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Reclaiming Warburg: using developmental biology to gain insight

into human metabolic diseases
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ABSTRACT

Developmental biologists have frequently pushed the frontiers of
modern biomedical research. From the discovery and characterization
of novel signal transduction pathways to exploring the molecular
underpinnings of genetic inheritance, transcription, the cell cycle, cell
death and stem cell biology, studies of metazoan development have
historically opened new fields of study and consistently revealed
previously unforeseen avenues of clinical therapies. From this
perspective, it is not surprising that our community is now an integral
part of the current renaissance in metabolic research. Amidst the global
rise in metabolic syndrome, the discovery of novel signaling roles for
metabolites, and the increasing links between altered metabolism and
many human diseases, we as developmental biologists can contribute
skills and expertise that are uniquely suited for investigating the
mechanisms underpinning human metabolic health and disease. Here,
we summarize the opportunities and challenges that our community
faces, and discuss how developmental biologists can make unique and
valuable contributions to the field of metabolism and physiology.
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Introduction

1t is, of course, to be hoped that in time the combined attack of
the problem of development by genetics and experimental
embryology and especially by chemistry may lead to the
discovery of the physiological action of genes.

Thomas Hunt Morgan, 1923

From the late 1800s until the molecular biology revolution in the
mid-20th century, a significant number of developmental biologists
investigated how metabolism shapes metazoan development. This
era of studies and ideas, including Haldane’s musings on the
biochemical basis of animal body size (Beadle and Ephrussi, 1936;
Haldane and Maynard Smith, 1985) and Beadle and Ephrussi’s
studies of Drosophila eye pigmentation (Beadle and Ephrussi,
1936; Haldane and Maynard Smith, 1985), defined our modern
understanding of developmental biology and genetics. However, the
questions that developmental biologists asked one century ago
about the link between animal growth and metabolism remain
relevant today (Miyazawa and Aulehla, 2018). Even with limited
knowledge of biochemistry, a curious observer intuitively
understands that organismal growth and metabolism are

"Department of Biochemistry and Molecular Biology, Bloomberg School of Public
Health, Johns Hopkins University, Baltimore, MD, 21205, USA. ?Department of
Biology, Indiana University, Bloomington, IN 47405, USA.

*Authors for correspondence (dbarbosa@jhu.edu, jtenness@indiana.edu)

D.D.-B., 0000-0002-7330-457X; J.M.T., 0000-0002-3527-5683

intimately linked: it is clear that, by taking nutrients, energy and
other cues from the environment, living systems can produce
remarkably multifaceted and highly organized forms. This
observation highlights the extraordinary complexity of
physiological and gene regulatory networks that sense nutrients,
orchestrate the energy-intensive funneling of thousands of different
molecules into cellular and extracellular structures, and coordinate
biosynthetic ~ processes throughout an entire organism.
Developmental biologists are ideally suited to understanding
exactly how metabolism and cell structure/function are linked in
living organisms. In fact, many of the signaling pathways that drive
animal metabolism and control how cells and tissues uptake and
metabolize various molecules were discovered by our community.

The inseparable relationship between metabolism and genetic
factors that control growth and development has broad implications
for biomedical research, which has become increasingly focused on
the metabolic basis of human diseases. This renewed interest in
metabolism illuminates a foundational pillar of developmental
biology and raises the question of how our community will push the
frontiers of an exciting and rapidly evolving field. Such a position is
both privileged and unexpected to those of us trained near the turn of
the millennium — a time when developmental biologists were
producing a constant stream of studies that described new genes
involved in cell-cell communication, signal transduction and gene
expression. During this decade or so, our quest to find ‘interesting’
genes often involved scouring microarray data while systematically
ignoring those ‘pesky’ housekeeping genes ending in words like
dehydrogenase, isomerase or reductase. Such a mindset persists
even today as most studies of developmental metabolism, with
notable exceptions, focus on well-described signal transduction
pathways that control the abundance of metabolic enzymes, rarely
exploring how changes in metabolic flux themselves shape cellular
function during development. Moreover, many metabolism-related
studies conducted in model organisms are based upon genes known
to cause human metabolic diseases. While these candidate gene

Advocating developmental biology

This article is part of Development’s Advocacy collection — a series of
review articles that make compelling arguments for the field’s
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want to illustrate how discoveries in developmental biology have had a
wider scientific and societal impact, and thus both celebrate our field’s
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approaches are indispensable, they inevitably raise the question of
how we, as developmental biologists, will once again push the
frontiers of metabolic research. One answer to this question comes
from an unlikely source — Otto Warburg, a well-recognized pioneer
in the field of cancer biology.

