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SUMMARY
The wingless condition resulting from the action of the sex-linked wingless (ws) gene arises

from the precocious appearance of cell death in the anterior necrotic zone (ANZ) of the
forelimb-bud at stage 19 (3 days) and its progressive extension beyond its normal area during
stages 20-23. A similar though less pronounced effect occurs in the hindlimb-bud. Although
some wingless hindlimb-buds are normal, others are affected by the precocious appearance
of cell death in the ANZ.

The ws wingless mutant resembles the different wingless mutant investigated by Zwilling
(1956) in that the apical ectodermal ridge (AER) is absent in most ws wing-buds. AER
absence could be due to ws mesenchymal cell death interfering with the production of
apical ectodermal maintenance factor (AEMF), which Zwilling claims is necessary to main-
tain the AER which plays an essential role in inducing limb outgrowth.

Wingless mutant phenotypes range from birds with rudimentary wings and normal legs
through a modal type with forelimbs absent and hindlimbs normal to wingless and legless
forms showing a high degree of expressivity. Individual wingless embryos vary in the degree
to which the precocious ANZ appearing at 3 days is extended into the limb-bud and the wide
range of wingless phenotypic expression is attributed to this variation.

Electron microscopic and histochemical analysis of the cell death process in wingless
wing-buds revealed the presence of both isolated dead cells and macrophages, which con-
tained intense acid phosphatase activity. These findings are interpreted as showing that
isolated dead cells are ingested by neighbouring mesenchymal cells which thus become
transformed into macrophages, first ingesting and then digesting further dead cells.

A study was made of the origin of the anomalous hindlimb condition, including absence
or reduction of the tibia and digits, characteristic of severely affected wingless embryos.
Autoradiographic analysis of the pattern of 35SO4 uptake revealed that at stage 24/5
(4\ days) wingless hindlimb-buds which were smaller than normal had a normal prospective
fibula region, but that the prospective tibia region was small or absent. Thus the effect of a
precocious hindlimb ANZ at stages 19-22 is to reduce or delete the pre-axial prospective
tibia at stage 24/5.
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INTRODUCTION

A case of genetic winglessness in the fowl was first reported by Waters &
Bywaters (1943), who described the effects of an autosomal recessive lethal
gene, wingless, later given the symbol wg by Hutt (1949). This gene not only
affected the development of the wings, eliminating them completely or re-
ducing them to small stumps, and to a lesser extent the legs, but caused the
non-appearance of the lungs and air sacs and of the metanephric kidneys and
their ureters.

Zwilling (1949) reported that in this mutant the early wing-bud was formed
at 3 days but that it developed no further and he correlated this with the
absence of a typical apical ectodermal ridge, which Saunders (1948) had shown
to be essential for continued distal growth. Later, Zwilling (1956) investigated
the relationship between ectoderm and mesoderm in producing winglessness
experimentally using reciprocal interchanges of mutant and normal ectodermal
caps and mesenchymal cores. But the original mutant having become extinct,
a second wingless mutant was used which had arisen in a flock at Storrs. This
closely resembled the first in its effect on the limbs and kidneys but differed
in that the lungs and air sacs were unaffected. The experiments established that
ectoderm and mesoderm were mutually dependent on each other in limb develop-
ment and Zwilling concluded that some mesodermal factor which was absent
or reduced in the mutant was required for the maintenance of the apical
ectodermal ridge. Thus, this wingless mutant has made an important contri-
bution to the evidence for the Saunders/Zwilling hypothesis of a reciprocal
interaction between apical ectodermal ridge and limb mesenchyme in chick
limb morphogenesis and, more specifically, to the existence of an apical ecto-
derm maintenance factor (AEMF) supposed to be produced by the normal
limb-bud mesenchyme.

The wingless mutant described here is therefore the third. It results from the
action of a sex-linked gene discovered by Pease (1962) and given the symbol
ws by Lancaster (1968) who made linkage studies and described its wide range
of phenotypic expression. He found a modal type comprising 35-6 % of wingless
birds in which the hindlimbs were normal and the forelimbs absent, every other
major feature being normal. Lower degrees of expressivity produced rudiment-
ary wings of various sizes, often showing assymmetry, with a higher degree
of abnormality on the right side than on the left. Higher degrees of expressivity
caused abnormalities of the hindlimbs also, including reduction of the number
of digits and a peculiar condition of the tibia, 'which appeared to have broken
and fused together again in an abnormal position before hatching'.

