 to chromatin, another line of
reports have demonstrated that RNA inhibits the interaction of
PRC2 with nucleosomes (Beltran et al., 2016) and inhibits its
methyltransferase activity (Kaneko et al., 2014). Therefore,
proposed models of RNA-mediated PRC2 regulation remain a
controversial subject. Nevertheless, the complex interaction
between RNA and PRC2 contributes to precise gene regulation
through H3K27 methylation and affects various biological
processes, and disruptions in this regulatory process can
potentially lead to diverse diseases.

Healy and colleagues (2023 preprint) and Hall Hickman and
Jenner (2023 preprint) have raised concerns about a high-
throughput methodology employed to investigate the requirement
for RNA-PRC2 interaction in the localization of PRC2 components
in their preprints. The methodology, known as RNase-ChIP (rChIP),
uses RNase A treatment during chromatin immunoprecipitation to
observe the reduction of PRC2 occupancy on chromatin upon
RNA depletion, suggesting an ‘RNA bridge’ hypothesis between
RNA molecules and chromatin modifiers (Long et al., 2020).
However, a closer examination of this methodology has yielded
unexpected findings. Instead of solely affecting PRC2, Healy and
colleagues revealed that RNase A treatment during chromatin
immunoprecipitation leads to the apparent loss of all facultative
heterochromatin, including PRC2 and its associated H3K27me3
marks, across the entire genome. This phenomenon was consistent
across various cell types, including mouse embryonic stem cells,
human cancer cells and human induced pluripotent stem cells. The
study suggests that this is linked to a global increase in pulled-
down DNA, which artificially diminishes ChIP signals from
facultative heterochromatin during data normalization. The second
preprint from Hall Hickman and Jenner (2023 preprint) arrived at the
same conclusion. In this case, the authors demonstrated that the
reduction of the relative enrichment of PRC2-bound genomic regions
upon RNase A treatment was caused by non-specific chromatin
precipitation, which could be rescued by adding the anionic polymer
poly-L-glutamic acid, which maintains chromatin solubility in RNase
A-treated samples. Consequently, these two independent preprints
collectively suggest that RNase A treatment may not be as reliable a
method as previously thought for mapping RNA-dependent
chromatin occupancy.

Importantly, a recent preprint by Long and colleagues (2023
preprint) also addresses a similar issue in their original PRC2
RNase-ChIP (Long et al., 2020), that RNase A treatment caused a
substantial increase in the DNA pulled down by magnetic antibody
beads. Meanwhile, the authors re-verified that chromatin binding of,
for example, TBP (TATA box-binding protein) is not affected by the
treatment with RNase A, suggesting that the issue may be antibody
specific. They suggested that with the use of lower RNase A
concentrations or the use of the RNase T1 RNA can still be
effectively digested while reducing excess DNA pull-down. rChIP
with lower RNase A concentration resulted in fewer genes
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significantly affected, suggesting the involvement of an ‘RNA
bridge’ between PRC2 and chromatin, but to a lesser extent than the
original high RNase A treatment protocol.
These findings challenge the established ‘RNA bridge’

hypothesis, emphasizing the intricate relationship between RNA
and chromatin modification. Although there are lines of evidence
using methods other than rChIP suggesting the transfer of PRC2
from localized RNA to DNA in cis (Cifuentes-Rojas et al., 2014;
Hemphill et al., 2023; Long et al., 2020; Zhao et al., 2008), the
‘RNA bridge’ hypothesis may not be entirely conclusive. The extent
to which PRC2 recruitment to its targets depends on RNA remains a
subject of ongoing debate. In some cases, PRC2 exhibits the
characteristic of being recruited to promoters even when
transcription is inhibited, suggesting that its interaction may not
be RNA dependent (Riising et al., 2014; Sugishita et al., 2021).
Also, a cryo-electron microscopy structure-based study showed that
G-quadruplex RNA association with PRC2 promotes dimerization
of PRC2, leading to blockade of its interaction with nucleosome
DNA (Song et al., 2023). These observations indicate that the extent
to which RNA is involved in PRC2’s interaction with its target
region may be context dependent, relying on the loci or the RNA
itself, possibly being influenced by factors such as RNA length and/
or structure. Given these considerations, comprehensive, accurate
and stable methods for identifying the impact on various loci have
become increasingly important, enabling us to focus on discussions
that consider the locus- and RNA-dependent aspects of PRC2’s
interactions.
In the ever-evolving field of epigenetics and chromatin biology,

this research highlights the need for scientists to re-evaluate the tools
and methods used to explore the intricate relationship between RNA
and chromatin regulation. The studies underscore the need for a
more nuanced approach when investigating RNA-mediated
regulation of chromatin modifiers and suggest that previous
assumptions based on rChIP experiments may need to be
reconsidered. Although the lower concentration of RNase A may
overcome these issues, it is essential to integrate multiple lines of
evidence to analyze the extent to which RNA contributes to PRC2
regulation. Various techniques and approaches for studying these
interactions, such as CLIP (cross-linking and immunoprecipitation),
ChIRP-MS (comprehensive identification of RNA-binding proteins
by mass spectrometry), and the use of RNA-binding mutants, are
crucial for overcoming the limitations of the rChIP approach,
especially regarding possible side effects resulting from the
depletion of total RNA. These studies highlight the limitations of
the rChIP methods employed to substantiate the existing ‘RNA-
bridge’ hypothesis and emphasizes the crucial need for validation
through multiple experimental approaches.
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