Warburg’s name is now synonymous with tumor metabolism, and
his discoveries spawned the recent renaissance of studies of metabolism
relating to cancer biology (Vander Heiden and DeBerardinis, 2017;
Warburg, 1956; Warburg et al., 1924). But before Warburg was trying
to cure cancer, before he was a Prussian cavalry officer wounded on the
front lines of World War I, and before Albert Einstein personally
encouraged him to leave the war and return to academia, he made
pioneering discoveries at the intersection of metabolism and
developmental biology (Krebs and Schmid, 1981; Otto, 2016). From
1908 to 1914, Warburg would occasionally visit the Stazione
Zoologica in Naples, where he examined the metabolism of sea
urchin fertilization (Krebs and Schmid, 1981; Otto, 2016). Warburg’s
key discovery during this time was that sea urchin embryos significantly
increase oxygen consumption upon fertilization (Krebs and Schmid,
1981; Otto, 2016; Warburg, 1908). While such a finding may seem
unremarkable today — as we would expect embryos to have significantly
higher energetic demands than unfertilized eggs — this discovery
represented one of the first demonstrations that metazoan growth
induces (and perhaps requires) measurable changes in metabolism.

Warburg’s sea urchin studies laid the foundation for his
subsequent characterization of tumor metabolism. As noted by his
student and biographer Hans Krebs: “The link between this work
[sea urchin fertilization] and the later investigations on cancer is
obvious: when a normal cell becomes cancerous, it grows
excessively, and in 1922 Warburg set out to test whether cancer
cells have an increased oxygen consumption’ (Krebs and Schmid,
1981). Instead, Warburg discovered a metabolic phenomenon now
referred to as ‘the Warburg effect’, or aerobic glycolysis, which is
characterized by elevated glucose consumption coupled to oxygen-
independent lactate production, thereby inducing a metabolic state
strongly favoring biosynthesis (for reviews, see Hay, 2016; Vander
Heiden and DeBerardinis, 2017). This discovery has shaped our
current understanding of how metabolism promotes tumor growth,
and the Warburg effect remains intensely studied.

While the Warburg effect is primarily associated with tumor
metabolism, similar metabolic changes also occur in a variety of
normal proliferating cells and growing tissues (Miyazawa and
Aulehla, 2018; Sieber and Spradling, 2017). Developmental
biologists thus have the opportunity to study ‘tumor metabolism’
in vivo under physiological conditions. This similarity between
human disease metabolism and normal metazoan development
extends beyond cancer. In fact, many metabolic changes found in
disorders such as diabetes and heart failure are also observed in
developmental contexts (Dorn et al., 2015; Tennessen and
Thummel, 2011). We, as developmental biologists, can use this to
our advantage in discovering new metabolic mechanisms that
contribute to disease progression. The purpose of this Spotlight,
however, is not to review the advances that developmental
biologists have made in studying aerobic glycolysis or other
metabolic programs, as these have been the recent subject of several
excellent reviews (see Miyazawa and Aulehla, 2018; Sieber and
Spradling, 2017), but rather to highlight how Warburg’s research
can guide future studies of developmental metabolism.

Lessons from Warburg: exploring metabolic transitions
Although sea urchin embryos and tumors activate different
metabolic programs, it is useful to compare these systems.

Warburg’s sea urchin studies highlight the power of using a
developmental system for studying metabolism; the highly
reproducible events surrounding sea urchin fertilization allow for
the precise study of a major metabolic transition (Turner and
Shapiro, 1988). By contrast, the inherently unpredictable metabolic
changes occurring during tumor formation are challenging to study
in vivo, underscoring why aerobic glycolysis should be studied
further in model organisms. By investigating this metabolic switch
in a controlled developmental system, such as the mouse tailbud
(Bulusu etal., 2017; Oginuma et al., 2017), zebrafish muscle (Tixier
etal., 2013), or Drosophila embryos and imaginal discs (Tennessen
et al., 2014; Wang et al., 2016), we can pinpoint the endogenous
mechanisms triggering aerobic glycolysis. Developmental systems
provide yet another advantage when compared with tumors because
healthy tissues turn off aerobic glycolysis in a controlled manner
(White et al., 1999), thus providing an opportunity to examine the
endogenous mechanisms that turn off this metabolic program.
Developmental metabolism studies will also be invaluable in
informing research into how endogenous mechanisms might be
co-opted by cancers and therapeutically targeted.