In this mutant the development of the internal organs, including the kidneys,
is normal and the gene is not lethal. The development of the limbs has been
briefly described by Ede (1968), who reported that the apical ectodermal ridge
was absent from the wing bud of most embryos and that the mesenchymal cells
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were necrotic at 4 days, and also that the tibial buckling in the hind-limb
appeared to be caused by weak cartilage matrix formation. Since the occurrence
of cell death has come to be recognized as an important but little understood
factor in normal limb development (Saunders, Gasseling & Saunders, 1962;
Saunders, 1966; Dawd & Hinchliffe, 1971) the more detailed investigation
reported here has been made with particular attention to the problem of
mesenchymal cell death and its relation to the apical ectodermal ridge and to
the pattern of hind-limb chondrogenesis.

MATERIAL AND METHODS

Wingless embryos were obtained from Light Sussex descendants of the
wingless stock originally discovered by Pease (1962). Carrier cocks (ws/ + )
were crossed with either normal (17 + ) or wingless (Y/ws) hens, giving a 1:3
and 1:1 ratio of wingless to normal embryos respectively. Some wingless cocks
(ws/ws) were crossed with wingless hens (Y/ws) which produced embryos which
were all wingless.

Embryos were classified according to the Hamburger-Hamilton (1951)
series. For histological studies embryos were fixed in Bouin's solution, em-
bedded in paraffin wax, sectioned at 8 /*m, and stained with haematoxylin
and eosin, or alcian blue and Mayer's haemalum. Alizarin red clearance
preparations of whole embryos were made to show bone development in the
hind limbs.

(1) Vital staining for cell death

Areas of cell death in normal and wingless embryos were mapped in ovo by
the application for £-1 h of a 1:40000 solution of Nile blue sulphate or neutral
red in Ringer's solution to the vitelline circulation.

The changing pattern of areas of cell death was observed at approximately
4 h intervals over a 24 h period in embryos stained vitally using several succes-
sive applications of sterile vital dye solution.

For photography, limbs were dissected out and mounted in Ringer's solu-
tion in a cavity slide and photographed immediately. A method, partly follow-
ing Pertusa (1966) and Fallon & Saunders (1968) was used to preserve the
vital dye in fixed and cleared whole mounts.

The method was as follows:
(1) Fix overnight at 4 °C in formol-calcium (4 % formaldehyde, 1 % calcium

chloride), neutralized to pH 7 before use.
(2) Wash for £ h at 4 °C in 4 % formaldehyde neutralized to pH 7.
(3) Dehydrate directly in 100 % isopropyl alcohol at 4 °C for 1 h.
(4) Clear in toluene, and mount in Canada balsam made up in toluene.
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(2) Electron microscopy, thin (1 jum) sections and acid phosphatase staining

Limb-buds, or parts of limb-bud, were fixed in 4 % glutaraldehyde at
pH 7-4, rinsed for 24 h at 4 °C in cacodylate buffer at pH 7-4, post-fixed in
1 % osmium tetroxide, dehydrated via ethanol and propylene oxide and orien-
tated and embedded in TAAB resin (mix C). Thin (1 /im) sections were cut and
stained in toluidine blue for light microscopy, while ultra-thin sections were
stained with uranyl acetate and lead citrate and photographed using an AET 6 B
electron microscope.

For acid phosphatase staining, procedure was as described above, except
that after fixation in. 4 % glutaraldehyde and rinsing in cacodylate, the small
(0-5 mm square) tissue blocks were incubated in Gomori medium for acid
phosphatase (Barka & Anderson, 1963) at pH 5-2 for 1 h at 37 °C, washed
briefly in four changes distilled water, treated with dilute (0-5 %) ammonium
sulphide solution, washed in distilled water and post-fixed as above in 1 %
osmium tetroxide. Final procedures were as described above, and the resin
blocks were sectioned for both light microscopy (the 1 //m sections were mounted
without further staining in Clearmount) and electron microscopy.

Deposits of black lead sulphide indicate sites of acid phosphatase activity.
No diffusion artifacts were observed in the sections.

(3) Autoradiography using radiosulphate

The pattern of chondroitin sulphate synthesis in developing normal and
wingless hindlimbs was analysed using a labelled precursor: radiosulphate
(Searls, 1965; Amprino, 1955). 0-02 ml of a sterile aqueous solution of 35S-
labelled sulphate (Amersham Radiochemical Centre) with a total activity of
40 /*Ci was applied through a window to the area vasculosa, and the sealed
egg returned to the incubator for 2h. The embryos were then fixed in Bouin's
fluid, and the limbs dissected off, blocked in paraffin wax and sectioned at
8 /<m. The sections were dewaxed, coated with stripping film (Kodak Auto-
radiographic Stripping Plates AR 10) and exposed for 12 days at 4 °C, after
which they were developed in Kodak D 19 developer and mounted in 'Clear-
mount'.

A total of 15 normal and 24 wingless hindlimbs at stages 24/5, 25-8 and 30
was examined in this way.

RESULTS
(1) Overall morphology

The wingless condition can be first recognized at stage 19 (3 days) through
the appearance in the wing-bud of a region of cell death detectable by vital
dyes. At stage 20, wingless embryos develop smaller wing-buds than normal,
and outgrowth soon ceases (Fig. IB) so that by stages 23 and 24 in most
embryos there is no wing-bud (Fig. 2). In some wingless embryos the expression
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Fig. 1. Fixed normal embryos, stage 22(A) and stage 26(C), and wingless embryos,
stage 22 (B) and stage 26 (D).

of the gene is mild, and posterior parts of the wing-bud are formed (Fig. 41).
In a minority of older embryos (7 days) proximal and posterior elements
(e.g. humerus and ulna, but not radius) are recognizable.

The development of the leg-bud is less affected and stages 19-21 are difficult
to distinguish from normal in almost all cases. In some wingless embryos, nor-
mal leg development takes place. In other wingless embryos the size of the
leg-bud is reduced, beginning at stage 22, due to the absence of anterior and
distal parts (Fig. 5F,G). In later stages the digit number is reduced from 4 to
3-1. A series of ws leg-buds illustrating such anterior and distal deletions is
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Fig. 2. The pattern of cell death in normal (top) and wingless (bottom) wing-buds.
Stippling indicates areas of cell death.

illustrated in Fig. 3. In extreme cases wingless embryos lack any hind-limb
development.

(2) The pattern of cell death

Using the in vivo vital staining method, wingless embryos can first be detected
at stage 19 through the concentration of Nile blue sulphate in macrophages in
the anterior part of the wing-bud and in the mesenchyme of the body wall
anterior to this. In later stages (20-23), the area of cell death spreads into the
remainder of the wing bud (Fig. 4F-H) until by stage 25 most wingless embryos
show no sign of any wing outgrowth. The pattern of cell death in ws wing-buds
from stage 19-26 is shown in Fig. 2. There is considerable variation in the extent
of cell death, which may be restricted to the anterior quarter of the limb-bud
(Fig. 4G), or may extend as far as the centre (Fig. 4F). Where the area of
cell death is more restricted, the growth of the posterior part of the forelimb
may take place normally, and the PNZ and 'opaque patch' regions can be
identified (Fig. 41, compare with Fig. 4D). In some embryos there is asym-
metry in the extent of cell death with the right wing bud being more affected
than the left.

In normal embryos the anterior necrotic zone (ANZ) makes its appearance
at stage 21 at the junction of body wall and wing-bud and moves progressively
into more distal positions until stage 26 (Figs. 4C, 2). Thus it appears that in
the wingless embryos the ANZ make an earlier appearance than in the normal
and that it is more extensive and spreads into the central limb-bud mesenchyme.