The same rationale for developmental biologists studying the
Warburg effect applies to metabolic shifts observed in other chronic
diseases, including diabetes, heart failure and neurodegeneration.
The mammalian heart, for example, relies largely on glucose and
lactate metabolism for fetal energy production but activates fatty
acid oxidation at the onset of neonatal development (Makinde et al.,
1998). This metabolic switch is dependent on the nuclear receptor
ERRy and the transcriptional co-activator PGClo., which together
activate the expression of genes involved in neonatal cardiac
metabolism (Alaynick et al., 2007; Lai et al., 2008). Studying this
metabolic transition, however, is not only relevant for treating birth
defects but also for understanding heart failure. Many of the
metabolic changes that are activated during cardiac development are
reversed in the failing heart, as evident by decreased ERRy and
PGCla expression and reactivation of fetal cardiac metabolism in
cardiomyopathies (Dorn et al., 2015). But while heart failure
develops over a period of years, neonatal development in model
organisms can be easily studied in a controlled manner, providing an
important opportunity to explore the metabolic mechanisms
underlying this disease.

The above examples illustrate why developmental biologists
should press our advantage in studying metabolic regulation. From
studies of the heterochronic pathway in C. elegans to nuclear receptor
signaling in Drosophila and amphibians, we have a rich history of
developing the experimental techniques and tools required to
precisely study developmental transitions (Denver, 2013; Ou and
King-Jones, 2013; Rougvie and Moss, 2013). This same expertise
should be applied to studying metabolism, with the overarching goal
of understanding the metabolic changes underlying human disease.

More lessons from Warburg: emerging technologies can
provide new opportunities

Warburg’s pioneering studies of cancer metabolism resulted directly
from his thoughtful experimental design and extraordinary technical
ability. As noted by Krebs, Warburg showed ‘exceptional skills in
selecting the right kind of material and in perfecting experimental
techniques’ (Krebs and Schmid, 1981; Otto, 2016). Warburg’s
approach provides key lessons for modern studies of developmental
metabolism. First, many of Warburg’s discoveries were made
possible by techniques that he pioneered in spectrophotometry and
manometry (Krebs and Schmid, 1981), which provided novel
opportunities to measure both small molecules and the production
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and consumption of gasses, respectively. These tools allowed
Warburg to ask experimental questions that were previously
inaccessible and led to major breakthroughs in our understanding
of cancer metabolism.

Metabolic research is again experiencing a technological revival
that is providing developmental biologists with the tools necessary
to study metabolism with unparalleled precision. The powerful
combination of metabolomics and small-molecule sensors allows
the visualization of metabolites within individual cells/tissues (Cox
et al., 2017; Miyazawa and Aulehla, 2018). For example, a FRET-
based sensor for pyruvate led to the discovery of a posterior-to-
anterior gradient of glycolytic activity during somite formation
within the mouse tailbud presomitic mesoderm (Bulusu et al.,
2017). Similarly, the use of a citrate FRET sensor in Drosophila was
crucial to understanding how the transport of citrate from the
intestine to the testis serves a key role in sperm maturation (Hudry
et al., 2019). The use of FRET-based sensors is complemented by
advances in mass spectrometry that allow for direct visualization of
individual metabolites within single cells and can potentially
combine metabolomics with cell-specific tools commonly used by
developmental biologists (Rappez et al., 2019 preprint). New
enhanced methods for measuring metabolic flux are also benefiting
developmental biology (Jang et al., 2018). The metabolism and
physiology communities have developed exquisitely sensitive
techniques for measuring parameters such as oxygen
consumption, carbon dioxide production and heat flow, which
have the potential to illuminate entirely new phenomena. For
example, recent studies of mouse and zebrafish embryos using
metabolic flux analysis and isothermal calorimetry, respectively,
revealed unexpected links between metabolism and embryonic
development (Chi et al., 2020; Rodenfels et al., 2019). The
widespread adoption of such tools by our community will be
essential for investigating how metabolism is regulated in vivo.