In the hindlimb development of wingless embryos there is a similar, though
less-pronounced effect (Figs. 5E, 3). A small patch of dead cells appears at
stage 19 anterior to the hindlimb-bud and extending into the base but not the
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Fig. 3. The pattern of cell death in wingless hindlimbs (selected to show severe
effects of the >v.y gene). Stippling indicates areas of cell death. Precartilage con-
densations and cartilage rudiments are indicated in stages 26-30. The dotted line
indicates the outline of the normal limb.

apex of the limb-bud. The area of cell death is variable in extent: in some cases
it is scarcely visible. Although the hindlimb-bud after stage 23 is often smaller
than normal, there is no sign at this later stage of an ANZ (Fig. 5F,G). A
PNZ appears, as in the normal, during stages 24—26 (Fig. 5G). The variation in
size of the hindlimb-bud thus appears to be caused by the extent by which cell
death in the limb base at 3 days has reduced the number of limb forming cells.

(3) The ws limb ectoderm

The relationship between mesenchymal cell death and the apical ectodermal
ridge (AER) is of considerable interest. In normal embryos the AER makes
its first appearance at stage 19, but in the majority of wingless forelimb-buds
there is no thickened ridge (Figs. 4F,H, 6A) between stages 19 and 23. Some
wingless wing-buds show an accumulation of dead cells in the distal region of
the ectoderm, though not strictly localized in the ridge region (Fig. 4G).
It is possible that these dead cells represent a regressing ridge. In those wingless
forelimb-buds in which cell death is limited to the anterior part of the bud,
sections reveal that where the ectoderm is underlaid by necrotic mesenchyme
cells there is no AER, but that in the posterior part where the mesenchymal
cells are viable, an AER is present. The AER may persist during later stages
(e.g. at stage 24: Fig. 41) in cases of mild expression where posterior parts
of the forelimb develop.

•\9 K M B 30
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Fig. 4. Cell death in wingless and normal forelimbs. Photographs of vitally stained
limb-buds. (A-D) Normal. (A) Stage 22 normal embryo, (B) stage 21, (C) stage 23,
(D) stage 24. (E-1) Wingless. (E) Stage 22 wingless embryo, (F) stage 21, (G) stage
21 (limited increase ANZ: sections of this ws wing-bud reveal no ridge, but dead cells
in the distal ectoderm). (H) Stage 23, (I) stage 24 (note opaque patch and presence of
posterior part of limb, including PNZ and a small length of AER: a mild ex-
pression of ws gene). (ANZ and PNZ and op (opaque patch) indicated.)
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Fig. 5. Cell death in wingless and normal hindlimbs. Photographs of vitally stained
limb-buds. (A-D) Normal. (A) Stage 20, (B) stage 22, (C) stage 23, (D) stage 24.
(E-G) wingless. (E) Stage 20 (note precocious ANZ), (F) stage 23, (G) stage 24.
(ANZ, PNZ, op (opaque patch) indicated.)

Wingless hindlimbs may have a normal AER. However, in ws hindlimbs
characterized by anterior and distal deletions (presumably resulting from sub-
stantial cell death in the anterior leg-bud mesenchyme) the ridge is shortened
and lacks its full anterior extension (Fig. 4F,G). One curious feature is that
in all wingless legs after 4^ days, whether normal or abnormal, the anterior
AER terminates in a thickening (illustrated in Fig. 1D and in section in Fig.
8C) which gives the limb a characteristically sharp angle anteriorly.

(4) The process of cell death

Thin 1 //m sections and electron micrographs reveal that many of the forelimb-
bud mesenchyme cells are dead, and isolated dead cells showing chromato-
pycnosis (Fig. 7 A) or hyperchromatosis (Fig. 7B) can be identified. Such
cells show simultaneous deterioration of the nucleus and the cytoplasm, which
is vacuolated and in some cases in process of being shed (Fig. 7 A). Phagocytes
can be classified into early stages, identifiable as apparently normal viable
mesenchymal cells whose cytoplasm contains a single dead cell (Fig. 7 A),
and into later stages or mature macrophages containing many dead cells within
well-defined digestive vacuoles (Figs. 6B, 7A, B). Dense and vacuolated
pieces of shed cytoplasm may be found (Fig. 7B). The ingested material con-

49-2
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FIGURE 6

Fig. 6. Histology and histochemistry of stage 21 (3 -̂ days) wingless forelimb. (A)
Transverse section (1 pm, stained with toluidine blue). Note AER absence (d-v:
dorso-ventral axis). (B) Detail of (A). Note mature macrophages (m) and early pha-
gocyte (e) with one ingested dead cell. (C) Part of section of acid phosphatase stained
wing-bud. (D) Detail of (C) with three macrophages (w). (E) Detail of part of same
section as (C) showing the 'large lysosomes' (//).
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tained by macrophages takes on various forms: recently ingested material is
dense and often contains banded granules (Fig. 7B) (resembling those found
originally by Bellairs (1961) in dead cells of the chick blastoderm) while partially
digested material is granular and pitted, and the final stage is represented by
myelin figures. Similar stages of cell death and digestion by macrophages may
also be found in the ANZ and PNZ of normal chick limbs. These results are
interpreted as evidence that the following sequence of events is taking place:
isolated mesenchymal cells deteriorate, die and are then ingested by neigh-
bouring viable mesenchymal cells which thus become transformed into macro-
phages, first ingesting and then digesting further dead cells. Such a sequence
has been proposed in the cases of cell death in the developing rat limb (Ballard
& Holt, 1968) and in the 'opaque patch' region of the central mesenchyme of
the developing chick limb (Dawd & Hinchliffe, 1971).

Acid phosphatase activity is higher in the wingless limb-bud (Fig. 6C)
L than in the normal. The enzyme is found in apparently viable mesenchymal

cells discretely localized in lysosomes (siez 0-3-0-7 jam), but the most striking
areas of intense activity are the macrophages (Fig. 6D) which contain several

^ discrete areas of intense activity within the macrophage cytoplasm, and more
I diffuse activity associated with the dead cells in the digestive vacuoles. These
T findings are consistent with the theory that the intense acid phosphatase
I activity characteristic of a region of regression indicates digestion of dead cells
i within macrophages by acid hydrolases, rather than that cell death results

from intracellular release of lysosomal enzymes. However, there are some
' mesenchyme cells which contain a large phagosome (approximately 2/on)

rich in acid phosphatase but also containing dense material (Fig. 6), which may
be an ingested dead cell or autolysed cytoplasmic material, whose interpretation

f remains at present obscure, but which may be recovering from sublethal dete-
* ri oration.
•- Mitosing cells in wingless wing mesenchyme are rare. Preliminary counts
I suggest that at 3 and 2>\ days the mitotic index is x 3-6 lower than the normal.
L It is intended to investigate this issue further, using tritiated thymidine as an
J experimental tool.

[ (5) Aiitoradiographic (35£04) analysis of skeletal development in the ws hindlirnb

A chondrogenic pattern emerges in the normal hindlimb first at stage 24/5
in the form of a central Y-shaped region of increased sulphate uptake into
chondroitin sulphate. The base of the Y represents the femur, the arms the
tibia and fibula which are present as precartilaginous condensations at this
stage. In wingless hindlimbs the pattern may be completely normal, or it may
show a range (illustrated in Fig. 8B-D) of abnormality from a slight reduction
to complete absence of the tibial areas. Wingless hindlimbs showing abnormalities
do not have a clearly defined reduction in the area of chondroitin sulphate
synthesis corresponding with the 'opaque patch' region.
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At 5% days (stage 27) of development the normal hindlimb shows separate
regions of sulphate uptake, representing the larger tibia and smaller fibula,
with the ankle and metatarsal areas now identifiable. Wingless hindlimbs
show a range of abnormality from reduction in tibia size to the complete
absence of tibia and the reduction in the number of ankle and metatarsal
elements illustrated in Fig. 8F. Skeletal development in this wingless hindlimb
resembles that of the posterior half of a normal limb of this stage.

At 7 days (stage 30) of development, wingless hindlimbs show a similar
range of abnormality, from a tibia reduced in cross-section area to that of the
fibula (Fig. 8H) to complete omission of the tibia (Fig. 81). However, in the
cases examined, the intensity of staining in the reduced wingless tibia was the
same as that in the normal tibia, and autoradiography did not reveal a case
similar to that described by Ede (1968) in which the 7-day wingless tibia showed
reduced quantities of acid mucopolysaccharide in the intercellular material, as
indicated by alcian blue staining.