Warburg’s sea urchin studies also emphasize the importance of
thoughtfully selecting an experimental system best suited for
studying a specific metabolic transition/switch. Warburg chose to
measure oxygen consumption in sea urchin embryos because
‘development of the fertilized egg is very rapid so that...much
happens in a short time” (Krebs and Schmid, 1981). With this quote
in mind, our community should embrace emerging model
organisms that are ideal for examining particular metabolic
processes. After all, life evolved under selective pressures that
included extreme environmental and nutritional stresses, thus
adapting to many of the metabolic challenges that are now
associated with human disease. Adaptive thermogenesis, e.g.
where ‘beiging’ of white fat increases metabolic rate, leads to
weight loss and improves insulin sensitivity, and is of particular
interest to research aiming to treat obesity and diabetes (Tkeda et al.,
2018). A key feature of adaptive thermogenesis is elevated
mitochondrial uncoupling, which allows protons to re-enter the
mitochondrial matrix independently of ATP synthase and release
energy as heat (Lowell and Spiegelman, 2000). Although
mitochondrial uncoupling can be studied in standard model
systems, the wax moth, Galleria mellonella, is a potentially
exciting model. Its larvae can burn superfluous dietary lipid to
generate large quantities of metabolic water, while the extra calories
become heat (Jindra and Sehnal, 1989). This adaptive trait, which
involves mitochondrial uncoupling, allows G. mellonella to thrive
under waterless culture conditions and could provide the biomedical
community with a new perspective on how this metabolic process is
controlled in vivo. Similar examples of how animal metabolism
adapts to extreme environments can be found throughout the last

century of research on animal physiology and, as new technologies
facilitate genetic studies in non-canonical model systems, the
potential for discoveries tying metabolism to development and
physiology in vivo will significantly expand.

Beyond Warburg: investigating metabolic dysfunction at the
organismal level

Warburg’s studies of aerobic glycolysis used tumor slices incubated
in an artificial medium — the most logical and powerful approach
available at the time (Warburg et al., 1924). However, Warburg’s
approach, much like modern cell culture studies, failed to replicate
the complexities associated with an in vivo metabolic environment,
in which cells are exposed to a milieu of endocrine signals and
circulating small molecules. The limitations of such in vitro
approaches were recently highlighted by multiple stable isotope
tracer experiments using '3C-labeled glucose in individuals with
cancer (Courtney et al., 2018; Faubert and DeBerardinis, 2017,
Hensley et al., 2016). These studies revealed the complexity of
cancer metabolism, with different tumor types consuming and using
glucose in distinct manners. Some tumors, such as lung cancers, do
not activate the Warburg effect, but rather rely on glucose oxidation
and consume lactate (Faubert et al., 2017). Indeed, mitochondrial
metabolic pathways, which are often ignored by oversimplified
descriptions of the Warburg effect, play an essential role in tumor
metabolism in vivo (DeBerardinis and Chandel, 2020; Martinez-
Reyes and Chandel, 2020). Moreover, simple models of cancer
metabolism fail to convey the cellular and metabolic heterogeneity
within individual tumors, where metabolic flux differs among cell
types (e.g. malignant cells, stroma, immune cells and cancer stem
cells) and metabolites can be transferred among cells within a
microenvironment (Kim and DeBerardinis, 2019). This high
complexity and variability of cancer metabolism underscores the
importance of studying metabolism in vivo.

The problems associated with in vitro studies of metabolism are
not limited to cancer cells. Any isolated cell or tissue that is
incubated in artificial media will inevitably generate metabolic
artifacts; therefore, metabolic research is best conducted in vivo. In
this regard, developmental biologists have distinct advantages. The
growth and development of any multicellular organism requires the
coordinated synthesis, storage and transport of metabolites between
cells. The metabolic needs of individual cells and tissues must be
balanced across the entire organism through complex metabolic
networks. Having spent decades generating the tools required for
cell- and tissue-specific studies, our community is poised to probe
the physiological, cellular and molecular mechanisms that
coordinate metabolism across an entire living organism.