In summary, autoradiography reveals that the wingless embryos showed a
range of skeletal abnormalities starting at stage 24/5 involving the reduction
or deletion of the anterior skeletal elements.

The degree of reduction in skeletal elements is greatest in limb-buds showing
the greatest reduction in size.

(6) The wingless hindlimb skeleton

One-day old wingless chicks show a range of expressivity in the varying degree
of abnormality shown by the leg skeleton, which ranges from normal to a
1- to 2-digit structure. The missing parts of the leg skeleton are the anterior
elements, distal to the femur. The tibia may be smaller in size, it may buckle
(Fig. 9B), or it may be completely absent (Fig. 9C). Buckling of the tibia is
probably associated with poor development of the matrix which stained poorly
with alcian blue (specific for the acid mucopolysaccharide matrix component)
in a proportion (3 out of 10) of the 7-day wingless legs examined. Complete
absence of the tibia is associated with extreme reduction of digit number.
All wingless legs have a well-developed fibula (Fig. 9B,C).

FIGURE 7

Electron micrographs of the mesenchymeof a stage 21 (3 -̂ days) wingless forelimb,
showing various stages of cell death and macrophage digestion. Note isolated
dead cells (idc) with nuclei showing chromatopycnosis (cp) or hyperchromatosis
(he) (with a separate cap (c) of chromatic material) and with vacuolated cytoplasm
(vc); banded granules (bg) in phagocytosed cytoplasm; phagocytes (j>) containing
small numbers of dead cells and mature macrophages (m) containing larger numbers
of dead cells.
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Fig. 8. Autoradiographs of 35S uptake into chondroitin sulphate in normal and
wingless hindlimbs. (A-D) Stage 24/5. (A) Normal, (B-D) increasing degrees of ab-
normality involving reduction of the tibia in wingless hindlimbs. (E-F) Stage 27.
(E) Normal, (F) wingless (note absence of tibia and the reduction in number digit).
(G-I) Stage 30 (transverse sections). (G) Normal, (H, I) wingless (reduction and
absence of tibia). /, Fibula; /, tibia.
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FIGURE 9

Hindlimbs from 1-day chick stained with Alizarin Red to show the skeleton. (A)
Normal. (B) Wingless showing bent tibia and well-developed fibula. (C) Wingless
showing well-developed fibula and absence of tibia. Right leg has only two digits,
/, Femur; fi, fibula; mt, metatarsal; t, tibia.
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DISCUSSION

(1) Extension of cell death in the wingless (ws) mutant

Our results show that the wingless condition arises from the precocious
appearance of cell death in the ANZ and its extension beyond its normal area
in the 3- to 4-day limb-bud. This effect is more pronounced in the forelimb
than in the hindlimb. Individual wingless embryos vary in the degree to which the
ANZ is extended and it is reasonable to suppose that this variation is responsible
for the wide range of phenotypic expression noted by Lancaster (1968).

Textbooks of embryology (e.g. Ebert & Sussex, 1970) often imply that cell
death in development is always associated with re-modelling and re-shaping
processes, but in fact in the limb, which is frequently quoted as an example, the
role of cell death is obscure. In the case of interdigital cell death in the digital
plate there certainly seems no reason to doubt that its function, as suggested
by Saunders & Fallon (1966) is to sculpt out the digits; its role in the case of
the 'opaque patch' in the deep mesenchyme is less evident, though Dawd &
Hinchliffe (1971) believe that in the wing it plays a part in separating the radial
and ulnar condensations; but no convincing role has been suggested for the
anterior and posterior necrotic zones found in the chick fore- and hindlimb-
buds. Saunders et al. (1962) early suggested that the ANZ and PNZ played a
part in shaping limb outgrowth but the absence of corresponding necrotic zones
in other birds and in mammals made this unlikely and when Saunders (1966)
blocked cell death in the PNZ experimentally by inserting a piece of dorsal
mesoderm over it, a limb bud of normal shape was produced.

It might be that the ANZ and PNZ represent regions of a particular sort of
stress which is registered as cell death in the fowl but not in other species.
Hinchliffe & Ede (1967) suggest that these zones represent 'end-stops' to the
apical ectodermal ridge and that in their absence, in the talpid3 mutant, the *j
ridge is abnormally long. In the wingless mutant, the extension of the ANZ j
inhibits or eliminates ridge formation. It is noteworthy that talpid3 mesenchyme 7]
cells from all regions of the limb-bud are more resistant to injury and death in J
other stress situations (Ede & Flint, 1972). It may be that these zones represent J
the centre of a stress situation where a threshold of cell 'resistance' determines J
whether or not there is actual necrosis: according to this hypothesis the thre- <!
shold of talpid3 cells would be sufficiently high to resist necrosis at all points,
normal cells would have a threshold which would produce cell death at the
centre, but the resistance threshold of wingless cells would be so low that they
would undergo necrosis over a far wider area. In some other species of birds
and mammals (e.g. the mouse and Japanese quail), as already mentioned, cell
death does not occur in these regions, and several other mutant genes are
known which act by extending or restricting areas of cell death in other organ
systems (reviewed Saxen & Rapola, 1969).

There is clearly a difference between anterior and posterior regions of the
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limbs with respect to the manifestation of the wingless gene, and this may be
an indication of the greater susceptibility of the anterior limb mesenchyme
to cell death. Two sets of observations support this view: firstly the fact that
in the normal limb the anterior necrotic zone appears before the posterior
zone, and secondly Cairns' experimental observation (unpublished, reported
in Ede, 1971) that stripping off the ectodermal ridge is followed by an antero-
posterior wave of cell death in the subridge mesenchyme.

(2) Mesenchymal cell death and the AER

One of the most interesting aspects of the wingless mutant is its possible
contribution to understanding ectodermal/mesenchymal interactions in limb
development (reviewed Saunders & Gasseling, 1968). Zwilling (1956) investi-

•T gated this aspect in the second wingless mutant by separating ectodermal and
mesodermat components in 3-day embryos and recombining them in various

,- ways. When a normal ectodermal cap was combined with a wingless mesodermal
\ core the apical ectodermal ridge regressed after 2 or 3 days and distal outgrowth
j ceased; when wingless ectoderm was combined with normal mesoderm there
\ was no further development at all; controls of normal ectoderm recombined
L, with normal mesoderm developed more or less normally. Zwilling interpreted
i these results to indicate a reciprocal dependence between the two components,
^ the mesoderm responding to the stimulus of the AER by growing distally and

at the same time providing some factor which is necessary for the continued
[ maintenance of the apical ectoderm; in the mutant this factor appeared to be

deficient. The weak point of Zwilling's experiments was in the relatively late
stage at which the operation was done, so that a direct effect of the gene upon
the ectoderm cannot be excluded.

\ The ws wingless mutant resembles Zwilling's in the absence of an AER in
) most ws wing-buds. This absence could be attributed to mesenchymal cell

death interfering with the production of apical ectoderm maintenance factor
T (AEMF) and consequent failure to maintain a ridge. It may be objected that
y since according to Zwilling AEMF is predominantly localized in the postaxial
j mesoderm, extension of the ANZ in ws would not interfere with AER main-

tenance during initial stages of limb development. In answer to this it should be
[_ pointed out (i) that although the increased ws ANZ at stage 19 is initially pre-

axial, by stage 21 it has spread postaxially and would then interfere in post-
axial AEMF production and (ii) that postaxial ws cells may cease AEMF
production along with other vital activities some time before the cells are
recognizably dead since many prospective PNZ cells are known to cease DNA
synthesis at stage 22, well before the death of the cells at stage 24 (Saunders &
Fallon, 1966).

This hypothesis of cell death interference in ws AEMF production is essentially
identical with Zwilling's hypothesis, though he published no histological ob-
servations giving information about cell death in the mesenchyme. Gasseling
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& Saunders (1964) have shown that AER cannot survive if it is underlaid by
grafted PNZ mesenchyme, and in the talpid3 mutant, as mentioned above,
absence of ANZ and PNZ is associated with a greatly extended ridge. Our
finding that in the ws mutant failure of AER initiation and anterior mesen-
chymal cell death are observed simultaneously at stage 19 does not allow us to
decide between this hypothesis and two others: that the mesenchymal cell ^
death might prevent initiation of the AER, which Kieny (1960) has shown to
be dependent on induction by limb mesenchyme, or that the primary effect
of the gene is on the ectoderm, which leads to degeneration of the mesoderm.
It is planned to determine the initial effect of the ws gene by making reciprocal
combinations of normal and ws mesoderm and ectoderm, but using the method
of Kieny (1960) which allows recombination of stage 15 limb mesoderm with flank r
ectoderm, i.e. ectoderm which has never been in contact with determined limb
mesoderm, when, if the gene has no primary effect on the ectoderm, wingless
ectoderm combined with normal mesoderm should produce a normal limb. T