Studies of adult Drosophila oogenesis illustrate how we can
leverage existing tools to investigate the systemic regulation of
metabolism. Oogenesis is an energy- and nutrient-intensive process
involving the massive accumulation of lipids, carbohydrates and
other macromolecules in the oocyte, in tight coordination with its
complex development from an undifferentiated precursor into a
mature oocyte. Developmentally controlled metabolic changes occur
at multiple steps, ending with entry of the oocyte into a quiescent state
(Sieber et al., 2016). A multi-organ physiological network further
coordinates the developmental control of oogenesis with the
metabolic state of the organism (reviewed by Drummond-Barbosa,
2019). Abundant dietary nutrients promote oogenesis through brain-
derived insulin and other systemic factors, while adversities trigger
downregulation of oogenesis at many stages, thus safeguarding
organismal resources (reviewed by Drummond-Barbosa, 2019).
Other organs also support the nutritional demands of oogenesis.
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The midgut dramatically expands under a rich diet, thus enhancing
nutrient absorption (O’Brien et al.,, 2011). Mating also leads to
enlargement of the adult female midgut and altered enterocyte lipid
metabolism to favor egg production (Reiff et al., 2015). Incidentally,
mating also stimulates female germline stem cell proliferation
through neuropeptide F from midgut enteroendocrine cells (Ameku
et al., 2018). Lipophorin-mediated transport of lipids is crucial for
oocyte yolk uptake (Matsuoka et al., 2017; Parra-Peralbo and Culi,
2011), while several adipocyte metabolic pathways have specific
effects earlier in oogenesis (Matsuoka et al., 2017). Thus, the
coordination of hormones, nutrients, metabolism and oogenesis
developmental transitions integrates environmental cues and
extensive inter-organ communication (reviewed by Drummond-
Barbosa, 2019; Weaver and Drummond-Barbosa, 2019).

Research on the Drosophila ovary and other highly metabolically
demanding tissues/organs, such as the C. elegans germline
(reviewed by Hubbard and Schedl, 2019), is instrumental for
dissecting how the regulation of metabolic flux intrinsically and in
peripheral tissues supports the transition of cells through distinct
developmental stages with varying metabolic demands in a complex
living organism. Notably, the link between tissue development/
maintenance and whole-body physiology is widely conserved,
including in other tissues with less extreme intrinsic metabolic
demands, such as the Drosophila midgut (see above, reviewed by
Colombani and Andersen, 2020) and developing brain (reviewed by
Otsuki and Brand, 2020), among others (Shim et al., 2013).

Developmental biologists are also ideally situated to explore a
second emerging focal point of systemic metabolic regulation
directly relevant to human diseases but difficult to study in vitro.
Unlike cultured cells, a developing organism must be able to adapt
its growth and maturation to environmental stressors such as
nutrient deprivation, toxic compounds and temperature shifts, thus
displaying a remarkable level of metabolic plasticity (Gilbert and
Epel, 2015; Sieber and Spradling, 2017; Watson et al., 2015). The
ability of a cell or tissue to withstand metabolic insults is key to the
field of cancer metabolism, which has become increasingly focused
on identifying metabolic enzymes that are essential for tumor
growth (Vander Heiden and DeBerardinis, 2017). But just as a
developing organism adapts to metabolic insults, so too will a tumor
evolve to overcome a metabolic inhibitor designed to disrupt cell
proliferation and growth. In this context, developmental biologists
have a long history of uncovering metabolic mechanisms that impart
robustness on development (for examples, see Watson et al., 2014;
Watson et al., 2016). Such studies can illuminate compensatory
metabolic networks that are directly relevant to studies of tumor
metabolism, as a recent study of Drosophila Lactate Dehydrogenase
(LDH) illustrates. Drosophila larvae exhibit very high levels of
LDH activity (Rechsteiner, 1970), suggesting that larval
metabolism depends on lactate production to maintain redox
balance and promote glycolysis. Ldh mutant larvae, however,
grow at a normal rate because larval metabolism adapts to the loss of
LDH activity by synthesizing excess glycerol-3-phosphate (G3P) —
a metabolic reaction that also maintains redox balance (Li et al.,
2019). These findings reveal uncanny similarities between rapidly
growing larvae and tumors, and are directly relevant to studies of
cancer metabolism. Specifically, tumors also exhibit elevated LDH-
A activity, and LDH-A has thus been proposed as a therapeutic
target for inhibiting tumor growth; however, cancer cells synthesize
excess G3P in response to LDH-A inhibition (Boudreau et al.,
2016), which could potentially render them resistant to LDH-A
treatment. Therefore, studies of Drosophila Ldh hint at a mechanism
by which tumors could become resistant to LDH-A inhibitors and

unequivocally demonstrate how studying metabolic plasticity in
developmental systems can inform clinical decisions in treating
cancer and other human metabolic diseases.

Conclusions

The biomedical community has turned its attention towards
studying the metabolic basis of human disease. Many of these
efforts focus on metabolic mechanisms that are also active during
metazoan development. Our community should therefore exploit
our tools and resources to further explore aspects of metabolic
regulation that are relevant to disease progression but difficult to
study in cultured cells and human patients. The wealth of
fundamental information we can generate will no doubt have the
power to uniquely inform and propel studies into metabolic disease
mechanisms and effective therapies, thereby maximizing the use of
research resources and aiding scientific progress and the promotion
of human health.
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