Winglessness resembles the limblessness of certain reptiles such as snakes ^
and the slow worm which possess only rudimentary limbs, and it is of interest f

to compare the development of these two forms of limblessness. Raynaud(1972) f

& Raynaud (1963) have shown in the slow worm Anguis fragilis that a
reduced number of somites contribute to the limb-bud mesenchyme and that
though an ectodermal ridge is formed it soon degenerates and this process is
followed by reduced protein and RNA synthesis and finally cell death in the
underlying limb mesenchyme. Mesenchymal cell death is thus a secondary event
in limb bud regression in the slow worm.

(3) Hindlimb development

Although the legs of wingless (ws) embryos may develop normally, it is clear
that in many cases an extension of the ANZ at stage 19 (3 days) removes a
substantial number of anterior leg-bud cells, and this accounts for the skeleton
deficiencies (e.g. absence or reduction of tibia and reduction in digit number) in T

leg development of many wingless chicks. The greater or lesser degree of i
abnormality can be ascribed to the degree by which the size of the wingless ^
limb-bud has been reduced by a greater or lesser extension of the ANZ. How- ^
ever, extension of cell death is restricted to the ANZ and does not occur in the
'opaque patch' region, and one of the features of some of the reduced wingless
4-day leg-buds is the reduced amount of cell death in the 'opaque patch' or
its total absence. Hence, the absence or reduction of the tibia results from the
reduction in number of leg-bud cells, and not from an extension of the 'opaque
patch'.

On the other hand, development of the tibial rudiment is inhibited even where
there is still plenty of mesenchyme for the formation of a reduced tibia if not
one of normal size. In a preliminary study of the ws mutant based on a small
number of embryos, Ede (1968) reported that the tibial matrix stained only
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weakly with alcian blue relative to the fibula. This was not confirmed in the
present investigation, but it appears to be necessary that some such weakness
should occur to account for the tibial buckling which is common in later
embryos.

The reduction of tibial development and the comparatively strong develop-
ment of the fibula is interesting in view of the observations of Hampe (1960)
on competition between the two rudiments. He found that where the material
available for the development of both was reduced, it was monopolized by the
tibial rudiment, whereas if excess was available an extended fibula was pro-
duced: it was as if the tibia took precedence, using whatever was available until
a normal rudiment was produced, after which anything left over went into form-
ation of the fibula. It is interesting therefore that in the ws mutant the tibial
rudiment fails to achieve its normal dominance over the fibula. This may be
related to the fact that in Hampe's experiments the reduction or addition of
material was of the zeugopod region in general and not specifically of one or the
other rudiments. In the ws mutant the abnormal necrosis affects only the pre-
axial region, and there must be some early effect on the tibial rudiment which
causes the normal dominance relation to be reversed.
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the Agricultural Research Council, Science Research Council and Unilever Ltd.
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Note added in proof J

Recently Professor J. W. Saunders has made observations (personal com- y
munication) on cell death in limb development in the American wingless mutant )

originally investigated by Zwilling (1956). He finds the lateral plate mesoderm in J
the region of the prospective wing is extensively necrotic beginning at stage 16
or 17, and the AER does not form. Leg bud development is relatively normal to
stage 19 or 20, when mesenchymal cell death and AER regression may then take
place, but in an unpredictable pattern. The complete foot is never formed, and a
range of expression is found from complete absence of the hindlimb to a reduc-
tion in the number of toes. While the American wingless mutant resembles sex-
linked winglessness (ws) in the involvement in limb morphogenesis of cell
death which has more pronounced effects on wing rather than on leg develop-
ment, there is no evidence for precocious appearance and abnormal extension
of the ANZ, as in ws.


